Tải bản đầy đủ (.pdf) (5 trang)

Đề ôn tập thpt qg môn toán (803)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (122.89 KB, 5 trang )

Tài liệu Pdf free LATEX

ĐỀ ÔN TẬP THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)

Mã đề thi 001






z2
Câu 1. Cho số phức z1 = 2 + 3i, z2 = 5 − i. Giá trị của biểu thức


z1 +



z1


A. 5.
B. 11.
C. 5.
D. 13.
4 − 2i (1 − i)(2 + i)
Câu 2. Phần thực của số phức z =


+

2−i
2 + 3i
29
11
29
11
A. − .
B.
.
C. .
D. − .
13
13
13
13
25
1
1
Câu 3. Cho số phức z thỏa
=
+
. Khi đó phần ảo của z bằng bao nhiêu?
z
1 + i (2 − i)2
A. −31.
B. 17.
C. 31.
D. −17.

(1 + i)(2 + i) (1 − i)(2 − i)
+
. Trong tất cả các kết luận sau, kết luận
Câu 4. Cho số phức z thỏa mãn z =
1−i
1+i
nào đúng?
1
B. z = .
A. z = z.
C. |z| = 4.
D. z là số thuần ảo.
z
Câu 5. Cho số phức z = 3 − 2i.Tìm phần thực và phần ảo của số phức z.
A. Phần thực là −3 và phần ảo là−2.
B. Phần thực là3 và phần ảo là 2.
C. Phần thực là−3 và phần ảo là −2i.
D. Phần thực là 3 và phần ảo là 2i.
Câu 6.√Cho số phức z1 = 3 + 2i,
biểu thức |z1 + z1 z2 | là
√ z2 = 2 − i. Giá trị của √

B. 3 10.
C. 130.
D. 10 3.
A. 2 30.
Câu 7. Phần ảo của số phức z = 2 − 3i là
A. 3.
B. 2.


C. −2.

D. −3.

Câu 8. Cho mặt phẳng (P) tiếp xúc với mặt cầu S (O; R). Gọi d là khoảng cách từ O đến (P). Khẳng định
nào dưới đây đúng?
A. d = R.
B. d < R.
C. d > R.
D. d = 0.
Câu 9. Trong không gian Oxyz, mặt phẳng (P) : x + y + z + 1 = 0 có một vectơ pháp tuyến là:




A. →
n3 = (1; 1; 1).
B. →
n4 = (1; 1; −1).
C. →
n1 = (−1; 1; 1).
D. →
n2 = (1; −1; 1).
Câu 10. Cho hình nón có đường kính đáy 2r và độ dài đường sinh l. Diện tích xung quanh của hình nón
đã cho bằng
C. πrl.
D. 32 πrl2 .
A. 2πrl.
B. 13 πr2 l.
Câu 11. Tập nghiệm của bất phương trình 2 x+1 < 4 là

A. (1; +∞).
B. (−∞; 1).
C. [1; +∞).

D. (−∞; 1].

Câu 12. Tích tất cả các nghiệm của phương trình ln2 x + 2 ln x − 3 = 0 bằng
A. e12 .
B. −3.
C. e13 .
D. −2.
Câu 13. Gọi z1 , z2 , z3 là ba nghiệm phức của phương trình z3 −z2 +2 = 0. Khi đó tổngP = |z1 +z2 +z3 +2−3i|
bằng bao nhiêu?


A. P = 13.
B. P = 5.
C. P = 2 5.
D. P = 5.
Câu 14. Biết z = 1 − 3i là một nghiệm của phương trình z2 + az + b = 0 ( với a, b ∈ R ). Khi đó hiệu
a − b bằng
A. −12.
B. 8.
C. 12.
D. −8.
Trang 1/5 Mã đề 001


Câu 15. Gọi z1 , z2 là hai nghiệm phức của phương trình 2(1+i)z2 −4(2−i)z−5−3i = 0. TổngT = |z1 |2 +|z2 |2
bằng bao nhiêu?


13
13
A. T =
.
B. T = 3.
C. T = 9.
D. T = .
2
4
2
Câu 16. Biết z0 là nghiệm phức có phần ảo dương của phương trình z − 4z + 20 = 0. Trên mặt phẳng
tọa
độ, điểm nào dưới đây là điểm biểu diễn của số phức w = (1 + i)z0 − 2z0 ?
A. M4 (6; −14).
B. M1 (6; 14).
C. M3 (−2; 10).
D. M2 (2; −10).
Câu 17. Biết z = 1 + i và z = 2 là một trong các nghiệm của phương trình z3 + az2 + bz + c = 0 (với
a, b ∈ R ). Khi đó tổng a + b + c bằng bao nhiêu?
A. 2.
B. 1.
C. 0.
D. −2.
Câu 18. Biết z là nghiệm phức có phần ảo dương của phương trình z2 − 4z + 13 = 0. Khi đó mô-đun của
2
số phức w =


√ z + 2z bằng bao nhiêu?

