Nhc li:
•
Hệ phương trình tuyến tính:
•
Hệ cơ bản
•
Ẩn cơ bản
•
Giải hệ phương trình tuyến tính tổng quát
!
"#$%&'% %
( )
*
+)
*
, /
(0&12345,
6*
&7'8&*+95:,
*
:;/
#<%&=>53&?$@
&
A<BC'
D
&7$
4
4
2 2
1 2 3
3 1
1 2 3
3
2
x x x
x x x
x
x
+ =
− + + = −
− +
−
2 4 2 15
1 2 3
5 3 17
1 2 3
4 5 4 27
1 2 3
x x x
x x x
x x x
+ + =
+ + =
+ + =
A<BC'
D
&7$
EF
b
x
1
x
2
x
3
15
17
27
[2] 4 2
1 5 3
4 5 4
15/2
19/2
-3
1 2 1
0 3 [2]
0 -3 0
11/4
19/4
-3
1 1/2 0
0 3/2 1
0 [-3] 0
9/4
13/4
1
1 0 0
0 0 1
0 1 0
#$%%:GH%
#5&&
.%
IJ;K∀
" !
L45 K4&%:GH%
L45:G53M>5,N
N( %
-
()
*
-
(0&12345
-
O&
0
min
kj
k
r
a
kj rj
b
b
a a
>
=
-
P3,
7*
%0&12345
-
#<%&=>53&?$@&
-
Q-R&5&&&S"
TU45&7>5&7$&$%%:G
H%)5P&%8&BV.!!&WB
I;K.,
*
X;
K%(*&$&7$!:G!%:GH%B
!:G!%:GH%
A<BC&$%%:GH%2,&7$
&534&<,5
4
4
2 1
1 2 3
2 5
1 2 3
3
2
x x x
x x x
x
x
− =
− + + =
− + +
+
&<P&52,.&YZ##
* Tính ch!t 1W&[&R\]2,.&
L45.&YZ##!K.R2,%,&7H
D
'
D
7.5G
D
^+ 4/&$.&!\]
Hệ quả:.&YZ##BR<&?45!
&$_!\]
* Tính ch!t 2:W&[&R&52,.&
.&YZ##!\]#`:K.a:!!
K.&76.%%C&'56b
D
B+&7'/:c+)/JI
%+%,)/&7'&H
D
Hệ quả:
L45.&!,!\]K.&d,95:&7'&$_!
\]&5
L45.&YZ##BR<&?!\]#`&$_!
%8&\] \]#`
* Tính ch!t 3:W'2,.&BR
<&? @5R
A<BC&$%&P&W'2,.&YZ##
!7.58
4
4
4
1 2
3 3
2 3
2 4
2
0, 1,4
j
x x
x x
x
x
x
j
=
+ =
+ +
+
≥ ∀ =
x
B
b x
1
x
2
x
3
x
4
x
1
x
3
4
3
1 2 0 4
0 3 1 2
x
1
x
2
2
1
1 0 -2/3 8/3
0 1 1/3
2/3
x
4
x
2
¾
½
3/8 0 -1/4 1
-1/4 1 ½ 0
x
4
x
3
1
1
¼ ½ 0 1
-1/2 2 1 0
\$.&YZ##
]#5H
D
&&$.&YZ##BR5
A<BCE.&YZ##,5^
$
( )
( )
2 2 min
1 2 3 4
2 2
5
1 2
3 4 20
1 2 4 6
2 3 18
1 2 3 4
0 1, ,6
f x x x x x
x x x
x x x x
x x x x
x j
j
= − + + →
+ + =
− + + + =
+ + + =
≥ =
,#7ef.&%
#5H
D
&&
-H
D
$)5P&&
Hệ số Cơ sở Phương
án
c
1
c
2
… c
r
………. c
m
c
m+1
… c
s
… c
n
c
1
c
2
…
c
r
…
c
m
x
1
x
2
…
x
r
…
x
m
b
1
b
2
…
b
r
…
b
m
1 0 0 0 a
1m+1
a
1s
a
1n
0 1 0 0 a
2m+1
a
2s
a
2n
…
0 0 1 0 a
r n+1
a
rs
a
r n
…
0 0 0 1 a
m m+1
a
ms
a
mn
f(x) f(x
0
)
0 0 0 0
1m+
∆
s
∆
n
∆
+G
D
&/+]*/g*
c+)
;
/J+G
D
&/h+G
D
&"/
TU45)
*
&$
j
∆ =
0
j
∆ =
i&<&52,\])5P&&)
;
jL45&$)
;
\]#`
#,!&76&5 c+)
;
/.&:4&&T
jL45&[&R%.I;&$)
;
:G \]#`
53M,"
0,
k
k∆ ≤ ∀
k
∆
k
∆
"kM%&7,&<:Gf2,.&
jL45&[&R%G
D
&I;%.,
*:
;lK+m
;
&H
D
a 2,)
;
/
#$.&:GfK$.%%C&'5:G6
b
D
jL45K%nI;95!<&P&,
*:
I;&$53M
,N
k
∆
≤
o
j J∀ ∈
k
∆
N95a\]
j(K=&,K.
#$%%,)KI;
E1%,)J&$K=&]
Bf,K.
#<
E1
&$K=&]
7
6-R:d l0&1,
7
(
0&1&7C2,
k
∆
k
∆
k
∆
s
∆
min
o
x
j
o
js
a
θ
=
( )
, 0
o
x
r
r J a
o o rs
rs
a
θ
= ∈ >
o-H
D
$&p
qK6&7<)
7
)
K.
&,3
7
#<BV&7%+&SBV&p,&7 /
giM&<BVpKK=&,K.+pK)
/-P3
BVpKK=&-R7,+pK)
7
/&7r
,0&1&7CsV.3f( BV5
giM&<BVpK)
*
&,1BC>53&?$@
H
D
&
giM&<BV5&7&,r1BC>53&?
$@H
D
&
t,5$%&,!\]%)
iK)
>5,3&7 -RK.-Q-R>5&7$,5@5R
&,!:4&-5.&
A<BC
( )
( )
6 3 7 7 min
5
1 2 3 4 6
- 15
1 2 4 6
2 2 9
1 3 4
4 2 3 2
5
1 4 6
0 1, ,6
f x x x x x x x
x x x x
x x x
x x x x
x j
j
= + + + + − + →
+ − + =
− + = −
+ + − =
≥ =
/#7ef.&u,)
.&c+)/%,)
E.&+)/Jgc+)/%
%
J+)h/
&$.&!\]#` )hK.c
%,)
Jg+)h/
→
→
t1BC$l&&WK.&%
Bư&c 1:.&%
Bư&c 2:&$)
;
\]#`
jL45&[&R&$)
;
:G \]#`l,"
Bư&c 3:
jL45&[&R%.&$.&:G
f
jL45%n&[&R&$53M,N
Bư&c 4:
j(K=&,K.
#$%%K1&$K=&
f,K.
j(K=&,7,:d .&%
Bư&c 5:.&%
0,
k
k∆ ≥ ∀
0
k
∆ <
0
k
∆ <
0,
jk o
a j J≤ ∀ ∈
0
k
∆ <
0
jk
a >
k
∆
0
k
∆ <
min
s
k
∆ = ∆
s
∆
( )
( )
20 33 18 max
1 2 3
2 5 2 24
1 2 3
2 12
1 2 3
4 2 39
1 2 3
0 1, ,3
f x x x x
x x x
x x x
x x x
x j
j
= + + →
+ + ≤
+ + ≤
+ + ≤
≥ =
A<BC
i)hJ+ovl;lwv/lc+)h/J"