Tải bản đầy đủ (.pdf) (78 trang)

(Đồ án hcmute) design and development of receptionist robot

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (4.48 MB, 78 trang )

BỘ GIÁO DỤC VÀ ĐÀO TẠO
TRƯỜNG ĐẠI HỌC SƯ PHẠM KỸ THUẬT TP. HỒ CHÍ MINH
KHOA CƠ KHÍ CHẾ TẠO MÁY

ĐỒ ÁN TỐT NGHIỆP
NGÀNH CÔNG NGHỆ KỸ THUẬT CƠ ĐIỆN TỬ

DESIGN AND DEVELOPMENT OF RECEPTIONIST
ROBOT

GVHD: PGS. TS. NGUYỄN NGỌC PHƯƠNG
SVTH: ÐẶNG HẢI ÐĂNG
MSSV: 12146040
NGUYỄN TRỌNG TUẤN
MSSV: 12146223
NGUYỄN CÔNG LUẬT
MSSV: 12146105
PHÙ TRUNG MƠ
MSSV: 12146113

S KL 0 0 4 7 2 8

Tp. Hồ Chí Minh, tháng 07 năm 2016

do an


MINISTRY OF EDUCATION AND TRAINING
HCMC UNIVERSITY OF TECHNOLOGY AND EDUCATION



FACULTY OF MECHANICAL ENGINEERING

CAPSTONE PROJECT
“DESIGN AND DEVELOPMENT OF
RECEPTIONIST ROBOT”
Advisor:

Assoc. Pr. Dr. NGUYỄN NGỌC PHƯƠNG

Students:

ĐẶNG HẢI ĐĂNG

ID: 12146040

NGUYỄN TRỌNG TUẤN

12146223

NGUYỄN CÔNG LUẬT

12146105

PHÙ TRUNG MƠ

12146113

Class:

121462


Academic years:

2012 - 2016

HO CHI MINH CITY, JULY 2016

do an


MINISTRY OF EDUCATION AND TRAINING
HCMC UNIVERSITY OF TECHNOLOGY AND EDUCATION


MECHATRONIC DEPARTMENT

CAPSTONE PROJECT
“DESIGN AND DEVELOPMENT OF
RECEPTIONIST ROBOT”
Advisor:

Assoc. Pr. Dr. NGUYỄN NGỌC PHƯƠNG

Students:

ĐẶNG HẢI ĐĂNG

ID:

12146040


NGUYỄN TRỌNG TUẤN

12146223

NGUYỄN CÔNG LUẬT

12146105

PHÙ TRUNG MƠ

12146113

Class:

121462

Academic years:

2012 - 2016

HO CHI MINH CITY, JULY 2016

do an


TRƯỜNG ĐẠI HỌC SƯ PHẠM KỸ THUẬT
TP. HCM

CỘNG HOÀ XÃ HỘI CHỦ NGHĨA

VIỆT NAM

KHOA CƠ KHÍ CHẾ TẠO MÁY

Độc lập - Tự do – Hạnh phúc

Bộ môn Cơ điện tử

NHIỆM VỤ ĐỒ ÁN TỐT NGHIỆP
Giảng viên hướng dẫn: PGS. TS. NGUYỄN NGỌC PHƯƠNG
Sinh viên thực hiện:

ĐẶNG HẢI ĐĂNG

MSSV: 12146040

NGUYỄN TRỌNG TUẤN

12146223

NGUYỄN CÔNG LUẬT

12146105

PHÙ TRUNG MƠ

12146113

1. Tên đề tài:
Thiết kế, chế tạo và điều khiển robot tiếp tân.

2. Các số liệu, tài liệu ban đầu:
Robot tiếp tân tự hành, có khả năng di chuyển, cung cấp thông tin và giao tiếp với
người dùng thơng qua màn hình cảm ứng và hệ thống nhận diện giọng nói.
3. Nội dung chính của đồ án:
-

Tính tốn và thiết kế cơ khí.

-

Tính tốn động học và động lực học robot.
Hệ thống điện – điện tử.

-

Thiết kế hệ thống điều khiển.

