Free LATEX
BÀI TẬP TỐN THPT
(Đề thi có 10 trang)
Thời gian làm bài: 90 phút
Mã đề thi 1
Câu 1. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 3.
B. 2.
C. Vô nghiệm.
D. 1.
tan x + m
nghịch biến trên khoảng
Câu 2. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
m tan x + 1
π
0; .
4
A. (−∞; −1) ∪ (1; +∞). B. [0; +∞).
C. (1; +∞).
D. (−∞; 0] ∪ (1; +∞).
Câu 3. Khối lập phương thuộc loại
A. {3; 3}.
B. {3; 4}.
C. {5; 3}.
D. {4; 3}.
x+3
Câu 4. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng
x−m
(0; +∞)?
A. 1.
B. 3.
C. 2.
D. Vơ số.
Câu 5. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
67
.
D. −7.
A. −4.
B. −2.
C.
27
Câu 6. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
A. T = e + 3.
B. T = e + 1.
C. T = 4 + .
D. T = e + .
e
e
Câu 7. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu khơng rút
tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp theo.
Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi ban
đầu, giả định trong khoảng thời gian này lãi suất khơng thay đổi và người đó khơng rút tiền ra?
A. 10 năm.
B. 14 năm.
C. 12 năm.
D. 11 năm.
Câu 8. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. 3n3 lần.
B. n2 lần.
C. n3 lần.
D. n lần.
Câu 9. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x ) − √
2
A. −1.
B. 4.
C. 6.
3
Z
6
3x + 1
. Tính
1
f (x)dx.
0
D. 2.
Câu 10. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD là
√
10a3 3
3
3
3
A. 40a .
B. 10a .
C. 20a .
D.
.
3
Câu 11. Khối đa diện đều loại {3; 4} có số cạnh
A. 8.
B. 12.
C. 6.
D. 10.
π
Câu 12. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là
2
√
√
3 π6
2 π4
1 π
A.
e .
B.
e .
C. e 3 .
D. 1.
2
2
2
Câu 13. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (−∞; 1).
B. (1; +∞).
C. (−∞; −1).
D. (−1; 1).
Trang 1/10 Mã đề 1
Câu 14. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
.
B. log2 a = loga 2.
C. log2 a =
.
D. log2 a = − loga 2.
A. log2 a =
loga 2
log2 a
Câu 15.
đề nào sai? Z
Z Cho hàm số f (x),Zg(x) liên tụcZtrên R. Trong cácZmệnh đề sau, mệnh Z
A.
( f (x) + g(x))dx =
f (x)dx + g(x)dx.
B.
( f (x) − g(x))dx =
f (x)dx − g(x)dx.
Z
Z
Z
Z
Z
C.
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.
D.
f (x)g(x)dx =
f (x)dx g(x)dx.
Câu 16. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. (−∞; −3].
B. [−3; 1].
C. [1; +∞).
D. [−1; 3].
Câu 17. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).
√ là
√
√
√ Thể tích khối chóp S 3.ABC
a3 3
a 2
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
4
12
12
6
[ = 60◦ , S O
Câu 18. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a. Khoảng cách từ O đến (S√BC) bằng
√
√
a 57
2a 57
a 57
C.
.
B. a 57.
.
D.
.
A.
17
19
19
Câu 19. [1] Giá trị của biểu thức 9log3 12 bằng
A. 24.
B. 144.
C. 2.
√
Câu 20. √
Thể tích của khối lập phương có cạnh bằng a 2
√
2a3 2
.
B. V = 2a3 .
C. V = a3 2.
A.
3
Câu 21. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0
0
đến đường
√ thẳng BD bằng
√
√
b a2 + c2
a b2 + c2
abc b2 + c2
A. √
.
B. √
.
C. √
.
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
D. 4.
√
D. 2a3 2.
= c. Khoảng cách từ điểm A
√
c a2 + b2
D. √
.
a2 + b2 + c2
Câu 22. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 12 cạnh, 4 mặt.
