Tải bản đầy đủ (.ppt) (52 trang)

CHUỔI SỐ VÀ CHUỖI LŨY THỪA

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (191.47 KB, 52 trang )

CHUỖI SỐ VÀ CHUỖI LŨY THỪA

Phần 1: CHUỖI SỐ

1 2
,
n n
S a a a n N= + + + ∈L



!

"#$ %&#'( )* +'
1
n
n
a

=

,-'

./01'02
3
0451'
#6!

%&
3
7


8
!

09: ;0<
8


509='>0

1
n
n
a

=


!

#?  5@'5) → ∞
A 0B
"#%5 0? #'( CD)EF
G0
1
lim
n n
n
n
a S


→∞
=
=

09#'(
HIJK
1
1
( 1
1/
)
n
n n

=
+

1 1 1
1.2 2.3 ( 1)
n
S
n n
= + + +
+
L
1 1 1 1 1
1
2 2 3 ( 1)n n
= − + − + + −
+

L
LM>0NA 0BO&0P09-'#?
Q9: ;
1
1
( 1)n
= −
+
1
n→∞
→
1
1
1
( 1)
n
n n

=
=
+

HR#'( A 0BO&
1
2 /
1
n
n

=


1 1 1
1
2 3
n
S
n
= + + + +L
n
n
n
≥ =
→ ∞
HR#'( CD)EF
1
1
3
( 1)
2
/
n
n
n
+

=


1
2 3

1 1 1 1
( 1)
2
2 2 2
n
n
n
S
+
= − + − + −L
1
1
1
2
1
2
1
2
n
 
− −
 ÷
 
=
 
− −
 ÷
 
1
3


HR#'( A 0BO&#?09%&STUF
QIVQ
1
n
n
a

=

α≠3O&
#?#W.M#X0
1
2 /
n
n
a
α

=

p
n
n
a
=


O&
#?#W.M#X0,0TC)7

1
1/
n
n
a
=


QIVQ
1 1
3 / ,
n n
n n
a A b B
∞ ∞
= =
= =
∑ ∑
1
( )
n n
n
a b A B
α β α β

=
⇒ + = +

8
Q9Y#'( A 0B%&A 0B

8
Q9S#'( A 0BO&S#'( CD)E%&
CD)E
 Z') +#1#6NA 0B
1
n
n
a

=

lim 0
n
n
a
→∞
=
lim 0
n
n
a
→∞

-'#'( A 0B04
[CB
-'
1
n
n
a


=

,G#)\0]05 704
)\A 0BF
1
1 /
( 1)
n
n
n
n n

=
− −

CD)EO4
lim lim 1 0
( 1)
n
n
n n
n
a
n n
→∞ →∞
= = − ≠
− −
1
3 2

( 1)
2 1
2 /
n
n
n
n
n

=
+
 

 ÷

 

⇒#'( CD)E
HPB
3 2
2 1
n
n
n
n
a
n
→∞
+
 

= →+∞
 ÷

 
0
n
a⇒ →
/
HPB
UTLNA 0BO&0P09-'#?
1
n
n
x

=


) ^_S
lim lim 1 1
→∞ →∞
= =
n n
n n
x
⇒#'( C)

) ^_`S
( )
lim lim 1

→∞ →∞
= −
n
n
n n
x
⇒#'( C))\0]05

) a^abS
lim
n
n
x
→∞
= ∞
G#)\0]05
⇒#'( C)

) a^acS
lim 0
n
n
x
→∞
=
'( 0O&#?09%&
1
x
x−
1 2

1
n
k n
n
k
S x x x x
=
= = + + +

L
1
1

=

n
x
x
x
1


x
x
defLghiF
1
n
n
a


=



 ≥3) ?09: ;C1!

%&
0jF
HR!

A 0B⇔!

