Free LATEX
BÀI TẬP TỐN THPT
(Đề thi có 11 trang)
Thời gian làm bài: 90 phút
Mã đề thi 1
Câu 1. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 5 mặt.
C. 4 mặt.
Câu 2. Khối đa diện đều loại {3; 3} có số mặt
A. 2.
B. 4.
√
√
4n2 + 1 − n + 2
Câu 3. Tính lim
bằng
2n − 3
A. 1.
B. 2.
C. 3.
D. 3 mặt.
D. 5.
3
.
D. +∞.
2
Câu 4. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √
√
3
3
a 6
a 6
a3 6
a3 3
A.
.
B.
.
C.
.
D.
.
48
8
24
24
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 5. Cho hình chóp S .ABC có BAC
Thể tích√khối chóp S .ABC là
√
√
√
a3 2
a3 3
a3 3
2
.
B.
.
C. 2a 2.
.
A.
D.
24
24
12
ln x p 2
1
Câu 6. Gọi F(x) là một nguyên hàm của hàm y =
ln x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
1
1
8
8
A. .
B. .
C. .
D. .
9
3
9
3
3
2
x
Câu 7. [2] Tìm
√ m để giá trị nhỏ nhất của hàm số y = 2x + (m √+ 1)2 trên [0; 1] bằng 2
A. m = ± 2.
B. m = ±3.
C. m = ± 3.
D. m = ±1.
C.
Câu 8. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của
nó
A. Khơng thay đổi.
B. Tăng lên n lần.
C. Giảm đi n lần.
D. Tăng lên (n − 1) lần.
Câu 9. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối 20 mặt đều.
B. Khối bát diện đều. C. Khối 12 mặt đều.
D. Khối tứ diện đều.
1
bằng
Câu 10. [1] Giá trị của biểu thức log √3
10
1
1
B. .
C. −3.
D. 3.
A. − .
3
3
Z 1
Câu 11. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
0
1
1
.
C. .
2
4
Câu 12. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. 2.
B. −4.
C. −2.
D. 4.
Câu 13. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = −2.
B. m = 0.
C. m = −3.
D. m = −1.
A. 0.
B.
D. 1.
Câu 14. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Trang 1/11 Mã đề 1
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 216 triệu.
B. 210 triệu.
C. 212 triệu.
D. 220 triệu.
x
Câu 15. Tính diện tích hình phẳng
√ giới hạn bởi các đường y = xe , y = 0, x = 1.
3
1
3
A. .
B.
.
C. .
D. 1.
2
2
2
√
Câu 16. [12215d] Tìm m để phương trình 4 x+
9
3
A. 0 ≤ m ≤ .
B. 0 ≤ m ≤ .
4
4
1−x2
√
− 4.2 x+
1−x2
− 3m + 4 = 0 có nghiệm
C. m ≥ 0.
3
D. 0 < m ≤ .
4
Câu 17. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
B. k = .
C. k = .
D. k = .
A. k = .
9
15
18
6
Câu 18. Khối đa diện đều loại {4; 3} có số đỉnh
A. 8.
B. 10.
C. 4.
D. 6.
Câu 19. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
A. f 0 (0) = ln 10.
B. f 0 (0) = 1.
C. f 0 (0) = 10.
D. f 0 (0) =
1
.
ln 10
Câu 20. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng
√
a 3
a
a
C.
.
D. .
A. a.
B. .
3
2
2
Câu 21. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 72cm3 .
B. 64cm3 .
C. 27cm3 .
D. 46cm3 .
Câu 22.
các khẳng định sau, khẳng định nào sai?
Z Trong
u0 (x)
A.
dx = log |u(x)| + C.
u(x)
B. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
C. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
D. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
Câu 23. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
0 0
ABC.A0 B
C là
√
√
a3 3
a3 3
a3
A.
.
B.
.
C. a3 .
D.
.
6
2
3
Z 2
ln(x + 1)
Câu 24. Cho
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
x2
1
A. 1.
B. 3.
C. 0.
D. −3.
Câu 25. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính qng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 8 m.