4. Các sản phẩm dự kiến
Robot tiếp tân.
5. Ngày giao đồ án:
6. Ngày nộp đồ án:
TRƯỞNG BỘ MÔN

GIẢNG VIÊN HƯỚNG DẪN

(Ký, ghi rõ họ tên)

(Ký, ghi rõ họ tên)

 Được phép bảo vệ ………………………………………… (GVHD ký, ghi rõ họ tên)


do an


LỜI CAM KẾT

- Tên đề tài: Thiết kế, chế tạo và điều khiển robot tiếp tân.
- GVHD: PGS. TS. NGUYỄN NGỌC PHƯƠNG
- Sinh viên thực hiện: ĐẶNG HẢI ĐĂNG

-

MSSV:

12146040

NGUYỄN TRỌNG TUẤN

12146223

NGUYỄN CÔNG LUẬT

12146105

PHÙ TRUNG MƠ

12146113

Lớp: 121462


- Địa chỉ sinh viên: Openlab
- Số điện thoại liên lạc: 01264655234
- Email:
- Ngày nộp khố luận tốt nghiệp (ĐATN):
- Lời cam kết: “Tơi xin cam đoan khoá luận tốt nghiệp (ĐATN) này là cơng trình do
chính tơi nghiên cứu và thực hiện. Tơi không sao chép từ bất kỳ một bài viết nào
đã được cơng bố mà khơng trích dẫn nguồn gốc. Nếu có bất kỳ một sự vi phạm
nào, tơi xin chịu hồn tồn trách nhiệm”.
Tp. Hồ Chí Minh, ngày …. tháng …. năm 20…..
Ký tên

do an


ACKNOWLEDGMENTS
Firstly, we would like to acknowledge our thesis supervisor Assoc. Pr. Dr. Nguyễn
Ngọc Phương and Assoc. Pr. Dr. Nguyễn Trường Thinh
̣ for the continuous support of our
project and related research, for their patience, motivation, and immense knowledge. Their
guidance helped us in all the time of research and writing of this thesis. We could not have
imagined having better advisors and mentors for our project.
Besides our advisors, we would like to thank to our thesis committee ME Lê Thanh
Tùng, for his insightful comments and encouragement, but also for the hard question which
incented me to widen my research from various perspectives. We would also thank to the
members of OPENLAB who have supported us throughout our time in laboratory.
Finally, we would like to thank the Department of Mechanical Engineering, for
giving us the best opportunity to work on our final project.

Đặng Hải Đăng
Nguyễn Trọng Tuấn

Nguyễn Công Luật
Phù Trung Mơ

do an


TÓM TẮT ĐỒ ÁN
THIẾT KẾ, CHẾ TẠO VÀ ĐIỀU KHIỂN ROBOT TIẾP TÂN

Đặng Hải Đăng
Nguyễn Trọng Tuấn
Nguyễn Công Luật
Phù Trung Mơ
Trải qua những biến động thăng trầm của lịch sử, xã hội lồi người đang có những
tiến bộ vượt bậc đặc biệt là trong lĩnh vực khoa học kỹ thuật như: Cơ khí hóa, Tự động
hóa, Cơ điện tử… Sự thay đổi chóng mặt của nền cơng nghiệp và kinh tế dẫn đến những
nhu cầu về nguồn lực nhân tạo, điển hình là robot. Robot đã và đang giúp ích con người
trong rất nhiều lĩnh vực như dịch vụ, công nghiệp, y tế, … Sự ra đời của chúng mở ra một
kỷ nguyên mới, kỷ nguyên của khoa học kỹ thuật, của sự thơng minh sáng tạo, trong đó
sức lao động cơ bắp dần được thay thế bằng sức lao động của máy móc thiết bị. Những
cơng việc khó khăn, yêu cầu độ chính xác cao mà trước kia cần đến vài ngày để hồn tất
thì nay đã được robot thực hiện chỉ trong vài phút. Với độ chính xác cao, khả năng hoạt
động không ngừng nghỉ, cùng với tiềm lực đa tác vụ tốt, robot dần có thể giúp con người
trong mọi lĩnh vực của cuộc sống.
Chính vì những ưu điểm vượt trội nêu trên, nhóm chúng em quyết định triển khai đề
tài “Thiết kế, chế tạo và điều khiển robot tiếp tân”. Đây là một lĩnh vực đang phát triển
mạnh trên thế giới nhưng còn khá mới ở nước ta, hy vọng qua đề tài này, nhóm có thể góp
phần xây dựng nền tảng phát triển robot dịch vụ tại Việt Nam.
Trong phần báo cáo chúng em trình bày về: Tình hình phát triển của cơng nghệ robot
trên thế giới, giải thích và chọn phương án thiết kế phù hợp, q trình gia cơng, thử nghiệm

