Tải bản đầy đủ (.pdf) (5 trang)

Đề ôn thi thpt môn toán (589)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (116.21 KB, 5 trang )

Tài liệu Free pdf LATEX

BÀI TẬP ƠN TẬP MƠN TỐN THPT

(Đề thi có 4 trang)

Thời gian làm bài: 90 phút (Không kể thời gian phát đề)
Mã đề thi 1
2

2

sin x
Câu 1. [3-c] Giá trị nhỏ nhất và√giá trị lớn nhất của hàm số f (x)
+ 2cos x lần√lượt là
√= 2
A. 2 và 3.
B. 2 và 3.
C. 2 và 2 2.
D. 2 2 và 3.

Câu 2. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. 2.
B. −4.
C. 4.
x−2
Câu 3. Tính lim
x→+∞ x + 3
A. 1.
B. 2.
C. −3.


7n2 − 2n3 + 1
Câu 4. Tính lim 3
3n + 2n2 + 1
2
A. - .
B. 0.
3

C. 1.

D. −2.

2
D. − .
3

D.

7
.
3

Câu 5. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(4; 8).
B. A(−4; −8)(.
C. A(4; −8).
D. A(−4; 8).




x = 1 + 3t




Câu 6. [1232h] Trong không gian Oxyz, cho đường thẳng d : 
y = 1 + 4t . Gọi ∆ là đường thẳng đi qua




z = 1
điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương
 trình là











x
=
−1
+

2t
x
=
1
+
7t
x
=
−1
+
2t
x = 1 + 3t
















A. 
.

C. 
y = −10 + 11t . B. 
y=1+t
y = −10 + 11t . D. 
y = 1 + 4t .
















z = 6 − 5t
z = 1 + 5t
z = −6 − 5t
z = 1 − 5t


Câu 7. Phần thực √
và phần ảo của số phức
z

=
2

1

3i lần lượt l√


A. Phần thực là √2 − 1, phần ảo là −√ 3.
B. Phần thực là 2, √
phần ảo là 1 − √
3.
C. Phần thực là 2 − 1, phần ảo là 3.
D. Phần thực là 1 − 2, phần ảo là − 3.
Câu 8. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ nhất
của |z + 2 + i|




12 17
A. 68.
B.
.
C. 5.
D. 34.
17
Câu 9.
mệnh đề sau, mệnh đềZ nào sai? Z
Z Cho hàm số f (x),

Z g(x) liên
Z tục trên R. Trong các Z
A.
f (x)g(x)dx =
f (x)dx g(x)dx.
B.
( f (x) + g(x))dx =
f (x)dx + g(x)dx.
Z
Z
Z
Z
Z
C.
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.
D.
( f (x) − g(x))dx =
f (x)dx − g(x)dx.
Câu 10. Trong các khẳng định sau, khẳng định nào sai?
A. Z
F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
u0 (x)
B.
dx = log |u(x)| + C.
u(x)
C. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
D. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
Trang 1/4 Mã đề 1



Câu 11. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng
thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay
đổi trong thời gian gửi.
A. 0, 8%.
B. 0, 5%.
C. 0, 6%.
D. 0, 7%.
un
Câu 12. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. −∞.
B. 0.
C. 1.
D. +∞.
Câu 13. Khối đa diện đều loại {3; 4} có số mặt
A. 12.
B. 10.

C. 6.

D. 8.

Câu 14. Khối đa diện đều loại {5; 3} có số mặt
A. 20.
B. 30.

C. 12.


D. 8.

Câu 15. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 9 mặt.
C. 3 mặt.

D. 6 mặt.

Câu 16. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Hai mặt.
B. Bốn mặt.
C. Ba mặt.

D. Năm mặt.

Câu 17. Dãy số nào có giới hạn bằng 0?!
n
−2
2
A. un = n − 4n.
B. un =
.
3

!n
6
C. un =
.
5


D. un =

n3 − 3n
.
n+1

Câu 18. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 10 cạnh, 6 mặt.
D. 8 đỉnh, 12 cạnh, 6 mặt.
!
x+1
Câu 19. [3] Cho hàm số f (x) = ln 2017 − ln
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
2017
4035
2016
.
B.
.
C.
.
D. 2017.
A.
2017
2018
2018

Câu 20. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Cả hai đều sai.
B. Chỉ có (I) đúng.

C. Cả hai đều đúng.

Câu 21. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. e.
B. 4 − 2 ln 2.
C. 1.

D. Chỉ có (II) đúng.
D. −2 + 2 ln 2.


Câu 22. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã

√ cho là


3
πa 3
πa3 6
πa3 3
πa3 3
A. V =

.
B. V =
.
C. V =
.
D. V =
.
3
6
2
6
3a
Câu 23. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng

2a
a 2
a
a
A.
.
B.
.
C. .
D. .
3
3

4
3
x
x
x
Câu 24. [2] Tổng các nghiệm của phương trình 6.4 − 13.6 + 6.9 = 0 là
A. 2.
B. 3.
C. 1.
D. 0.
Trang 2/4 Mã đề 1


d = 60◦ . Đường chéo
Câu 25. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vng tại A, AC = a, ACB
BC 0 của mặt bên (BCC 0 B0 ) tạo với mặt phẳng (AA0C 0C) một góc 30◦ . Thể tích của khối lăng trụ ABC.A0 B0C 0





a3 6
2a3 6
4a3 6
A.
.
B.
.
C.
.