B. 12 m.
C. 16 m.
D. 24 m.
Câu 26. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. −3 ≤ m ≤ 3.
B. m ≤ 3.
C. m ≥ 3.
D. −2 ≤ m ≤ 2.
Trang 2/11 Mã đề 1
Câu 27. [1] Đạo hàm của làm số y = log x là
1
1
.
B. y0 = .
A. y0 =
x ln 10
x
ln 10
.
x
π
Câu 28. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3
√
trị của biểu √
thức T = a + b 3.
√
A. T = 2 3.
B. T = 2.
C. T = 3 3 + 1.
D. T = 4.
C.
1
.
10 ln x
D. y0 =
Câu 29. [1] !Tập xác định của hàm số y != log3 (2x + 1) là
!
!
1
1
1
1
; +∞ .
B. − ; +∞ .
C. −∞; − .
A.
D. −∞; .
2
2
2
2
t
9
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
Câu 30. [4] Xét hàm số f (t) = t
9 + m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. 2.
B. 0.
C. Vơ số.
D. 1.
un
Câu 31. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. 0.
B. −∞.
C. +∞.
D. 1.
Câu 32. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M, N, P bằng
√
√
√
√
14 3
20 3
B.
.
C.
.
D. 8 3.
A. 6 3.
3
3
Câu 33. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng
thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay
đổi trong thời gian gửi.
A. 0, 6%.
B. 0, 5%.
C. 0, 8%.
D. 0, 7%.
Câu 34. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
B. T = e + 3.
C. T = e + .
D. T = e + 1.
A. T = 4 + .
e
e
x+2
đồng biến trên khoảng
Câu 35. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
x + 5m
(−∞; −10)?
A. 2.
B. Vô số.
C. 3.
D. 1.
Câu 36. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 12 cạnh, 4 mặt.
B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 6 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
Câu 37. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 18 lần.
B. Tăng gấp 27 lần.
C. Tăng gấp 9 lần.
D. Tăng gấp 3 lần.
Câu 38. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của
phẳng (AIC) có diện√tích là
√
√ hình chóp S .ABCD với mặt
a2 5
a2 7
11a2
a2 2
A.
.
B.
.
C.
.
D.
.
16
8
32
4
Câu 39. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng
góc
với
đáy,
S
C
=
a
3. Thể tích khối chóp S .ABCD
là
√
√
3
3
a 3
a 3
a3
A.
.
B. a3 .
C.
.
D.
.
3
9
3
Trang 3/11 Mã đề 1
Câu 40. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng
√
1
D. 5.
A. .
B. 25.
C. 5.
5
Câu 41. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
√
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Khơng có câu nào B. Câu (I) sai.
sai.
C. Câu (II) sai.
4
Câu 42. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 :
5
7
5
A. a 8 .
B. a 3 .
C. a 3 .
√3
D. Câu (III) sai.
a2 bằng
2
D. a 3 .
Câu 43. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(4; 8).
B. A(−4; 8).
C. A(4; −8).
D. A(−4; −8)(.
Câu 44. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối 20 mặt đều.
C. Khối bát diện đều.
D. Khối tứ diện đều.
Câu 45. Khối đa diện đều loại {3; 5} có số đỉnh
A. 8.
B. 12.
C. 30.
D. 20.
Câu 46. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
Thể tích khối chóp S .ABC√là
vng góc√với đáy và S C = a 3. √
√
2a3 6
a3 6
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
9
12
4
2
Câu 47. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 2.
B. 1.
C. Vô nghiệm.
D. 3.
√
2
Câu 48. Xác định phần ảo của số
√ phức z = ( 2 + 3i)
√
A. −7.
B. 6 2.
C. −6 2.
D. 7.
√
Câu 49. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.
√
√
√ tích khối chóp S .ABC3 √
3
a 6
a3 2
a3 6
a 6
.
B.