độ bền vỏ composite và đế robot, tính tốn các bài tốn động học và động lực học robot,
thiết kế và bố trí mạch điện, nền tảng lập trình và xử lý tín hiệu robot, …

do an


ABSTRACT
DESIGN AND DEVELOPMENT OF RECEPTIONIST ROBOT

Through the ups and downs change of history, human communities have been having
great progresses especially in the field of science and technology such as mechanization,
automation, mechatronics ... The rapid changes of the industry and the economy led to the
demand for artificial resources, especially robots. Robot has been helping people in many
fields such as service, industrial, medical, ... The exist of them opens a new era, the era of
science and technology, the creative intelligence , in which the muscular labor was
gradually replaced by the labor of machinery. The hard work, requiring high accuracy that
previously required several days to complete, robot can do it in just a few minutes. With
high accuracy, the ability to operate non-stop, with good multi-tasking capabilities, the
robot can gradually help people in all areas of life.
Because of the above advantages, we decided to implement the project "Designing,
manufacturing and controlling robot receptionist". This is a fast growing sector in the world
but is relatively new in our country, hopefully through the project, we can contribute to
build the platform for developing service robot in Vietnam.
In the report we presented to: The development of robotics technology on the world,
explain and choose the appropriate design, processing, testing the strength of platform and
composite shell of robot, calculate dynamical and kinematic math, design and circuit
layout, programming background and signal processing of robot, ... We also present about
the combination between the hardware and software and the testing process. Base on the
result of testing, we know about the strong point and weak point of the method that we
have used, from that make plans for the future development.


do an


CONTENT
CHAPTER 1: INTRODUCTION .................................................................................... 1
1.1. DESCRIPTION .................................................................................................... 1
1.2. SEVERAL SERVICE ROBOTS ........................................................................ 4
1.2.1.

Robot Fetch ................................................................................................ 4

1.2.2.

Robot Relay ................................................................................................ 4

1.2.3.

OSHbot ....................................................................................................... 5

1.2.4.

Robot Techi ................................................................................................ 6

1.2.5.

ENON .......................................................................................................... 7

1.3. OBJECTIVES ...................................................................................................... 8
1.4. PROCEDURES .................................................................................................... 8

1.5. SYSTEM OVERVIEW ....................................................................................... 8
1.6. PROJECT TIMELINE (By week) ..................................................................... 9
CHAPTER 2: MECHANICAL DESIGN ...................................................................... 10
2.1. PLATFORM DESIGN ...................................................................................... 10
2.1.1.

Design requirement.................................................................................. 10

2.2. MAKING MOLD AND COMPOSITE ............................................................ 12
2.2.1.

Design requirement.................................................................................. 12

2.2.2.

Choosing and making robot cover ......................................................... 13

2.3. ROBOT’s ARM .................................................................................................. 15
CHAPTER 3: KINEMATICS AND DYNAMICS ....................................................... 16
3.1. KINEMATICS MODEL ................................................................................... 16
3.1.1.

Introduction .............................................................................................. 16

3.1.2.

Kinematics ................................................................................................ 16

3.1.2.1. Representing Robot's Position ............................................................ 16
3.1.2.2. Kinematic Wheel Model ...................................................................... 17

3.1.3.

Kinematics Robot arm............................................................................. 22

3.2. DYNAMIC MODEL .......................................................................................... 26
CHAPTER 4: ELECTRONICS AND ELECTRICAL SYSTEM .............................. 29

do an


4.1. CALCULATE MOTORS .................................................................................. 29
4.1.1.

Introduction .............................................................................................. 29

4.1.2.

Calculate the electric motor .................................................................... 29

4.1.3.

The shoulder motor ................................................................................. 32

4.2. ELECTRONICS ................................................................................................ 34
4.2.1.

Encoder ..................................................................................................... 34

4.2.2.


Driver ........................................................................................................ 34

4.3. CALCULATE THE BATTERIES ................................................................... 35
4.4. AUTOMATION CHARGING DOCK ............................................................. 37
5.1. SOFTWARE OF CONTROL ........................................................................... 39
5.1.1.