.#R0:;F

hội tụ khi và chỉ khi S
n
 bị chận trên.
Q ;'#'k0P#CDi#%': l'#
1
( )f x dx


1
( )
n
f n

=

m,^7)\D% ;0B# M0:;nSo∞7

) ?
O&
#?#W.M#X0
< 
2 3
1 1 2 1
( ) ( ) ( ) ( )
n n
n
f x dx f x dx f x dx f x dx

= + + +
∫ ∫ ∫ ∫
L
1
( ) (1) (2) ( 1) ( )
n
n
f x dx f f f n S f n≤ + + + − = −

L
1
( ) (2) ( ) (1)
n
n
f x dx f f n S f≥ + + = −

L
HPB
2

2
1
/
ln
1
n
n n

=

2
1
( ) , [2, )
ln
f x x
x x
= ∈ +∞
2
2 2
1
( )
ln
n n
f n
n n
∞ ∞
= =
=
∑ ∑
LM>0NA 0B#6#>##'( '

m,^7%0B#O& M;
#W.M#X0O
2
2 2
( )
ln
dx
I f x dx
x x
∞ ∞
= =
∫ ∫
2
ln 2
dt
t
+∞
=

⇒0B
1
2 /
1
n
n
α

=

8

α≤3#'( CD)E0p Z') +#1
8
αb3^q0&
1
( )f x
x
α
=
m,^7b3% ;0B# M0:;nSo∞7
1
1
n
n
α

=

#W.M#X0O
1 1
( )
dx
f x dx
x
α
∞ ∞
=
∫ ∫
⇒#'( A 0B) O&#r) αbSF
1
/

1
2
3
n
n

=

1
( ) , [1, )
2
x
f x x= ∈ +∞
1
1
2
n
n

=

%0B#O& M;
#W.M#X0O
1 1
( )
2
x
dx
I f x dx
∞ ∞

= =
∫ ∫
1 1
2
2
2
t
x
dx tdt
I
∞ ∞
= =
∫ ∫
$
2
1
( )g t
t
=
) ?
1
( )g t dt


A 0BF
]0s 
3
2
2 1 2
lim : lim 0

2 2
t t
t t
t t
t
→+∞ →+∞
 
= =
 ÷
 
Qp0 ;'#'k>#60C':A
04fA 0B?#'( #A 0BF
Q ;'#'k>
1
n
n
b

=

J5S

.

≥3

≤L.

 ∀≥
3

A 0B⇒
1
n
n
a

=

A 0B
1
n
n
b

=

CD)E⇒
1
n
n
a

=

CD)E
J5Y

.

b3


lim
n
n
n
a
K
b
→∞
=
1
n
n
b

=

A 0B⇒
1
n
n
a

=

A 0B
1
n
n
a


=

CD)E⇒
1
n
n
b

=

CD)E
8
3cLc∞ #'( #W.M#X0
8
L_3
8
L_∞
'( #.M
n
x

0
,
1
1
n
n
x
x


=
=


1
1
n
n
x
x
x

=
=


'( #XCD
A 0B⇔a^acS
'(  Z't
1
1
n
n
α

=

A 0B⇔αbS
HPB

2 2
1
n n
n n
e e
n e e


+
2
1
1
1/
n
n
n
e
n e

=

+

1 1
1 1
n
n
n n
e
e

∞ ∞
= =
 
=
 ÷
 
∑ ∑
%&#'( !A 0BF
Qp0 ;'#'k>S#'( #0F
( 1)
1
n n
e

=
1
, 1
n
n
e
≤ ∀ ≥
HPB
n
a
1 1
1
1 c2 os/
n
nn
an

n

=

=
 

 ÷
 
=
∑ ∑
'( ##W.M#X0O #'(  Z't
1
1
n
n

=

;CD)EF
2
1 1 1 1
2 2
n
n
n
=:

1
1 / 2

n
n
a
K
n
→∞
→ =
khi n → ∞
13
1 3
ln
2
2 /
n
nn
n
a
n
n

=

=
+
 
=
 ÷

 
∑ ∑

3/2
1 5 5
2n
n
n

::
1 5
ln 1
2
n
a
n
n
 
= +
 ÷

 
khi n → ∞

3/2
5
1/
n
n
a
K
n
→∞

→ =
'( ##W.M#X0O #'(  Z't
3/2
3
1
n
n

=

;A 0B
2
1
ln( !
3 /
)
n
n

=

1 1 1
ln( !) ln( )
ln( )
n
n n n
n
=≥
2
1

ln( )
n
n n

=

#W.M#X0O 
2 ln 2
ln
dx dt
x x t
∞ ∞
=
∫ ∫
;CD)EF
Qp0 ;'#'kS#'( #CD)EF

×