Free LATEX
BÀI TẬP TỐN THPT
(Đề thi có 10 trang)
Thời gian làm bài: 90 phút
Mã đề thi 1
Câu 1. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {3; 5}.
B. {3; 4}.
C. {5; 3}.
Câu 2. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (4; 6, 5].
B. (4; +∞).
C. (−∞; 6, 5).
D. {4; 3}.
D. [6, 5; +∞).
√
Câu 3. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của khối chóp S .ABCD là √
√
√
a3 3
a3
a3 3
3
B.
.
C.
.
D.
.
A. a 3.
3
4
12
Câu 4. Khối đa diện đều loại {5; 3} có số cạnh
A. 20.
B. 12.
C. 8.
D. 30.
Câu 5. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
A. V = S h.
B. V = 3S h.
C. V = S h.
3
Câu 6. Khối đa diện đều loại {3; 4} có số cạnh
A. 10.
B. 8.
C. 6.
1
D. V = S h.
2
D. 12.
Câu 7. Cho khối chóp S .ABC√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
Thể tích khối chóp S .ABC√là
vng góc
√
√ với đáy và S C = a 3.3 √
3
a 3
a 3
a3 6
2a3 6
A.
.
B.
.
C.
.
D.
.
4
2
12
9
√
Câu 8. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể tích
khối nón đã cho
√
√ là
√
√
πa3 3
πa3 6
πa3 3
πa3 3
A. V =
.
B. V =
.
C. V =
.
D. V =
.
6
6
3
2
x+2
đồng biến trên khoảng
Câu 9. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
x + 5m
(−∞; −10)?
A. 2.
B. Vô số.
C. 3.
D. 1.
Câu 10. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 5.
B. 0, 2.
C. 0, 4.
D. 0, 3.
1 − 2n
Câu 11. [1] Tính lim
bằng?
3n + 1
2
2
1
A. 1.
B. − .
C. .
D. .
3
3
3
Câu 12. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim+ f (x) = lim− f (x) = a.
B. f (x) có giới hạn hữu hạn khi x → a.
x→a
x→a
x→a
x→a
C. lim+ f (x) = lim− f (x) = +∞.
D. lim f (x) = f (a).
x→a
Câu 13. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối
√ chóp S .ABCD là
√
3
3
√
a 5
a 15
a3 6
A.
.
B.
.
C.
.
D. a3 6.
3
3
3
Trang 1/10 Mã đề 1
x2
Câu 14. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
A. M = e, m = .
B. M = e, m = 0.
C. M = e, m = 1.
D. M = , m = 0.
e
e
2
2
sin x
Câu 15. [3-c] Giá trị nhỏ nhất và√giá trị lớn nhất của hàm số f (x)
+ 2cos x √
lần lượt là
√ =2
A. 2 và 3.
B. 2 2 và 3.
C. 2 và 2 2.
D. 2 và 3.
Câu 16. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−∞; 0) và (1; +∞). B. (−1; 0).
C. (−∞; −1) và (0; +∞). D. (0; 1).
π
Câu 17. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3
√
trị của biểu √
thức T = a + b 3.
√
B. T = 2.
C. T = 2 3.
D. T = 4.
A. T = 3 3 + 1.
Câu 18. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. 4 − 2 ln 2.
B. 1.
C. −2 + 2 ln 2.
D. e.
Câu 19. Trong các khẳng định sau, khẳng định nào sai?
A. Cả ba đáp án trên.
√
B. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
C. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
D. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
Câu 20. [3-1132d] Cho dãy số (un ) với un =
A. lim un = 1.
1
C. lim un = .
2
1 + 2 + ··· + n
. Mệnh đề nào sau đây đúng?
n2 + 1
B. Dãy số un khơng có giới hạn khi n → +∞.
D. lim un = 0.
Câu 21. [1] Giá trị của biểu thức 9log3 12 bằng
A. 24.
B. 4.
C. 2.
D. 144.
Câu 22. Khối đa diện đều loại {3; 3} có số mặt
A. 4.
B. 2.
C. 3.
D. 5.
2mx + 1
1
Câu 23. Giá trị lớn nhất của hàm số y =
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
A. −5.
B. −2.
C. 0.
D. 1.
Câu 24.