Communications ...................................................................................... 39

5.1.3.

PID controller ........................................................................................... 41

5.2. IMAGE PROCESSING..................................................................................... 42
5.2.1.

EmguCV: Face detection using Haar Cascades.................................... 43

5.2.1.1. About Haar Cascades .......................................................................... 43
5.2.1.2. Result ..................................................................................................... 43
5.2.2.

Face Identify and Emotion Recognition ................................................ 43

5.2.2.1. Microsoft Cognitive Services (Project Oxford) ................................. 43
5.2.2.2. Face API: Face Identification ............................................................. 43
5.2.2.3. Emotion API ......................................................................................... 44
5.2.2.4. Result ..................................................................................................... 44
5.2.3.


Face Recognition and Emotion Detection Programming Logic Graphic
.................................................................................................................... 45

5.2.4.

Detect and track object by color using AForge.NET Framework: ..... 46

5.3. MAPPING TRAJECTORY PLANNING ....................................................... 49
5.4. OBSTACLE AVOIDING .................................................................................. 50
5.4.1.

Ultrasonic sensors .................................................................................... 50

5.4.2.

Kinect ........................................................................................................ 51

5.5. HUMAN COMMUNICATION ........................................................................ 52

do an


5.5.1.

Google Speech API................................................................................... 53

5.5.2.

Stanford Parser for .NET ........................................................................ 53


5.5.3.

Voice Processing Programming Logic Graphic .................................... 55

CHAPTER 7: EXPERIMENTS, DISCUSSION & CONCLUSION ......................... 56
7.1. STRAIGHT MOVEMENT TEST .................................................................... 56
7.2. 45 DEGREE MOVEMENT TEST ................................................................... 56
7.3. FREE MOVEMENT TEST .............................................................................. 56
7.4. DISCUSSION ..................................................................................................... 57
7.5. SUMMARY OF PROJECT .............................................................................. 57
7.6. FUTURE WORK ............................................................................................... 58

do an


CONTENT TABLES
Page
Table 1.1. Project timeline ................................................................................................... 9
Table 3.1 DH parameter representation............................................................................. 23
Table 4.1. Gear motor features and standard data. ............................................................ 31
Table 4.2. Shoulder motor’s specification ......................................................................... 33
Table 4.3. Parameters of the control circuit for DC Servo MSDE1 .................................. 35
Table 4.4. Power usage of equipment on robot ................................................................. 36
Table 7.1. Error for each 10 meter distance. (Unit: mm) .................................................. 56
Table 7.2. Error of 45 degree movement test. (Unit: mm) ................................................ 56
Table 7.3. Error of free movement test. (Unit: mm) ......................................................... 56

do an



CONTENT FIGURE
Page
Figure 1.1. Estimated operational stock of industrial robots 2013 – 2014 and forecast for
2015 – 2018. ........................................................................................................................ 2
Figure 1.2. Service robots for professional use. .................................................................. 3
Figure 1.3. Robot Fetch ....................................................................................................... 4
Figure 1.4. Robot Relay ....................................................................................................... 5
Figure 1.5. OSHbot .............................................................................................................. 6
Figure 1.6. Adept’s Robots .................................................................................................. 7
Figure 1.7. ENON ................................................................................................................ 7
Figure 2.1. Von Mises Stress of Robot platform ............................................................... 11
Figure 2.2. Displacement of Robot platform .................................................................... 12
Figure 2.3. Basic Robot cover ........................................................................................... 13
Figure 2.4. Making mold and composite ........................................................................... 14
Figure 2.5. From mold to composite ................................................................................. 15
Figure 2.6. Workspace of robot arm .................................................................................. 15
Figure 3.1.