.
C.
.
D.
.
A.
6
18
6
36
Câu 50. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có một.
B. Có hai.
C. Có vơ số.
D. Khơng có.
Câu 51. Cho hàm số y = x3 − 2x2 + x + 1.
! Mệnh đề nào dưới đây đúng?
!
1
1
A. Hàm số đồng biến trên khoảng ; 1 .
B. Hàm số nghịch biến trên khoảng ; 1 .
3
3
!
1
C. Hàm số nghịch biến trên khoảng −∞; .
D. Hàm số nghịch biến trên khoảng (1; +∞).
3
Câu 52. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m > 0.
B. m , 0.
C. m = 0.
2
2n − 1
Câu 53. Tính lim 6
3n + n4
2
A. 0.
B. 1.
C. .
3
D. m < 0.
D. 2.
Trang 4/11 Mã đề 1
a
1
Câu 54. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
A. 4.
B. 1.
C. 2.
D. 7.
Câu 55. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 48cm3 .
B. 84cm3 .
C. 91cm3 .
D. 64cm3 .
d = 120◦ .
Câu 56. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
.
C. 2a.
D. 4a.
A. 3a.
B.
2
Câu 57. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 2400 m.
B. 6510 m.
C. 1134 m.
D. 1202 m.
Câu 58. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 15, 36.
B. 20.
C. 24.
D. 3, 55.
Câu 59. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {3; 4}.
B. {3; 3}.
C. {4; 3}.
D. {5; 3}.
2
Câu 60. Tính
√ mơ đun của số phức z√4biết (1 + 2i)z = 3 + 4i. √
B. |z| = 5.
C. |z| = 2 5.
A. |z| = 5.
D. |z| = 5.
Câu 61. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối √
chóp S .ABMN là
√
√
√
3
5a3 3
a3 3
4a3 3
2a 3
.
B.
.
C.
.
D.
.
A.
3
3
2
3
log2 240 log2 15
Câu 62. [1-c] Giá trị biểu thức
−
+ log2 1 bằng
log3,75 2 log60 2
A. 4.
B. −8.
C. 3.
D. 1.
log(mx)
Câu 63. [1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0.
B. m ≤ 0.
C. m < 0 ∨ m > 4.
D. m < 0 ∨ m = 4.
Câu 64. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Trục thực.
B. Đường phân giác góc phần tư thứ nhất.
C. Hai đường phân giác y = x và y = −x của các góc tọa độ.
D. Trục ảo.
Câu 65. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (1; 3; 2).
B. (2; 4; 4).
C. (2; 4; 3).
D. (2; 4; 6).
Câu 66. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể√tích của khối chóp S .ABC√ theo a
√
a3 5
a3 15
a3 15
a3
A.
.
B.
.
C.
.
D.
.
25
25
5
3
[ = 60◦ , S O
Câu 67. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc với mặt đáy và S O = a.
√ Khoảng cách từ O đến (S√BC) bằng
√
√
a 57
2a 57
a 57
A. a 57.
B.
.
C.
.
D.
.
17
19
19
Trang 5/11 Mã đề 1
Câu 68. Hàm số nào sau đây khơng có cực trị
1
x−2
A. y =
.
B. y = x3 − 3x.
C. y = x4 − 2x + 1.
D. y = x + .
2x + 1
x
Câu 69. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng
√
√
√
√
a 6
A. 2a 6.
B. a 3.
C. a 6.
D.
.
2
Câu 70. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = ln x − 1.
B. y0 = x + ln x.
C. y0 = 1 − ln x.
D. y0 = 1 + ln x.
Câu 71. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m > −1.
B. m > 0.
C. m ≥ 0.
D. m > 1.
Câu 72. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d ⊥ P.
B. d nằm trên P hoặc d ⊥ P.
C. d song song với (P).
D. d nằm trên P.
Câu 73.√Thể tích của tứ diện đều √
cạnh bằng a
√
√
3
3
a 2
a3 2
a3 2
a 2
.