đề nào sai? Z
Z Cho hàm sốZf (x), g(x) liên tục trên R. Trong cácZmệnh đề sau, mệnh Z
A.
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.
B.
( f (x) − g(x))dx =
f (x)dx − g(x)dx.
Z
Z
Z
Z
Z
Z
C.
f (x)g(x)dx =
f (x)dx g(x)dx.
D.
( f (x) + g(x))dx =
f (x)dx + g(x)dx.
Câu 25. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √
√
3
3
a 6
a 3
a3 6
a3 6
A.
.
B.
.
C.
.
D.
.
8
24
24
48
√
Câu 26. [12215d] Tìm m để phương trình 4 x+
3
A. m ≥ 0.
B. 0 ≤ m ≤ .
4
1−x2
Câu 27. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (−∞; 0) và (2; +∞). B. (0; 2).
√
− 3m + 4 = 0 có nghiệm
9
3
C. 0 ≤ m ≤ .
D. 0 < m ≤ .
4
4
− 4.2 x+
1−x2
C. (0; +∞).
D. (−∞; 2).
Trang 2/10 Mã đề 1
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 28. Cho hình chóp S .ABC có BAC
Thể tích√khối chóp S .ABC là
√
√
√
a3 2
a3 3
a3 3
2
C.
A.
.
B. 2a 2.
.
D.
.
24
24
12
2x + 1
Câu 29. Tính giới hạn lim
x→+∞ x + 1
1
A. 2.
B. −1.
C. 1.
D. .
2
Câu 30. Hàm số f có nguyên hàm trên K nếu
A. f (x) liên tục trên K.
B. f (x) xác định trên K.
C. f (x) có giá trị nhỏ nhất trên K.
D. f (x) có giá trị lớn nhất trên K.
Câu 31. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể√tích của khối chóp S .ABC√ theo a
√
a3 15
a3
a3 15
a3 5
.
B.
.
C.
.
D.
.
A.
25
5
3
25
12 + 22 + · · · + n2
Câu 32. [3-1133d] Tính lim
n3
2
1
A. .
B. .
C. 0.
D. +∞.
3
3
x−2
Câu 33. Tính lim
x→+∞ x + 3
2
A. 1.
B. −3.
C. 2.
D. − .
3
3
2
Câu 34. [2D1-3] Tìm giá trị của tham số m để f (x) = −x + 3x + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
A. − < m < 0.
B. m ≤ 0.
C. m > − .
D. m ≥ 0.
4
4
Câu 35.
!
Z
Z Các khẳng định nào sau
Z đây là sai?
0
f (x)dx = F(x) + C ⇒
A.
Z
C.
f (x)dx = F(x) +C ⇒
f (t)dt = F(t) + C. B.
Z
f (u)dx = F(u) +C. D.
Z
f (x)dx = f (x).
Z
k f (x)dx = k
f (x)dx, k là hằng số.
2
Câu 36. Tính
√ mơ đun của số phức z biết (1 + 2i)z = 3 + 4i. √
A. |z| = 2 5.
B. |z| = 5.
C. |z| = 5.
D. |z| =
√4
5.
Câu 37. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 6 cạnh, 4 mặt. B. 3 đỉnh, 3 cạnh, 3 mặt. C. 4 đỉnh, 8 cạnh, 4 mặt. D. 4 đỉnh, 6 cạnh, 4 mặt.
Câu 38. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim+ f (x) = f (a) và lim− f (x) = f (b).
B. lim+ f (x) = f (a) và lim+ f (x) = f (b).
x→a
x→a
x→b
x→b
C. lim− f (x) = f (a) và lim− f (x) = f (b).
D. lim− f (x) = f (a) và lim+ f (x) = f (b).
x→a
x→b
x→a
x→b
Câu 39. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).
√ là
√ Thể tích khối chóp S 3.ABC
√
√
a3 3
a 2
a3 3
a3 3
.
B.
.
C.
.
D.
.
A.
12
12
6
4
Câu 40. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vuông góc với đáy, S C = a √3. Thể tích khối chóp S .ABCD
là
√
3
3
a 3
a 3
a3
A. a3 .
B.
.
C.
.
D.
.
9
3
3
Trang 3/10 Mã đề 1
3a
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng
√
a
a 2
a
2a
.
B. .
C.
.
D. .
A.