D. a3 6.
3
3
3
Câu 26. Khối đa diện đều loại {4; 3} có số đỉnh
A. 8.
B. 10.
C. 4.
D. 6.
x+3
nghịch biến trên khoảng
Câu 27. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
x−m
(0; +∞)?
A. Vô số.
B. 3.
C. 2.
D. 1.
Câu 28. Phát biểu nào sau đây là sai?
1
B. lim √ = 0.
n
1
D. lim k = 0 với k > 1.
n

A. lim qn = 1 với |q| > 1.
C. lim un = c (Với un = c là hằng số).
2


Câu 29. [2] Tổng các nghiệm của phương trình 3 x −4x+5 = 9 là
A. 3.
B. 4.
C. 5.
D. 2.
2
2
2
1 + 2 + ··· + n
Câu 30. [3-1133d] Tính lim
n3
2
1
D. .
A. 0.
B. +∞.
C. .
3
3
Câu 31. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, √biết S H ⊥ (ABCD). Thể √
tích khối chóp S .ABCD là
3
3
4a 3
2a 3
a3
a3
A.
.

B.
.
C.
.
D.
.
3
3
3
6
Câu 32. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
A. 12.
B. 18.
C.
.
D. 27.
2
Câu 33. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. f (x) có giới hạn hữu hạn khi x → a.
B. lim f (x) = f (a).
x→a
C. lim+ f (x) = lim− f (x) = +∞.
D. lim+ f (x) = lim− f (x) = a.
x→a
x→a
x→a
x→a
 π

Câu 34. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là
2


3 π6
2 π4
1 π
A.
e .
B.
e .
C. 1.
D. e 3 .
2
2
2
Câu 35. Hàm số nào sau đây khơng có cực trị
1
x−2
A. y = x + .
B. y =
.
C. y = x4 − 2x + 1.
D. y = x3 − 3x.
x
2x + 1
1 − 2n
Câu 36. [1] Tính lim
bằng?
3n + 1

2
2
1
A. − .
B. 1.
C. .
D. .
3
3
3
Câu 37. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng S B và AD bằng



a 2
a 2
A.
.
B. a 2.
C. a 3.
D.
.
2
3
Trang 3/4 Mã đề 1


x2
Câu 38. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó

e
1
1
A. M = , m = 0.
B. M = e, m = .
C. M = e, m = 1.
D. M = e, m = 0.
e
e
Câu 39. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {4; 3}.
B. {5; 3}.
C. {3; 4}.
D. {3; 3}.
2n − 3
bằng
Câu 40. Tính lim 2
2n + 3n + 1
A. −∞.
B. +∞.
C. 0.
D. 1.
Câu 41. Khối đa diện đều loại {3; 3} có số mặt
A. 4.
B. 2.

C. 3.

D. 5.


Câu 42. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (0; 1).
B. (−1; 0).
C. (−∞; −1) và (0; +∞). D. (−∞; 0) và (1; +∞).
Câu 43. Dãy số nào sau đây có giới hạn khác 0?
1
sin n
A. .
B.
.
n
n

C.

n+1
.
n

1
D. √ .
n

log(mx)
= 2 có nghiệm thực duy nhất
log(x + 1)
C. m < 0 ∨ m > 4.
D. m < 0.

Câu 44. [1226d] Tìm tham số thực m để phương trình

A. m < 0 ∨ m = 4.

B. m ≤ 0.

Câu 45. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 46cm3 .
B. 72cm3 .
C. 64cm3 .
D. 27cm3 .
Z 1
Câu 46. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
0

1
1
A. .
B. 1.
C. .
D. 0.
2
4
Câu 47. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 + 2e
1 − 2e
1 − 2e
1 + 2e
.
B. m =

.
C. m =
.
D. m =
.
A. m =
4 − 2e
4e + 2
4e + 2
4 − 2e
[ = 60◦ , S A ⊥ (ABCD).
Câu 48. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng√ khoảng cách từ A đến cạnh
√ S C là a. Thể tích khối chóp S .ABCD là

3
3
3

a 3
a 2
a
2
A.
.
B.
.
C. a3 3.
D.
.

6
12
4
a
1
Câu 49. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
A. 2.
B. 1.
C. 4.
D. 7.
Câu 50. Khối đa diện đều loại {3; 5} có số đỉnh
A. 30.
B. 12.

C. 20.

D. 8.

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 4/4 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.


2.

D

D

3. A

4. A

5. A

6. A

7. A

8.

B

9. A

10.

B
B

11.

D


12.

13.

D

14.

16.

C

17.

B
B

18.

D

19.

20.

D

21. A


22. A

C

23. A

24.

D

25.

D

26. A

27.

B

28. A

29.

B

30.

C


31. A

32.

B

33.

B

34.

B

35.

B

36. A

37. A

38.

D

40.
42.

39.

41. A

C
B

43.

44. A

45.

46. A

47.
D

48.
50.

B

49.

B

1

C
D
C

D



×