B.
.
C.
.
D.
.
A.
2
12
6
4
Câu 74. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. f (x) có giới hạn hữu hạn khi x → a.
B. lim f (x) = f (a).
x→a
C. lim+ f (x) = lim− f (x) = a.
D. lim+ f (x) = lim− f (x) = +∞.
x→a
x→a
x→a
x→a
Câu 75. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp đã cho là 1728. Khi đó, các kích thước của hình hộp là
√
√
A. 6, 12, 24.
B. 8, 16, 32.
C. 2, 4, 8.
D. 2 3, 4 3, 38.
Câu 76. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
1
ln 2
.
B. .
C. 1.
A.
2
2
Câu 77. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. (−∞; +∞).
B. [1; 2].
C. [−1; 2).
D. 2.
D. (1; 2).
Câu 78.
Z Trong cácα+1khẳng định sau, khẳng định nào sai? Z
x
+ C, C là hằng số.
B.
0dx = C, C là hằng số.
A.
xα dx =
α+1
Z
Z
1
C.
dx = x + C, C là hằng số.
D.
dx = ln |x| + C, C là hằng số.
x
Câu 79. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Nhị thập diện đều. B. Tứ diện đều.
C. Thập nhị diện đều. D. Bát diện đều.
Câu 80. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 2.
B. 3.
C. 1.
D. Vô số.
2
3
7n − 2n + 1
Câu 81. Tính lim 3
3n + 2n2 + 1
2
7
A. - .
B. .
C. 0.
D. 1.
3
3
Câu 82. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 27 m.
B. 1587 m.
C. 25 m.
D. 387 m.
Trang 6/11 Mã đề 1
Câu 83. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 3.
B. 4.
C. 2.
D.
2n + 1
Câu 84. Tính giới hạn lim
3n + 2
2
1
3
A. .
B. .
C. .
D.
3
2
2
Câu 85. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α
aα
α α
α
C. aα+β = aα .aβ .
D.
A. a b = (ab) .
B. β = a β .
a
!4x
!2−x
2
3
Câu 86. Tập các số x thỏa mãn
≤
là
"
!
" 3 ! 2
#
2
2
2
; +∞ .
A. − ; +∞ .
B.
C. −∞; .
D.
3
5
5
1.
0.
aαβ = (aα )β .
#
2
−∞; .
3
Câu 87. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {3; 5}.
B. {3; 4}.
C. {4; 3}.
D. {5; 3}.
Câu 88. Khối lập phương thuộc loại
A. {5; 3}.
B. {3; 4}.
C. {3; 3}.
D. {4; 3}.
Câu 89.! Dãy số nào sau đây có giới
!n hạn là 0?
n
1
5
.
B.
.
A.
3
3
!n
4
C.
.
e
!n
5
D. − .
3
Câu 90.
√ Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18.
A. 3 3.
B. 8.
C. 27.
D. 9.
Câu 91. Khối đa diện đều loại {3; 5} có số cạnh
A. 20.
B. 12.
C. 8.
D. 30.
Câu 92. Khối đa diện đều loại {3; 4} có số đỉnh
A. 8.
B. 4.
C. 10.
D. 6.
Câu 93. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
A. − < m < 0.
B. m ≥ 0.
C. m ≤ 0.
D. m > − .
4
4
Câu 94. [3] Cho khối chóp S .ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
8a
5a
2a
a
A.
.
B.
.
C.
.
D. .
9
9
9
9
2mx + 1
1
Câu 95. Giá trị lớn nhất của hàm số y =
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
A. 1.
B. −2.
C. −5.
D. 0.
Câu 96. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 1.
B. 2.
C. 0.
D. 3.
Trang 7/11 Mã đề 1
Câu 97. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
67
.
D. −7.
A. −2.
B. −4.
C.
27
Câu 98. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (−∞; 6, 5).
B. (4; 6, 5].
C. (4; +∞).
D. [6, 5; +∞).
Câu 99. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 − 2; m = 1.