3
4
3
3
x+1
Câu 42. Tính lim
bằng
x→+∞ 4x + 3
1
1
A. .
B. .
C. 1.
D. 3.
4
3
Câu 43. Cho số phức z thỏa mãn |z +
√ 3| = 5 và |z − 2i| = |z − 2 − 2i|. Tính |z|.
√
A. |z| = 10.
B. |z| = 17.
C. |z| = 17.
D. |z| = 10.
Câu 41. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
Câu 44. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Ba cạnh.
B. Bốn cạnh.
C. Năm cạnh.
√
Câu 45.
phức z = ( 2 + 3i)2
√ Xác định phần ảo của số √
A. 6 2.
B. −6 2.
C. −7.
2
x −9
Câu 46. Tính lim
x→3 x − 3
A. −3.
B. 6.
C. +∞.
!
x+1
Câu 47. [3] Cho hàm số f (x) = ln 2017 − ln
. Tính tổng S = f 0 (1) +
x
4035
2016
.
B. 2017.
C.
.
A.
2017
2018
D. Hai cạnh.
D. 7.
D. 3.
f 0 (2) + · · · + f 0 (2017)
2017
.
2018
8
Câu 48. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 81.
B. 64.
C. 96.
D. 82.
D.
Câu 49. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
0 0
ABC.A0 B
C là
√
√
3
a3 3
a3
a
3
A.
.
B.
.
C. a3 .
D.
.
2
3
6
Câu 50. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 9 mặt.
C. 6 mặt.
D. 3 mặt.
Câu 51. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 27cm3 .
B. 46cm3 .
C. 64cm3 .
D. 72cm3 .
Câu 52. [2] Tìm m để giá trị lớn nhất của hàm số y = 2x3 + (m2√+ 1)2 x trên [0; 1] bằng 8 √
A. m = ±1.
B. m = ±3.
C. m = ± 2.
D. m = ± 3.
x+2
Câu 53. Tính lim
bằng?
x→2
x
A. 1.
B. 0.
C. 3.
D. 2.
Câu 54. Giá trị của lim(2x2 − 3x + 1) là
x→1
A. 2.
B. +∞.
C. 0.
D. 1.
Câu 55. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d nằm trên P hoặc d ⊥ P.
B. d ⊥ P.
C. d nằm trên P.
D. d song song với (P).
Câu 56. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = R \ {1; 2}.
B. D = (−2; 1).
C. D = R.
2
D. D = [2; 1].
Trang 4/10 Mã đề 1
Câu 57. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng√hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD
√ là
√
3
3
3
3
8a 3
8a 3
a 3
4a 3
.
B.
.
C.
.
D.
.
A.
9
9
3
9
Câu 58. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối √
chóp S .ABMN là
√
√
√
5a3 3
2a3 3
4a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
3
3
3
2
Câu 59. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 4.
B. 3.
C. 1.
D. 2.
Câu 60.
bằng 1 là:
√
√ Thể tích của khối lăng trụ tam giác đều có cạnh √
3
3
3
3
.
B. .
C.
.
D.
.
A.
12
4
2
4
Câu 61. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (−∞; 2).
B. Hàm số đồng biến trên khoảng (0; 2).
C. Hàm số đồng biến trên khoảng (0; +∞).
D. Hàm số nghịch biến trên khoảng (0; 2).
Câu 62. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 9 cạnh, 6 mặt. B. 6 đỉnh, 6 cạnh, 6 mặt. C. 5 đỉnh, 9 cạnh, 6 mặt. D. 6 đỉnh, 9 cạnh, 5 mặt.
un
Câu 63. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. +∞.
B. −∞.
C. 0.
D. 1.
Câu 64. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
1
A. f 0 (0) = 10.
B. f 0 (0) =
.
C. f 0 (0) = 1.
ln 10
Câu 65. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A
đến (S AB) bằng
√
√
√
a 6
A. a 6.
B. a 3.
C.
.
2
Câu 66. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 6.
B. 1.
C. −1.
Câu 67. [1] Cho a > 0, a , 1. Giá trị của biểu thức log 1a a2 bằng
1
1
A. − .
B. .
C. −2.
2
2
D. f 0 (0) = ln 10.
= a. Khoảng cách từ điểm O
√
D. 2a 6.
D. 2.
D. 2.
Câu 68. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by =
Giá trị nhỏ nhất của biểu thức P = x + 2y thuộc tập nào dưới
" đây?
