Tài liệu Pdf free LATEX
ĐỀ ÔN TẬP THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề thi 001
Câu 1. Số phức z =
A. -1.
4 + 2i + i
2−i
B. 3.
2017
có tổng phần thực và phần ảo là
C. 1.
D. 2.
Câu 2. Cho số phức z1 = 3 − 2i. Khi đó số phức w = 2z − 3z là
A. −3 + 2i.
B. 11 + 2i.
C. −3 − 10i.
D. −3 − 2i.
2
4(−3 + i) (3 − i)
Câu 3. Cho số phức z thỏa mãn z =
+
. Mô-đun của số phức w = z − iz + 1 là
−i
√
√
√ 1 − 2i
√
B. |w| = 48.
C. |w| = 85.
D. |w| = 6 3.
A. |w| = 4 5.
Câu 4. Cho số phức z thỏa (1 − 2i)z + (1 + 3i)2 = 5i. Khi đó điểm nào sau đây biểu diễn số phức z ?
A. N(2; 3).
B. Q(−2; −3).
C. P(−2; 3).
D. M(2; −3).
Câu 5. Cho số phức z = 2 + 5i. Tìm số phức w = iz + z.
A. w = −3 − 3i.
B. w = −7 − 7i.
C. w = 7 − 3i.
D. w = 3 + 7i.
Câu 6. Tính
√ mơ-đun của số phức z thỏa mãn z(2 − i) + 13i =√1.
√
5 34
34
A. |z| =
.
B. |z| = 34.
C. |z| =
.
D. |z| = 34.
3
3
Câu 7. Cho hàm số y = f (x) có đạo hàm f ′ (x) = (x − 2)2 (1 − x) với mọi x ∈ R. Hàm số đã cho đồng
biến trên khoảng nào dưới đây?
A. (−∞; 1).
B. (2; +∞).
C. (1; 2).
D. (1; +∞).
Câu 8. Tiệm cận ngang của đồ thị hàm số y =
A. y = 13 .
B. y = − 32 .
2x+1
3x−1
là đường thẳng có phương trình:
C. y = 32 .
D. y = − 13 .
Câu 9. Trên khoảng (0; +∞), đạo hàm của hàm số y = xπ là:
A. y′ = xπ−1 .
B. y′ = πxπ .
C. y′ = π1 xπ−1 .
D. y′ = πxπ−1 .
Câu 10. Cho hình chóp đều S .ABCD có chiều cao a, AC = 2a (tham khảo hình bên). Khoảng cách từ B
đến mặt phẳng (S CD) bằng √
√
√
√
B. 33 a.
C. 2 3 3 a.
D. 22 a.
A. 2a.
Câu 11. Cho hàm số y = f (x) có bảng biến thiên như sau:
Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
A. (0; 2).
B. (1; 3).
C. (−∞; 1).
D. (3; +∞).
Câu 12. Trong không gian Oxyz, cho đường thẳng d : x−1
= y−2
= z+3
. Điểm nào dưới đây thuộc d?
2
−1
−2
A. N(2; 1; 2).
B. P(1; 2; 3).
C. M(2; −1; −2).
D. Q(1; 2; −3).
Câu 13. Căn bậc hai của -4 trong tập số phức là.
A. 2i hoặc -2i.
B. 2 hoặc -2.
C. không tồn tại.
D. 4i.
Câu 14. Biết z0 là nghiệm phức có phần ảo dương của phương trình z2 − 4z + 20 = 0. Trên mặt phẳng
tọa
độ, điểm nào dưới đây là điểm biểu diễn của số phức w = (1 + i)z0 − 2z0 ?
A. M4 (6; −14).
B. M1 (6; 14).
C. M3 (−2; 10).
D. M2 (2; −10).
Câu 15. Biết phương trình z2 + mz − m + 4 = 0 có hai nghiệm đều là số thuần ảo. Khi đó tham số thực
m gần giá trị nào nhất trong các giá trị sau?
A. 5.
B. 2.
C. −1.
D. −4.
Trang 1/5 Mã đề 001
Câu 16. Biết z = 1 − 3i là một nghiệm của phương trình z2 + az + b = 0 ( với a, b ∈ R ). Khi đó hiệu
a − b bằng
A. −12.
B. 8.
C. −8.
D. 12.
Câu 17. Cho phương trình bậc hai az2 + bz + c = 0 (với a, b, c ∈ R). Xét trên tập số phức, trong các
khẳng định sau, đâu là khẳng định sai?
A. Nếu ∆ = b2 − 4ac < 0 thì phương trình đã vơ nghiệm.
B. Phương trình đã cho ln có nghiệm.
−b
.
C. Phương trình đã cho có tổng hai nghiệm bằng
a
c
D. Phương trình đã cho có tích hai nghiệm bằng .
a
Câu 18. Biết z = 1 + 2i là một nghiệm phức của phương trình z2 + (m − 1)z + m − 1 = 0 (m là tham số
phức). Khi đó phần ảo của m bằng bao nhiêu?