Four wheeled differentially driven mobile robot ......................................... 17

Figure 3.2 Wheel moving in a plane ............................................................................... 18
Figure 3.3 Coordinate position of each member of the robot ......................................... 19
Figure 3.4

Differential drive motion .............................................................................. 20

Figure 3.5 Kinematic Arm Model of service robot ........................................................... 22
Figure 3.6. Force on robot ................................................................................................ 27
Figure 4.1. The forces of moving robot ............................................................................. 29
Figure 4.2. Forces on the robot’s arms .............................................................................. 32

Figure 4.3. Structure of Encoder ....................................................................................... 34
Figure 4.4. Control circuit for DC Servo MSDE1............................................................. 35
Figure 4.5. Automation charging dock .............................................................................. 37
Figure 5.1. Control system of robot................................................................................... 39

do an


Figure 5.2. Diagram of communication between the control blocks in robot ................... 40
Figure 5.3. Cascade controller ........................................................................................... 41
Figure 5.4. Block diagram of PID controller ..................................................................... 42
Figure 5.5. RC motor control ............................................................................................ 42
Figure 5.6. Result of face detection ................................................................................... 43
Figure 5.7. Person identify and emotion detection ............................................................ 44
Figure 5.8. Face Recognition and Emotion Detection Programming Logic Graphic ....... 45
Figure 5.9. Detect and track object by color ..................................................................... 46
Figure 5.10. Model of a pinhole camera............................................................................ 47
Figure 5.11. Tracking and Picking Object Programming Logic Graphic ......................... 49
Figure 5.12. Ultrasonic sensor on robot ............................................................................ 50
Figure 5.13. Depth stream in image .................................................................................. 51
Figure 5.14. Main program and virtual face ...................................................................... 52
Figure 5.15. Interaction between robots and humans. ....................................................... 53
Figure 5.16. Stanford Parser .............................................................................................. 54
Figure 5.17. Voice Processing Programming Logic Graphic ........................................... 55
Figure 7.1. Experiment at the central building .................................................................. 57

do an


ACRONYM

IFR

International Federation of Robotics

DC

Direct Current

CAN

Controller Area Network

PC

Personal Computer

DOF

Degree Of Freedom

WMR

Wheeled Mobile Robot

SCARA

Selective Compliance Assembly Robot Arm

OEM


Original Equipment Manufacturer

LED

Light Emitting Diode

AI

Artificial Intelligence

PC

Personal Computer

DH

Denavit–Hartenberg

IR

Infared blasteR

RC

Radio Control

MCU

Microcontroller Unit


I2C

Interface to Communicate

PID

Proportional Integral Derivative

API

Application Programming Interface

SDK

Software Development Kit

NLP

Natural Language Processing

do an


CHAPTER 1: INTRODUCTION
1.1.

DESCRIPTION

Robotics is finally stepping out of science fiction and into service, if not in our
homes, then at least in our hotels, hospitals, restaurants, warehouses, hardware stores

and other retail outlets. This new report series from Silicon Valley Robotics highlights
the first steps of startups Fetch Robotics, Fellow Robots, Savioke and Adept into the
emerging service robotics industry, with additional analysis contributed by industry
experts.
The service robotics industry has long been the subject of science fiction, with robot
maids, like Rosie from the Jetsons, or cleaners, like Wall-E. Or medical assistants and
all round helpers like Baymax from Big Hero 6. Baymax was actually modeled on the
latest in soft robotics research, but there’s still a big gap between research and
commercialization. So far there have been very few successful service robotics
companies.
Until now, industrial robotics has been the dominant sector for robots, particularly
in the car industry and consumer electronics. The industrial robotics sector is worth
more than $32 billion dollars in sales, software and service, although there are only 1.5
million industrial robots in the world, compared to more than 10 million Roombas!
There has been steady growth in industrial robotics for the last five years and this trend
shows no signs of slowing (as Figure 1.1.)

1

do an


Figure 1.1. Estimated operational stock of industrial robots 2013 – 2014 and forecast
for 2015 – 2018.
Turning to the projections for the period 2015-2018, sales forecast indicate an
increase to about 152,375 units with a value of US$19.6 billion.
Thereof, about 58,800 robots for defense applications will be sold in the period
2015-2018. They are followed by milking robots with about 28,600 units. This is
probably a rather conservative estimate. These two service robot groups make up 60%
of the total forecast of service robots at the current time.