B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
x+1
Câu 23. Tính lim
bằng
x→−∞ 6x − 2
1
1
1
A. .
B. .
C. .
D. 1.
2
6
3
Câu 24. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 4.
B. 0, 5.
C. 0, 2.
D. 0, 3.
Câu 25. [2] Tìm m để giá trị lớn nhất của hàm số y = 2x3 + (m2√+ 1)2 x trên [0; 1] bằng 8 √
A. m = ±1.
B. m = ±3.
C. m = ± 2.
D. m = ± 3.
Câu 26. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 1.
B. 2.
C. 3.
D. Vô số.
2−n
Câu 27. Giá trị của giới hạn lim
bằng
n+1
A. 1.
B. 0.
C. 2.
D. −1.
Trang 2/10 Mã đề 1
1
Câu 28. [1] Giá trị của biểu thức log √3
bằng
10
1
A. − .
B. −3.
3
C.
1
.
3
D. 3.
Câu 29. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim
A. 0.
B. −∞.
un
bằng
vn
D. +∞.
C. 1.
log(mx)
Câu 30. [1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0.
B. m ≤ 0.
C. m < 0 ∨ m = 4.
D. m < 0 ∨ m > 4.
x−3
Câu 31. [1] Tính lim
bằng?
x→3 x + 3
A. +∞.
B. 0.
C. −∞.
D. 1.
Câu 32. Dãy số nào sau đây có giới hạn là 0?
n2 − 2
n2 − 3n
A. un =
.
B.
u
=
.
n
5n − 3n2
n2
C. un =
n2 + n + 1
.
(n + 1)2
D. un =
1 − 2n
.
5n + n2
Câu 33. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng góc với đáy, S C = a 3. Thể tích khối chóp S .ABCD
là
√
√
3
3
3
a
a
3
a
3
A. a3 .
B.
.
C.
.
D.
.
3
3
9
9t
Câu 34. [4] Xét hàm số f (t) = t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
9 + m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. Vơ số.
B. 2.
C. 1.
D. 0.
x
x−3 x−2 x−1
+
+
+
và y = |x + 2| − x − m (m là tham
Câu 35. [4-1213d] Cho hai hàm số y =
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (2; +∞).
B. (−∞; 2].
C. (−∞; 2).
D. [2; +∞).
Câu 36. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√
√
a3 5
a3 5
a3 3
a3 5
A.
.
B.
.
C.
.
D.
.
4
12
12
6
5
Câu 37. Tính lim
n+3
A. 3.
B. 0.
C. 1.
D. 2.
Câu 38. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
B. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
C. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
D. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngồi ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
Câu 39. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. 2020.
B. log2 2020.
C. 13.
D. log2 13.
1 + 2 + ··· + n
. Mệnh đề nào sau đây đúng?
n2 + 1
A. Dãy số un khơng có giới hạn khi n → +∞.
B. lim un = 0.
1
C. lim un = 1.
D. lim un = .
2
Câu 40. [3-1132d] Cho dãy số (un ) với un =
Trang 3/10 Mã đề 1
Câu 41. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {5; 3}.
B. {3; 4}.
C. {4; 3}.
D. {3; 5}.
Câu 42. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (−1; −7).
B. (1; −3).
C. (0; −2).
D. (2; 2).
Câu 43. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp đôi.
B. Tăng gấp 4 lần.
C. Tăng gấp 6 lần.
D. Tăng gấp 8 lần.
1
Câu 44. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = R.
B. D = R \ {1}.
C. D = (1; +∞).
D. D = (−∞; 1).
Câu 45. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng
√
a
a 3
a
A. .
B.
.
C. a.
D. .
3
2
2
Câu 46. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đơi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất khơng đổi và người đó khơng rút tiền ra?