B. M = e2 − 2; m = e−2 + 2.
−2
C. M = e + 1; m = 1.
D. M = e−2 + 2; m = 1.
√
Câu 100. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của khối chóp S .ABCD là √
√
√
a3 3
a3 3
a3
.
B.
.
C.
.
D. a3 3.
A.
4
12
3
Câu 101. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [−1; 3].
B. [−3; 1].
C. (−∞; −3].
D. [1; +∞).
Câu 102.
√ Thể tích của khối lăng trụ tam giác đều có cạnh√bằng 1 là:
3
3
3
.
B. .
C.
.
A.
2
4
4
√
3
D.
.
12
d = 300 .
Câu 103. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vng tại A. BC = 2a, ABC
Độ dài cạnh bên
CC 0 = 3a. Thể tích V của khối lăng trụ đã cho.
√
√
3
√
3a3 3
a
3
A. V =
.
B. V = 3a3 3.
C. V = 6a3 .
D. V =
.
2
2
Câu 104. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R.
B. D = (0; +∞).
C. D = R \ {1}.
D. D = R \ {0}.
d = 60◦ . Đường chéo
Câu 105. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vuông tại A, AC = a, ACB
BC 0 của mặt bên (BCC 0 B0 ) tạo với mặt phẳng (AA0C 0C) một góc 30◦ . Thể tích của khối lăng trụ ABC.A0 B0C 0
là
√
√
√
3
3
√
a
6
2a
6
4a3 6
A.
.
B. a3 6.
C.
.
D.
.
3
3
3
1 − 2n
Câu 106. [1] Tính lim
bằng?
3n + 1
2
1
2
A. .
B. 1.
C. .
D. − .
3
3
3
Câu 107. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).
√
√ Thể tích khối chóp S 3.ABC
√ là
√
3
a 3
a 3
a3 3
a3 2
A.
.
B.
.
C.
.
D.
.
6
12
4
12
x+3
Câu 108. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng
x−m
(0; +∞)?
A. 3.
B. 2.
C. 1.
D. Vô số.
Câu 109. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Năm mặt.
B. Hai mặt.
C. Bốn mặt.
D. Ba mặt.
Câu 110.
[1233d-2] MệnhZđề nào sau đây
Z
Z sai?
A.
[ f (x) − g(x)]dx =
f (x)dx −
g(x)dx, với mọi f (x), g(x) liên tục trên R.
Trang 8/11 Mã đề 1
Z
f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
C.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
Z
Z
Z
D.
[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
B.
Câu 111. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
D. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
Câu 112. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
.
B. 27.
C. 18.
D. 12.
A.
2
Câu 113. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
1
A. − .
B. − .
C. − 2 .
D. −e.
e
2e
e
Câu 114. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 + 2e
1 − 2e
1 − 2e
1 + 2e
A. m =
.
B. m =
.
C. m =
.
D. m =
.
4 − 2e
4 − 2e
4e + 2
4e + 2
Z 3
a
a
x
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá
Câu 115. Cho I =
√
d
d
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = 4.
B. P = 16.
C. P = 28.
D. P = −2.
ln2 x
m
Câu 116. [3] Biết rằng giá trị lớn nhất của hàm số y =
trên đoạn [1; e3 ] là M = n , trong đó n, m là
x
e
các số tự nhiên. Tính S = m2 + 2n3
A. S = 32.
B. S = 22.
C. S = 135.
D. S = 24.
3a
Câu 117. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng
√
2a
a 2
a
a
A.
.
B.
.
C. .
D. .
3
3
4
3
log 2x
Câu 118. [1229d] Đạo hàm của hàm số y =
là
x2
1 − 2 ln 2x
1 − 4 ln 2x
1
1 − 2 log 2x
A. y0 = 3
.
B. y0 =
.
C. y0 = 3
.
D. y0 =
.