A strongly growing sector will be mobile platforms in general use. Service robot
suppliers estimate that about 16,000 mobile platforms as customizable multi-purpose
platforms use will be sold in the period 2015-2018. Also, sales of logistic systems will
increase considerably in this period. More than 14,500 units are estimated, thereof, about
13,300 automated guided vehicles. About 700 robots for rescue and security applications
will be sold between 2015 and 2018 mainly surveillance and security robots. Robots for
professional cleaning will increase to about 6,650 units in the same period, mainly
systems for floor cleaning. About 7,800 medical robots will be sold plus 4,000 robots
for inspection and maintenance.
2

do an


These forecasts are, as mentioned earlier, based mainly on individual sales
projections by companies and professional organizations. It is the opinion of the IFR
Statistical Department that the forecasts should be seen as trends concerning market
direction rather than actual and precise sales forecasts.
The cost of service robotics systems is dropping significantly, putting service robots
in reach of many new market partners. But these new market opportunities are also
arising due to continual improvements in the safety and compliance of robot systems,
alongside their more intuitive user interfaces.

Figure 1.2. Service robots for professional use.
What is also clear is that none of these robots replace workers, but they supplement
work at critical bottle neck times/tasks or improve health outcomes making jobs more
attractive, especially in areas where there is a chronic shortage or high turnover of staff.
At the end of the day, the value proposition for service robotics is in supporting
workers to work better, faster and safer. But these new robot assistants offer a
tantalizing glimpse of a reshaped work paradigm, where humans gravitate to

managerial jobs, leaving more of the menial and repetitive jobs to robots.
3

do an


1.2. SEVERAL SERVICE ROBOTS
1.2.1. Robot Fetch

Figure 1.3. Robot Fetch
Fetch Robotics builds robot systems for the logistics industry. The company
was founded in 2014 and is headquartered in San Jose, CA. Unveiled in April 2015,
the Fetch Robotics system is comprised of a mobile base (called Freight) and an
advanced mobile manipulator (called Fetch). Fetch and Freight use a charging dock
for autonomous continuous operations, allowing the robots to charge when needed
and then continue on with their tasks. In addition, the system includes
accompanying software to support the robots and integrate with the warehouse
environment. The robots are designed to work independently alongside human
workers, performing repetitive tasks such as warehouse delivery, pick and pack, and
more. Fetch was awarded a GameChanger award by Robotics Business Review for
Best Industrial Productivity Solution.
1.2.2. Robot Relay
Savioke is creating autonomous robots for the services industry. The company
aims to improve the lives of people by developing and deploying robotic technology
4

do an


in human environments. Savioke was founded in 2013 and is headquartered in Santa

Clara, CA. Savioke is the creator of Relay, state-of-the-art robot designed for
autonomous delivery of items between people. Relay’s first application is in the
hospitality industry.

Figure 1.4. Robot Relay
Relay delivers snacks and amenities to hotel guests, enabling hotel staff to
focus on other guests’ needs. With successful deployments in the U.S. at hotel
groups such as Starwood and InterContinental Group, Relay has a proven record of
more than five thousand deliveries. Savioke (pronounced “savvy oak”) was awarded
a GameChanger award by Robotics Business Review for Best Consumer Solution.
1.2.3. OSHbot
When a customer comes in and says, “Hey, I’m looking for nails and paint”
then the robot can tell that customer where to find those items. It shows customers
that it understands what is said. It displays on-screen the products that the store has
in stock. It has a touch screen so customers can just navigate on the screen and see
the pictures of the products and then click on the one that they actually want to see.
OSHbot then tells the customer that the product is located in Aisle 15, for example,
whether it’s in stock and some more information about the item. Customers can
click on a button and follow OSHbot to the location of the item in the store.
The robot actually guides customers by its own fully autonomous navigation
to the product location. Meanwhile customers are following OSHbot, there’s a
screen on the back and that’s for engagement.
If customers don’t want to follow the robot, OSHbot can just show them the
product location on the map. The customer can decide to go on their own.
5

do an


Figure 1.5. OSHbot

1.2.4. Robot Techi
Adept Technology, Inc. (NASDAQ: ADEP) is a global provider of intelligent
vision-guided robotics systems, autonomous mobile robot solutions and services.
Founded in 1983 and headquartered in Pleasanton, California, Adept is the largest
U.S.-based manufacturer of industrial robots. On October 23, 2015, Adept was
acquired by and became a wholly owned subsidiary of OMRON Corporation, a
global automation manufacturer of sensing and control technology based in Japan.
Product lines include SCARA, parallel, and six-axis robots; linear modules; mobile
robots; machine controllers for robotics and other flexible automation equipment;
machine vision; and software. The company’s core markets include manufacturing,
warehouse/logistics, electronics, semiconductor and food.
Techi is a new service robot configured to serve food in restaurants.
When they released the Lynx, it was an entirely new design optimized for high
reliability and flexibility. The software also evolved during those years. From this
newer generation of the OEM platform we created the Lynx Handler SEMI, which
is the semiconductor specific vehicle. The Lynx Handler incorporates a
collaborative SCARA robot on top of the Lynx mobile base.