A. 13 năm.
B. 10 năm.
C. 12 năm.
D. 11 năm.
Câu 47. Giá trị của lim(2x2 − 3x + 1) là
x→1
A. 1.
Câu 48. Tính lim
x→+∞
A. 2.
B. 2.
C. 0.
D. +∞.
B. 1.
C. −3.
2
D. − .
3
C. 12.
D. 30.
x−2
x+3
Câu 49. Khối đa diện đều loại {4; 3} có số cạnh
A. 20.
B. 10.
Câu 50. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất không thay đổi?
A. 15 tháng.
B. 17 tháng.
C. 18 tháng.
D. 16 tháng.
Câu 51. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối bát diện đều.
C. Khối tứ diện đều.
D. Khối lập phương.
Câu 52. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
23
9
13
5
.
B.
.
C.
.
D. − .
A. −
100
25
100
16
Câu 53. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim f (x) = f (a).
B. lim+ f (x) = lim− f (x) = +∞.
x→a
C. f (x) có giới hạn hữu hạn khi x → a.
x→a
x→a
x→a
x→a
D. lim+ f (x) = lim− f (x) = a.
Câu 54. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. Vô nghiệm.
B. 2.
C. 1.
D. 3.
Câu 55. Khối đa diện đều loại {3; 5} có số đỉnh
A. 12.
B. 20.
D. 8.
C. 30.
Trang 4/10 Mã đề 1
Câu 56. Khẳng định nào sau đây đúng?
A. Hình lăng trụ tứ giác đều là hình lập phương.
B. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
C. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
D. Hình lăng trụ đứng là hình lăng trụ đều.
Câu 57. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai đường thẳng BD và S C bằng
√
√
√
√
a 6
a 6
a 6
.
C.
.
D.
.
B.
A. a 6.
3
2
6
Câu 58. Nếu không sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Bốn tứ diện đều và một hình chóp tam giác đều.
B. Một tứ diện đều và bốn hình chóp tam giác đều.
C. Năm hình chóp tam giác đều, khơng có tứ diện đều.
D. Năm tứ diện đều.
Câu 59. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 32π.
B. 8π.
C. V = 4π.
D. 16π.
Câu 60. Khối đa diện đều loại {3; 5} có số mặt
A. 30.
B. 12.
2x + 1
Câu 61. Tính giới hạn lim
x→+∞ x + 1
1
A. −1.
B. .
2
C. 20.
D. 8.
C. 2.
D. 1.
Câu 62. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Ba cạnh.
B. Hai cạnh.
C. Năm cạnh.
D. Bốn cạnh.
Câu 63. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
BC là
. Khi đó thể tích khối lăng trụ là
4
√
√
√
√
a3 3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
24
12
36
6
log2 240 log2 15
Câu 64. [1-c] Giá trị biểu thức
−
+ log2 1 bằng
log3,75 2 log60 2
A. 1.
B. −8.
C. 4.
D. 3.
1
Câu 65. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
0
y
A. xy = −e − 1.
B. xy = −e + 1.
C. xy0 = ey − 1.
D. xy0 = ey + 1.
Câu 66. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Một mặt.
B. Bốn mặt.
C. Hai mặt.
D. Ba mặt.
Câu 67. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −5.
B. −9.
C. −12.
D. −15.
Câu 68. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1
A. 9.
B. 5.
C. 7.
D. 0.
Trang 5/10 Mã đề 1
ln x p 2
1
Câu 69. Gọi F(x) là một nguyên hàm của hàm y =
ln x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
8
8
1
1
A. .
B. .
C. .
D. .
9
3
3
9
Câu 70. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = x + ln x.
B. y0 = 1 + ln x.
C. y0 = 1 − ln x.
D. y0 = ln x − 1.
Câu 71. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt phẳng vng góc với (ABCD).
Thể tích khối chóp
√
√ S .ABCD là
3
3
3
√
a 2
a 3
a 3
A.
.
B. a3 3.
C.