3
3
7
7
B. − .
C. .
D. .
A. − .
4
4
4
4
√
2
Câu 19. Biết số phức z thỏa mãn |z − 3 − 4i| = 5 và biểu thức T = |z + 2| − |z − i|2 đạt giá trị lớn nhất.
Tính |z|. √
√
√
A. |z| = 10.
B. |z| = 33.
C. |z| = 50.
D. |z| = 5 2.
Câu 20. Cho số phức z thỏa mãn |z| = 4. Biết rằng tập hợp điểm biểu diễn các số phức w = (3 + 4i)z + i
là một đường trịn. Tính bán kính r của đường trịn đó.
A. r = 20.
B. r = 22.
C. r = 5.
D. r = 4.
z
Câu 21. Cho các số phức z, w khác 0 được biểu diễn bởi hai điểm A, B trong mặt phẳng Oxy. Nếu là
w
số thuần ảo thì mệnh đề nào sau đây đúng?
A. Tam giác OAB là tam giác cân.
B. Tam giác OAB là tam giác vuông.
C. Tam giác OAB là tam giác đều.
D. Tam giác OAB là tam giác nhọn.
−2 − 3i
z + 1
= 1.
Câu 22. Tìm giá trị lớn nhất của |z| biết rằng z thỏa mãn điều kiện
3
−
2i
√
A. max |z| = 1.
B. max |z| = 2.
C. max |z| = 2.
D. max |z| = 3.
Câu 23. Tập hợp điểm biểu diễn các số phức w = (1 + i)z + 1 với z là số phức thỏa mãn |z − 1| ≤ 1 là
hình trịn có diện tích bằng bao nhiêu
A. 4π.
B. 2π.
C. π.
D. 3π.
Câu 24. Cho các số phức z thoả mãn (1 + z)2 là số thực. Tập hợp điểm M biểu diễn số phức z là
A. Một đường thẳng.
B. Đường tròn.
C. Parabol.
D. Hai đường thẳng.
Câu 25. Giả sử (H) là tập hợp điểm biểu diễn số phức z thoả mãn |z − i| = |(1 + i)z|. Diện tích hình phẳng
(H) là
A. 2π.
B. 3π.
C. π.
D. 4π.
Câu 26. (Chuyên Lào Cai) Xét số phức z và z có điểm biểu diễn lần lượt là M và M ′ . Số phức ω = (4+3i)z
và ω có điểm biểu diễn lần lượt là N và N ′ . Biết rằng M, M ′ , N, N ′ là bốn đỉnh của hình chữ nhật. Tìm
1
9
9 9
giá trị nhỏ nhất của ⇒ |z + 4i − 5| ≥ √ ⇔ x = ⇔ z = − i|z + 4i − 5|.
2
2 2
2
1
2
4
1
A. √ .
B. √ .
C. √ .
D. .
2
13
2
5
Câu 27. Cho số phức z thỏa mãn (z + 1) (z − 2i) là số thuần ảo. Tập hợp các điểm biểu diễn số phức z là
một hình trịn có diện tích bằng
5π
5π
A. .
B.
.
C. 25π.
D. 5π.
4
2
Câu 28. Gọi z1 và z2 là các nghiệm của phương trình z2 − 4z + 9 = 0. Gọi M, N là các điểm biểu diễn
của z1 , z2 trên mặt phẳng phức. Khi đó độ dài của MN là
√
√
A. MN = 5.
B. MN = 4.
C. MN = 2 5.
D. MN = 5.
Trang 2/5 Mã đề 001
Câu 29. Gọi z1 và z2 là các nghiệm của phương trình z2 − 2z + 10 = 0. Gọi M, N, P lần lượt là các điểm
biểu diễn của
√ Để tam giác MNP
√ đều là số phức k là
√ z1 , z2 và số phức w√ = x + iy trên mặt phẳng phức.
−
i
hoặcw
=
−
27
+
i.
B.
w
=
27
−
i
hoặcw
=
27 √
+ i.
A. w = − 27
√
√
√
C. w = 1 + 27i hoặcw = 1 − 27i.
D. w = 1 + 27 hoặcw = 1 − 27.
Câu 30. (Chuyên Ngoại Ngữ - Hà Nội) Cho số phức z thỏa mãn |z| = 1. Tìm giá trị lớn nhất của biểu
thức T = |z + 1| √
+ 2|z − 1|.
√
√
√
A. max T = 3 2.
B. max T = 3 5.
C. max T = 2 10.
D. max T = 2 5.
Câu 31. Cho z1 , z2 là hai số phức thỏa mãn |2z − i| = |2 + iz|, biết |z1 − z2 | = 1. Tính giá trị biểu thức
P = |z1 + z√2 |.
√
√
√
3
2
.
B. P = 2.
.
D. P = 3.
C. P =
A. P =
2
2
z+i+1
là số thuần ảo?
