Free LATEX
BÀI TẬP TỐN THPT
(Đề thi có 4 trang)
Thời gian làm bài: 90 phút
Mã đề thi 1
Câu 1. Cho
√ số phức z thỏa mãn |z + 3| = 5 và |z − 2i| = |z − 2 − 2i|. Tính |z|.
B. |z| = 10.
C. |z| = 17.
A. |z| = 17.
D. |z| =
√
10.
Câu 2. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Cả hai đều đúng.
B. Chỉ có (II) đúng.
C. Cả hai đều sai.
D. Chỉ có (I) đúng.
1
Câu 3. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (−∞; 1) và (3; +∞). B. (1; 3).
C. (−∞; 3).
D. (1; +∞).
◦
◦
d = 90 , ABC
d = 30 ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 4. Cho hình chóp S .ABC có BAC
Thể tích√khối chóp S .ABC là
√
√
√
a3 3
a3 2
a3 3
2
.
B. 2a 2.
.
D.
.
A.
C.
24
24
12
√
x2 + 3x + 5
Câu 5. Tính giới hạn lim
x→−∞
4x − 1
1
1
D. − .
A. 0.
B. 1.
C. .
4
4
3
2
Câu 6. Hàm số y = −x + 3x − 1 đồng biến trên khoảng nào dưới đây?
A. (2; +∞).
B. R.
C. (−∞; 1).
D. (0; 2).
[ = 60◦ , S O
Câu 7. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a. Khoảng cách từ O đến (S√BC) bằng
√
√
a 57
a 57
2a 57
A.
.
B. a 57.
.
D.
.
C.
19
19
17
Câu 8. [3] Cho khối chóp S .ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
a
8a
2a
5a
B.
.
C.
.
D.
.
A. .
9
9
9
9
Câu 9. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = 10.
B. P = 21.
C. P = −21.
D. P = −10.
2
1−n
Câu 10. [1] Tính lim 2
bằng?
2n + 1
1
1
1
A. .
B. .
C. 0.
D. − .
3
2
2
Câu 11. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 0.
B. 1.
C. 2.
D. 3.
Trang 1/4 Mã đề 1
Câu 12. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 1.
B. 4.
C. 3.
1
3|x−1|
= 3m − 2 có nghiệm duy
D. 2.
2
Câu 13. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
1
1
2
A. √ .
B.
.
C. 3 .
3
2e
e
2 e
D.
1
.
e2
x+2
Câu 14. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. 1.
B. 2.
C. 3.
D. Vô số.
Câu 15. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính quãng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 16 m.
B. 12 m.
C. 8 m.
D. 24 m.
Câu 16. Dãy số nào sau đây có giới hạn khác 0?
sin n
1
A.
.
B. √ .
n
n
C.
1
.
n
D.
n+1
.
n
Câu 17. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
A. V = S h.
B. V = 3S h.
C. V = S h.
2
1
D. V = S h.
3
√
Câu 18. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vuông góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng
√
√
√
3a 58
a 38
3a
3a 38
.
B.
.
C.
.
D.
.
A.
29
29
29
29
Câu 19. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD
√ là
3
10a 3
A. 20a3 .
B. 40a3 .
C.
.
D. 10a3 .
3
Câu 20. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [−3; 1].
B. (−∞; −3].
C. [1; +∞).
D. [−1; 3].
Câu 21. Các khẳng định nào sau đây là sai?
!0
Z
Z
Z
A.
f (x)dx = F(x) + C ⇒
f (t)dt = F(t) + C. B.
f (x)dx = f (x).
Z
Z
Z
Z
C.
k f (x)dx = k
f (x)dx, k là hằng số.
D.
f (x)dx = F(x) +C ⇒
f (u)dx = F(u) +C.
x−2 x−1
x
x+1
+
+
+
và y = |x + 1| − x − m (m là tham
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−3; +∞).
B. (−∞; −3).
C. (−∞; −3].
D. [−3; +∞).
Câu 22. [4-1212d] Cho hai hàm số y =
Câu 23. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
A. T = 4 + .
B. T = e + .
C. T = e + 3.
D. T = e + 1.
e
e
Trang 2/4 Mã đề 1
!4x
!2−x
2
3
Câu 24. Tập các số x thỏa mãn
≤
là
3 # 2
"
!
2
2
A. − ; +∞ .
B. −∞; .
3
5
"
!
2
C.
; +∞ .
5
Câu 25. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Nhị thập diện đều. B. Tứ diện đều.
C. Thập nhị diện đều.
#
2
D. −∞; .
3
D. Bát diện đều.
Câu 26. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 20.
B. 24.
C. 3, 55.
D. 15, 36.
Câu 27. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α
aα
B. aα bα = (ab)α .
C. aαβ = (aα )β .
D. aα+β = aα .aβ .
A. β = a β .
a
Câu 28. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−∞; 0) và (1; +∞). B. (−∞; −1) và (0; +∞). C. (0; 1).
D. (−1; 0).
8
Câu 29. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 64.
B. 81.
C. 96.
D. 82.
Câu 30. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 + 2; m = 1.
B. M = e2 − 2; m = e−2 + 2.
−2
C. M = e + 1; m = 1.
D. M = e−2 − 2; m = 1.
Z 1
Câu 31. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
0
A. 0.
B. 1.
C.
1
.
4
D.
1
.
2
0 0 0 0
0
Câu 32.√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
√ bằng
a 6
a 6
a 3
a 6
A.
.
B.
.
C.
.
D.
.
3
7
2
2
Câu 33. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 2.
B. 1.
C. Vô nghiệm.
D. 3.
Câu 34. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. (1; 2).
B. (−∞; +∞).
C. [−1; 2).
D. [1; 2].
Câu 35. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R \ {0}.
B. D = R \ {1}.
D. D = (0; +∞).
C. D = R.
Câu 36. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = −2.
B. m = 0.
C. m = −3.
D. m = −1.
Câu 37. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối 20 mặt đều.
D. Khối 12 mặt đều.
C. Khối tứ diện đều.
Câu 38. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối chóp S .ABCD là
√
√
√
a3 15
a3 6
a3 5
3
A.
.
B. a 6.
C.
.
D.
.
3
3
3
Câu 39. Khối đa diện đều loại {3; 3} có số đỉnh
A. 4.
B. 2.
C. 5.
D. 3.
Trang 3/4 Mã đề 1
a
1
Câu 40. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
A. 4.
B. 1.
C. 7.
D. 2.
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 4/4 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
D
2.
3. A
B
4. A
D
5.
7. A
8.
9.
C
10.
11.
C
12. A
D
13.
D
6.
14.
B
D
B
D
16.
15. A
D
17.
18.
19. A
B
20. A
21.
D
22.
C
23.
C
24. A
25.
C
26.
D
28.
D
30.
D
27. A
29.
B
31.
D
32. A
33. A
35.
37.
34.
C
B
36. A
D
39. A
1
38.
C
40.
C