.
D.
.
2
2
4
Câu 72. Tính lim
A. 1.
7n2 − 2n3 + 1
3n3 + 2n2 + 1
7
B. .
3
C. 0.
2
D. - .
3
Câu 73. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối √
chóp S .ABMN là
√
√
√
3
5a 3
4a3 3
2a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
3
3
3
2
mx − 4
Câu 74. Tìm m để hàm số y =
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
A. 67.
B. 26.
C. 34.
D. 45.
Câu 75. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (0; 1).
B. (−1; 0).
C. (−∞; 0) và (1; +∞). D. (−∞; −1) và (0; +∞).
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 76. Cho hình chóp S .ABC có BAC
Thể tích khối chóp S .ABC là
√
√
√
√
a3 3
a3 2
a3 3
2
B.
.
C.
.
D.
.
A. 2a 2.
24
24
12
Câu 77. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh của khối chóp bằng 2n.
B. Số mặt của khối chóp bằng 2n+1.
C. Số đỉnh của khối chóp bằng 2n + 1.
D. Số mặt của khối chóp bằng số cạnh của khối chóp.
Câu 78. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
A. a3 .
B.
.
C.
.
D.
.
6
12
24
√
Câu 79. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga 3 a bằng
1
1
A. .
B. − .
C. −3.
D. 3.
3
3
Câu 80. Khối chóp ngũ giác có số cạnh là
A. 11 cạnh.
B. 12 cạnh.
C. 10 cạnh.
D. 9 cạnh.
Câu 81. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α
aα
A. aα bα = (ab)α .
B. β = a β .
C. aαβ = (aα )β .
D. aα+β = aα .aβ .
a
Trang 6/10 Mã đề 1
1
Câu 82. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. (−∞; −2] ∪ [−1; +∞). B. −2 ≤ m ≤ −1.
C. −2 < m < −1.
D. (−∞; −2) ∪ (−1; +∞).
√
√
Câu 83. [12215d] Tìm m để phương trình 4 x+ 1−x − 4.2 x+ 1−x − 3m + 4 = 0 có nghiệm
3
9
3
A. 0 < m ≤ .
B. m ≥ 0.
C. 0 ≤ m ≤ .
D. 0 ≤ m ≤ .
4
4
4
!
1
1
1
Câu 84. Tính lim
+
+ ··· +
1.2 2.3
n(n + 1)
3
A. 1.
B. 0.
C. .
D. 2.
2
Câu 85. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
B. Hàm số nghịch biến trên khoảng (−2; 1).
C. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
D. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
2
2
Câu 86. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = 21.
B. P = 10.
C. P = −21.
D. P = −10.
Câu 87. [1] Đạo hàm của làm số y = log x là
1
1
A.
.
B. y0 = .
10 ln x
x
C. y0 =
ln 10
.
x
D. y0 =
1
.
x ln 10
Câu 88. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 20.
B. 15, 36.
C. 3, 55.
D. 24.
a
1
Câu 89. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
A. 4.
B. 1.
C. 7.
D. 2.
Câu 90. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 4 đỉnh, 12 cạnh, 4 mặt.
√
Câu 91. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã
√ cho là
√
√
√
πa3 6
πa3 3
πa3 3
πa3 3
A. V =
.
B. V =
.
C. V =
.
D. V =
.
6
6
2
3
Câu 92. Bát diện đều thuộc loại
A. {3; 4}.
B. {4; 3}.
C. {5; 3}.
D. {3; 3}.
Câu 93. Khối đa diện đều loại {3; 5} có số cạnh
A. 8.
B. 20.
C. 12.
D. 30.
log 2x
Câu 94. [1229d] Đạo hàm của hàm số y =
là
x2
1 − 2 log 2x
1 − 2 ln 2x
1
1 − 4 ln 2x
A. y0 =
.
B. y0 = 3
.
C. y0 = 3
.