3
x ln 10
2x ln 10
2x ln 10
x3
Câu 119. [4-1246d] Trong tất cả
√ các số phức z thỏa mãn |z − i| = 1. Tìm giá trị lớn√nhất của |z|
A. 1.
B. 3.
C. 2.
D. 5.
√
Câu 120. Thể tích của khối lập phương
có cạnh bằng a 2
√
3
√
√
2a 2
A. V = 2a3 .
B.
.
C. V = a3 2.
D. 2a3 2.
3
!
!
!
4x
1
2
2016
Câu 121. [3] Cho hàm số f (x) = x
+f
+ ··· + f
. Tính tổng T = f
4 +2
2017
2017
2017
2016
A. T =
.
B. T = 2016.
C. T = 1008.
D. T = 2017.
2017
Trang 9/11 Mã đề 1
Câu 122. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ông muốn hoàn
nợ ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ơng A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng không đổi trong thời gian ơng A hồn nợ.
100.1, 03
(1, 01)3
triệu.
B.
m
=
triệu.
A. m =
(1, 01)3 − 1
3
100.(1, 01)3
120.(1, 12)3
C. m =
triệu.
D. m =
triệu.
3
(1, 12)3 − 1
d = 30◦ , biết S BC là tam giác đều
Câu 123. [3] Cho hình chóp S .ABC có đáy là tam giác vng tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
.
B.
.
C.
.
D.
.
A.
9
16
26
13
Câu 124. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 2.
B. y(−2) = −18.
C. y(−2) = 6.
D. y(−2) = 22.
Câu 125. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng
(cả vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất không thay đổi?
A. 16 tháng.
B. 17 tháng.
C. 18 tháng.
D. 15 tháng.
Câu 126. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 20 mặt.
B. 12 đỉnh, 30 cạnh, 12 mặt.
C. 20 đỉnh, 30 cạnh, 12 mặt.
D. 20 đỉnh, 30 cạnh, 20 mặt.
Câu 127. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (−1; 1).
B. (−∞; −1).
C. (−∞; 1).
D. (1; +∞).
Câu 128. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
1
ab
1
ab
A. √
.
B. √
.
C. 2
.
D. √
.
2
a +b
a2 + b2
a2 + b2
2 a2 + b2
Câu 129. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −3.
B. −5.
C. −7.
√
√
Câu 130. √Tìm giá trị lớn nhất của hàm số y = x + 3 + √6 − x
A. 2 + 3.
B. 3.
C. 3 2.
D. Không tồn tại.
√
D. 2 3.
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 10/11 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
C
1.
2.
3. A
5.
B
D
7.
9.
11.
4.
C
6.
C
8.
C
10. A
C
B
13. A
D
15.
12.
C
14.
C
16.
18. A
19. A
20. A
21.
22. A
23.
24.
D
B
C
B
25.
26. A
C
27. A
28.
D
29.
30. A
31. A
32. A
33.
34.
B
B
36.
B
D
35. A
C
37.
38.
B
39.
40.
B
41. A
42.
D
B
D
43. A
44.
B
45.
B
46.
B
47.
B
48.
B
49.
B
50.
B
51.
B
52.
B
53. A
54.
56.
D
55.
B
57.
D
B
D
59.
58. A
60.
B
61.
62.
B
63.
D
65.
D
67.
D
64.
66.
C
B
68. A
69.
1
C
C
70.
D
71. A
72.
B
73.
74.
B
75. A
76.
D
77. A
78. A
79.
80. A
81. A
82. A
83. A
84. A
85.
86. A
87. A
88.
D
89.
90. A
D
92.
94. A
96.
98.
B
C
B
B
91.
D
93.
D
95.
D
97. A
C
B
99. A
100.
C
101.
102.
C
103. A
104. A
106.
D
B
105.
B
107.
B
109.
108. A
110.
C
111. A
112.
C
113.
114.
C
115. A
D
B
116. A
117. A
118. A
119.
C
121.
C
120.
D
123.
122. A
124.
B
125. A
126. A
127. A
128. A
129.
130.
D
C
2
D