Câu 32. Tìm tập hợp các điểm M biểu diễn số phức z sao cho w =
z + z + 2i
A. Một đường tròn.
B. Một đường thẳng.
C. Một Parabol.
D. Một Elip.
Câu 33. Cho số phức z (không phải là số thực, khơng phải là số ảo) và thỏa mãn
Khi đó mệnh đề nào sau đây đúng?
5
7
3
A. < |z| < .
B. < |z| < 2.
2
2
2
C.
1
3
< |z| < .
2
2
1 + z + z2
là số thực.
1 − z + z2
5
D. 2 < |z| < .
2
4
= 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến
|z|
điểm biểu!diễn số phức thuộc tập hợp
!
! nào sau đây?
!
1 9
9
1 5
1
B. ; .
C. ; +∞ .
D. ; .
A. 0; .
4
2 4
4
4 4
Câu 34. Cho số phức z thỏa mãn (3 − 4i)z −
Câu 35. Cho số phứcz = a − 2 + (b + 1)i với a, b ∈ Z và|z| = 2. Tìm giá trị lớn nhất của biểu thức
S = a√+ 2b.
√
√
√
A. 5.
B. 2 5.
C. 15.
D. 10.
Câu 36. Gọi z1 ; z2 là hai nghiệm của phương trình z2 − z + 2 = 0.Phần thực của số phức
[(i − z1 )(i − z2 )]2017 bằng bao nhiêu?
A. −22016 .
B. −21008 .
C. 22016 .
D. 21008 .
z+1
là số thuần ảo. Tìm |z| ?
Câu 37. Cho số phức z , 1 thỏa mãn
z−1
1
A. |z| = .
B. |z| = 2.
C. |z| = 4.
D. |z| = 1.
2
Câu 38. Cho z1 , z2 là hai số phức thỏa mãn |2z − 1| = |2 + iz|, biết |z1 − z2 | = 1. Tính giá trị của biểu thức
P = |z1 + z√2 |.
√
√
√
3
2
A. P =
.
B. P = 2.
C. P =
.
D. P = 3.
2
2
Câu 39. Trong các hình dưới đây, có bao nhiêu hình đa diện?
Hình 1
A. 0.
B. 3.
Hình 3
Hình 2
C. 2.
Câu 40. Hàm số nào trong các hàm số dưới đây luôn nghịch biến trên R?
x−3
A. y = x4 − 2x2 + 1.
B. y = −x3 − 2x + 3.
C. y =
.
5−x
D. 1.
D. y = −x2 + 3x + 5.
Trang 3/5 Mã đề 001
Câu 41. Khối đa diện nào trong các khối đa diện sau có tính chất: “Mỗi mặt của khối đa diện là một tam
giác đều và mỗi đỉnh của nó là đỉnh chung của đúng ba mặt. ”?
A. Khối lập phương.
B. Khối tứ diện đều.
C. Khối bát diện đều.
D. Khối mười hai mặt đều.
Câu 42. Cho tứ diện OABC có các cạnh OA, OB, OC đơi một vng góc nhau và OA = OB = OC = 1.
Tính thể tích V của khối tứ diện OABC.
1
A. V = .
3
1
B. V = .
2
C. V = 1.
1
D. V = .
6
Câu 43. Cho hình lăng trụ đứng ABC.A′ B′C ′ có AA′ = 3a, tam giác ABC vuông cân tại A và BC = 2a.
Tính thể tích V của khối lăng trụ ABC.A′ B′C ′ .
A. V = 6a3 .
Câu 44. Cho hàm số y =
A. 2.
B. V = a3 .
C. V = 3a3 .
D. V = 12a3 .
x+1
. Tìm giá trị lớn nhất của hàm số trên đoạn [−1; 2].
3−x
B. 3.
C. 0.
D. −1.
Câu 45. Cho khối lập phương có cạnh bằng 2. Thể tích của khối lập phương đã cho bằng
A. 6.
B. 4.
C. 8.
D. 83 .
Câu 46. Cho hình nón có đường kính đáy 2r và độ dài đường sinh l. Diện tích xung quanh của hình nón
đã cho bằng
A. 23 πrl2 .
B. πrl.
C. 2πrl.
D. 13 πr2 l.
Câu 47. Trong không gian Oxyz, cho hai điểm M(1; −1; −1) và N(5; 5; 1). Đường thẳng MN có phương
trình là:
Câu 48. Thể tích khối trịn xoay thu được khi quay hình phẳng giới hạn bởi hai đường y = −x2 + 2x và
y = 0 quanh trục Ox bằng
A.
16
.
15
B.
16π
.
9
C.
16
.
9
D.
16π
.
15
Câu 49. Trong không gian Oxyz, cho điểm A(1; 2; 3). Điểm đối xứng với A qua mặt phẳng (Oxz) có tọa
độ là
A. (−1; 2; 3).
B. (1; 2; −3).
C. (1; −2; 3).
D. (−1; −2; −3).
C. 2.
D. −3.
Câu 50. Phần ảo của số phức z = 2 − 3i là
A. −2.
B. 3.
Trang 4/5 Mã đề 001
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 5/5 Mã đề 001