D. y0 =
.
3
x
x ln 10
2x ln 10
2x3 ln 10
√
Câu 95. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.
√ tích khối chóp S .ABC3 √
√
√
3
a 2
a 6
a3 6
a3 6
A.
.
B.
.
C.
.
D.
.
6
6
36
18
Trang 7/10 Mã đề 1
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
B. xy = e + 1.
C. xy0 = −ey + 1.
D. xy0 = ey − 1.
Câu 96. [3-12217d] Cho hàm số y = ln
A. xy0 = −ey − 1.
Câu 97. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by =
Giá trị
" đây?
!
" nhỏ! nhất của biểu thức P = x + 2y thuộc tập nào dưới
5
5
;3 .
B. (1; 2).
C. 2; .
D. [3; 4).
A.
2
2
√
ab.
Câu 98. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (−∞; 0).
B. Hàm số nghịch biến trên khoảng (1; +∞).
C. Hàm số nghịch biến trên khoảng (0; 1).
D. Hàm số đồng biến trên khoảng (1; 2).
Câu 99. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (−∞; 1).
B. (2; +∞).
C. R.
D. (0; 2).
Câu 100. Phát biểu nào sau đây là sai?
1
A. lim un = c (un = c là hằng số).
B. lim k = 0.
n
1
C. lim = 0.
D. lim qn = 0 (|q| > 1).
n
Câu 101. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 22.
B. 23.
C. 24.
D. 21.
Câu 102. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 1.
B. 3.
C. 0.
D. 2.
Câu 103. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 7, 2.
B. 0, 8.
C. 72.
D. −7, 2.
Câu 104. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 4.
B. 2.
C. 3.
D. 1.
Câu 105. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(−4; 8).
B. A(−4; −8)(.
C. A(4; −8).
D. A(4; 8).
Câu 106. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {3; 4}.
B. {3; 3}.
C. {5; 3}.
D. {4; 3}.
Câu 107. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối tứ diện đều.
D. Khối lập phương.
C. Khối 12 mặt đều.
Câu 108. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. −e2 .
B. −2e2 .
C. 2e2 .
D. 2e4 .
Câu 109. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Một khối chóp tam giác, một khối chóp tứ giác.
B. Hai khối chóp tam giác.
C. Một khối chóp tam giác, một khối chóp ngữ giác.
D. Hai khối chóp tứ giác.
Trang 8/10 Mã đề 1
3a
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng
√
a 2
a
2a
a
B.
.
C. .
D.
.
A. .
4
3
3
3
Câu 111. Tứ diện đều thuộc loại
A. {3; 4}.
B. {5; 3}.
C. {3; 3}.
D. {4; 3}.
x+1
Câu 112. Tính lim
bằng
x→+∞ 4x + 3
1
1
A. .
B. .
C. 3.
D. 1.
3
4
Câu 113. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 22.
B. y(−2) = −18.
C. y(−2) = 2.
D. y(−2) = 6.
Câu 110. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
Câu 114. [1] Đạo hàm của hàm số y = 2 x là
A. y0 = 2 x . ln 2.
B. y0 = 2 x . ln x.
C. y0 =
1
2 x . ln
Câu 115. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. [6, 5; +∞).
B. (4; 6, 5].
C. (4; +∞).
x
.
D. y0 =
1
.
ln 2
D. (−∞; 6, 5).
Câu 116. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ơng muốn hồn
nợ ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hồn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ơng A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng không đổi trong thời gian ơng A hồn nợ.
(1, 01)3
100.1, 03
triệu.
B. m =
triệu.
A. m =
3
(1, 01)3 − 1
100.(1, 01)3
120.(1, 12)3
triệu.
D.
m
=
triệu.
C. m =
(1, 12)3 − 1
3
!2x−1
!2−x
3
3
Câu 117. Tập các số x thỏa mãn
≤
là
5
5
A. (+∞; −∞).
B. (−∞; 1].
C. [1; +∞).
D. [3; +∞).
!
x+1
Câu 118. [3] Cho hàm số f (x) = ln 2017 − ln
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
2016
2017
4035
.