6

do an


Figure 1.6. Adept’s Robots
1.2.5. ENON

Figure 1.7. ENON
ENON is a service robot developed by Fujitsu to cater to the swelling adult
population in the society. ENON is designed to aid individuals in their daily
activities.

ENON has a built-in camera that allows high-resolution vision and real-time
image upload suited for monitoring and patrolling. It can navigate easily through
winding corridors using its map localization software and obstacle detection
sensors.

7

do an


The robot also has speech recognition features as well as speech synthesis
ability. ENON can connect itself to the internet and hence it might have its own pc
based remote control pretty soon.
1.3. OBJECTIVES


Design and development of autonomous service robot based on mobile platform
to communicate interactive people in open environment as universities, hotels,
buildings...



Robot can communicate with human using image processing and voice processing
and provide information to the human.



Robot can move on smooth floor and avoid the statics and dynamics obstacles.
Robot can find its charge base since the energy is low.


1.4. PROCEDURES
In the following chapters we will discuss the steps we took towards fulfillment of
my project. In Chapter 2, we will present the mechanical design of all components on
robot. In Chapter 3, we will explain about kinematics and dynamics of robot mobile
platform by analyze the interaction between wheels and ground. In Chapter 4, we will
discuss about electronics and electrical system we used in robot, for distribute electric
to all electrical equipment. In Chapter 5, we will explain the control system for our
robot. Finally, in Chapter 5, we will summarize our accomplishments and discuss the
future of the Service Robot.
1.5. SYSTEM OVERVIEW
Receptionist robot, will be located in the public area, serving as a receptionist. The
robot is designed with 23 degrees of freedom. The main components of the robot are
platform, body, 2 arms and 2 hands. Robot is driven by 4 wheels: 2 driving wheels and
2 passive wheels. Actuators are DC motors and the maximum speed of robot is 5 km/h.

8

do an


1.6. PROJECT TIMELINE (By week)
Table 1.1. Project timeline
1 2 3 4 5 6 7 8 9 1 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9
Documentation
Deliverables
Functional
Specification
Component
Selection and

Design
Mechanical
Design
Mechanical
Construction
Electrical
Construction
Software Design
Software Testing
Setup of
experiments
Experiments
Write report

9

do an


CHAPTER 2: MECHANICAL DESIGN
2.1. PLATFORM DESIGN
2.1.1. Design requirement
In the first stage of the design process we identified the key requirements for
the robot platform. The requirements were selected by looking at the different
features implemented by other robot designs, and selecting the common minimum
features we deemed necessary for most cooperative wheeled mobile platform. We
also selected features that we found lacking in some of the other platforms. The
following list shows some wheeled mobile platform system.
 Two wheeled platforms: The differential drive is a two-wheeled drive system
with independent actuators for each wheel. The benefits of this wheel

configuration is its simplicity. A differential drive system needs only two
motors, one for each drive wheel. Often the wheel is directly connected to the
motor with internal gear reduction. Despite is simplicity, the controllability is
rather difficult. Especially to make a differential drive robot move in a straight
line. Since the drive wheels are independent, if they are not turning at exactly
the same rate the robot will veer to one side.
 Three wheeled platforms: one of the three wheel configuration is synchro drive.
The synchro drive system is a two motor drive configuration where one motor
rotates all wheels together to produce motion and the other motor turns all
wheels to change direction. This mechanical guarantee of straight line motion
is a big advantage over the differential drive method where two motors must be
dynamically controlled to produce straight line motion. Wheel alignment is
critical in this drive system, if the wheels are not parallel, the robot will not
translate in a straight line.
 Four wheeled platforms: Generally stability can be further improved by adding
more wheels, although once the number of contact points exceeds three, the
hyper static nature of the geometry will require some form of flexible
10

do an


×