B. |w| = 5.
C. |w| = 5 13.
D. |w| = 13.
A. |w| = 37.
Câu 19. Gọi z1 và z2 là các nghiệm của phương trình z2 − 4z + 9 = 0. Gọi M, N là các điểm biểu diễn
của z1 , z2 trên√mặt phẳng phức. Khi đó√ độ dài của MN là
A. MN = 2 5.
B. MN = 5.
C. MN = 5.
D. MN = 4.
Câu 20. Cho số phức z thỏa mãn |i + 2z| = |z − 3i|. Tập hợp điểm biểu diễn các số phức w = (1 − i)z + 3
là một đường thẳng có phương trình là
A. x + y − 8 = 0.
B. x − y + 8 = 0.
C. x + y − 5 = 0.
D. x − y + 4 = 0.
Câu 21. (Chuyên Lào Cai) Xét số phức z và z có điểm biểu diễn lần lượt là M và M ′ . Số phức ω = (4+3i)z
và ω có điểm biểu diễn lần lượt là N và N ′ . Biết rằng M, M ′ , N, N ′ là bốn đỉnh của hình chữ nhật. Tìm
1
9
9 9
giá trị nhỏ nhất của ⇒ |z + 4i − 5| ≥ √ ⇔ x = ⇔ z = − i|z + 4i − 5|.
2
2 2
2
1
4
1
2
C. √ .

A. √ .
B. .
D. √ .
2
13
2
5
Câu 22. Cho các số phức z thoả mãn (1 + z)2 là số thực. Tập hợp điểm M biểu diễn số phức z là
A. Đường tròn.
B. Một đường thẳng.
C. Parabol.
D. Hai đường thẳng.
Câu 23. Cho z1 , z2 là hai số phức thỏa mãn |2z − i| = |2 + iz|, biết |z1 − z2 | = 1. Tính giá trị biểu thức
P = |z1 + z2 |.




2
3
.
D. P =
.
A. P = 3.
B. P = 2.
C. P =
2
2
z+i+1
Câu 24. Tìm tập hợp các điểm M biểu diễn số phức z sao cho w =

là số thuần ảo?
z + z + 2i
A. Một Parabol.
B. Một Elip.
C. Một đường thẳng.
D. Một đường tròn.






−2 − 3i


Câu 25. Tìm giá trị lớn nhất của |z| biết rằng z thỏa mãn điều kiện


z + 1


= 1.
3

2i

A. max |z| = 3.
B. max |z| = 2.
C. max |z| = 1.
D. max |z| = 2.

Câu 26. Cho số phức z thỏa mãn |z − 4| + |z + 4| = 10. Giá trị lớn nhất và giá trị nhỏ nhất của |z| lần lượt

A. 10 và 4.
B. 4 và 3.
C. 5 và 3.
D. 5 và 4.
Câu 27. Gọi z1 và z2 là các nghiệm của phương trình z2 − 4z + 9 = 0. Gọi M, N là các điểm biểu diễn
của z1 , z2 trên
√ mặt phẳng phức. Khi đó độ dài của MN là

A. MN = 5.
B. MN = 5.
C. MN = 4.
D. MN = 2 5.
Câu 28. Cho z1 , z2 là hai số phức thỏa mãn |2z − i| = |2 + iz|, biết |z1 − z2 | = 1. Tính giá trị biểu thức
P = |z1 + z2 |.




2
3
A. P = 3.
B. P =
.
C. P =
.
D. P = 2.
2
2

Trang 2/5 Mã đề 001



Câu 29. (KHTN – Lần 1) Trong các số phức z thỏa điều kiện |(1 + i)z + 1 − 7i| = 2, tìm max |z|.
A. max |z| = 6.
B. max |z| = 3.
C. max |z| = 4.
D. max |z| = 7.
Câu 30. Tập hợp điểm biểu diễn các số phức w = (1 + i)z + 1 với z là số phức thỏa mãn |z − 1| ≤ 1 là
hình trịn có diện tích bằng bao nhiêu
A. 2π.
B. 4π.
C. 3π.
D. π.
Câu 31. (Chuyên Ngoại Ngữ - Hà Nội) Cho số phức z thỏa mãn |z| = 1. Tìm giá trị lớn nhất của biểu
thức T = |z + 1| √
+ 2|z − 1|.



B. max T = 2 5.
C. max T = 2 10.
D. max T = 3 2.
A. max T = 3 5.
Câu 32. Gọi z1 và z2 là các nghiệm của phương trình z2 − 2z + 10 = 0. Gọi M, N, P lần lượt là các điểm
biểu diễn của
√ z1 , z2 và số phức w√ = x + iy trên mặt phẳng phức. Để
√ tam giác MNP đều
√ là số phức k là

A. w = −√ 27 − i hoặcw =√− 27 + i.
B. w = 1 + √27 hoặcw = 1 − √27.
C. w = 27 − i hoặcw = 27 + i.
D. w = 1 + 27i hoặcw = 1 − 27i.

2
Câu 33. (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| =
và điểm A trong hình vẽ bên là điểm
2
biểu diễn z.
Biết rằng điểm biểu diễn số phức ω =
số phức ω là
A. điểm P.

B. điểm N.

1
là một trong bốn điểm M, N, P, Q. Khi đó điểm biểu diễn
iz
C. điểm M.

D. điểm Q.

2 2
. Mệnh đề nào dưới đây
Câu 34. Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = 0 và |z1 | = |z2 | = |z3 | =
3
đúng?

2

2
A. |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 =
.
B. |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 1.
3

8
D. |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = .
C. |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 2 2.
3
2
1
Câu 35. (Đặng Thức Hứa – Nghệ An) Cho các số phức z1 , 0, z2 , 0 thỏa mãn điều kiện +
=
z1 z2



×