B.
.
C.
.
D. 2017.
A.
2018
2017
2018
3
2
x
Câu 119. [2]
√ + 1)2 trên [0; 1] bằng 2
√ Tìm m để giá trị nhỏ nhất của hàm số y = 2x + (m
A. m = ± 3.
B. m = ±1.
C. m = ± 2.
D. m = ±3.
Câu 120. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
7
5
A. 6.
B. 9.
C. .
D. .
2
2
Câu 121. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. Không tồn tại.
B. 9.
C. 13.
D. 0.
Z 3
x
a
a
Câu 122. Cho I =
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá
√
d
d
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = −2.
B. P = 16.
C. P = 4.
D. P = 28.
Trang 9/10 Mã đề 1
Câu 123. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 + 2e
1 + 2e
1 − 2e
1 − 2e
.
B. m =
.
C. m =
.
D. m =
.
A. m =
4e + 2
4 − 2e
4e + 2
4 − 2e
Câu 124. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (II) và (III).
B. (I) và (III).
C. (I) và (II).
D. Cả ba mệnh đề.
Câu 125. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ơng ta muốn
hồn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hồn nợ ở mỗi tháng là như nhau và ơng A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 2, 20 triệu đồng.
B. 3, 03 triệu đồng.
C. 2, 25 triệu đồng.
D. 2, 22 triệu đồng.
2n + 1
Câu 126. Tính giới hạn lim
3n + 2
1
3
2
B. 0.
C. .
D. .
A. .
3
2
2
Câu 127. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của
nó
A. Tăng lên n lần.
B. Tăng lên (n − 1) lần. C. Giảm đi n lần.
D. Không thay đổi.
Câu 128.
[1233d-2] MệnhZđề nào sau đây
Z
Z sai?
[ f (x) + g(x)]dx =
A.
f (x)dx +
g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
Z
C.
[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
Z
D.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
B.
9x
Câu 129. [2-c] Cho hàm số f (x) = x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9 +3
1
A. .
B. 2.
C. −1.
D. 1.
2
Câu 130. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 9 mặt.
C. 6 mặt.
D. 3 mặt.
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 10/10 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
2.
B
D
3.
5.
4.
B
D
8.
C
C
9.
B
10.
11.
B
12.
13.
D
14. A
15.
D
16.
C
D
20.
21.
B
22.
23.
B
24.
27.
26.
D
B
D
B
C
B
18.
19.
25.
B
6. A
7.
17.
C
B
D
B
28. A
29. A
30.
C
31.
B
32.
33.
B
34.
B
36.
B
35.
37.
D
B
D
38.
D
D
39.
D
40.
41.
D
42.
C
43.
D
44.
C
C
45.
C
46.
47.
C
48.
49.
C
50.
51.
B
D
52. A
B
53. A
54.
55. A
56.
B
58.
B
57.
D
60.
C
61.
C
62. A
63.
C
B
64.
B
65.
C
66.
B
67.
C
68. A
69. A
1
70.
71.
B
D
72.
C
75.
76.
C
77. A
78.
C
79. A
80.
C
81.
B
84. A
86.
D
73.
74.
82.
C
C
B
B
83.
D
85.
D
87.
D
88.
B
89.
90.
B
91.
D
93.
D
95.
D
92. A
94.
B
D
96.
98.
97. A
99.
C
100.
C
D
D
101. A
102.
C
103.
D
104.
C
105.
D
106.
C
107.
108. A
109. A
110.
112.
D
111.
B
114. A
116.
B
C
113.
B
115.
B
C
117.
118.
C
119.
120.
C
121.
122.
C
123. A
124.
C
125.
126. A
128.
B
127.
129.
D
2
B
D
D
C
D