!
"
!
5
5
A. (1; 2).
B. [3; 4).
C. 2; .
D.
;3 .
2
2
Câu 69. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối 20 mặt đều.
B. Khối 12 mặt đều.
C. Khối tứ diện đều.
√
ab.
D. Khối bát diện đều.
Trang 5/10 Mã đề 1
x2 − 5x + 6
x→2
x−2
B. 1.
Câu 70. Tính giới hạn lim
A. −1.
C. 0.
Câu 71. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 2.
B. 0.
C. 1.
D. 5.
D. 3.
Câu 72. Hàm số nào sau đây khơng có cực trị
x−2
1
A. y =
.
B. y = x3 − 3x.
C. y = x4 − 2x + 1.
D. y = x + .
2x + 1
x
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
Câu 73. [3-12217d] Cho hàm số y = ln
x+1
0
y
0
y
A. xy = −e + 1.
B. xy = −e − 1.
C. xy0 = ey − 1.
D. xy0 = ey + 1.
Câu 74. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. 0.
B. −3.
C. −6.
D. 3.
3
Câu 75. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e.
B. e5 .
C. e3 .
D. e2 .
Câu 76. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {3; 4}.
B. {3; 3}.
C. {4; 3}.
D. {5; 3}.
Câu 77. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 10 mặt.
B. 8 mặt.
C. 4 mặt.
D. 6 mặt.
Câu 78.
đề nào sau đây
Z [1233d-2] Mệnh Z
Z sai?
[ f (x) − g(x)]dx =
A.
Z
B.
Z
C.
Z
D.
g(x)dx, với mọi f (x), g(x) liên tục trên R.
f (x)dx −
Z
Z
[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Câu 79. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 21.
B. 23.
C. 24.
D. 22.
√
3
4
Câu 80. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 : a2 bằng
2
7
5
5
A. a 3 .
B. a 3 .
C. a 3 .
D. a 8 .
Câu 81. Tính lim
A. 0.
2n2 − 1
3n6 + n4
B.
2
.
3
7n2 − 2n3 + 1
3n3 + 2n2 + 1
7
A. 0.
B. .
3
2n + 1
Câu 83. Tính giới hạn lim
3n + 2
2
1
A. .
B. .
3
2
C. 1.
D. 2.
2
C. - .
3
D. 1.
C. 0.
D.
Câu 82. Tính lim
3
.
2
Trang 6/10 Mã đề 1
Câu 84. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 84cm3 .
B. 91cm3 .
C. 64cm3 .
D. 48cm3 .
Câu 85. Trong các mệnh đề dưới đây, mệnh đề nào!sai?
un
A. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.
vn
!
un
= −∞.
B. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
vn
!
un
C. Nếu lim un = a > 0 và lim vn = 0 thì lim
= +∞.
vn
D. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
1
Câu 86. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = (−∞; 1).
B. D = R.
C. D = R \ {1}.
D. D = (1; +∞).
Câu 87. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = −21.
B. P = 21.
C. P = −10.
D. P = 10.
√
√
Câu 88. Phần thực và √
phần ảo của số phức
√ z = 2 − 1 − 3i lần lượt √l
√
A. Phần thực là 1√− 2, phần ảo là −√ 3.
B. Phần thực là √2 − 1, phần ảo là −√ 3.
D. Phần thực là 2 − 1, phần ảo là 3.
C. Phần thực là 2, phần ảo là 1 − 3.
x−1
Câu 89. [3-1214d] Cho hàm số y =
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác
AB có độ dài bằng
√ đều ABI có hai đỉnh A, B thuộc (C), đoạn thẳng √
√
B. 2.
C. 6.
D. 2 3.
A. 2 2.
Câu 90. Dãy số nào sau đây có giới hạn khác 0?
1
sin n
.
A. √ .
B.
n
n
C.
n+1
.
n
D.
1
.
n
Câu 91.
√ [4-1245d] Trong tất cả√các số phức z thỏa mãn hệ thức |z − 1 + 3i| = 3. Tìm min |z − 1 − i|.
A. 2.
B. 10.
C. 1.
D. 2.
Câu 92. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. Không tồn tại.
B. −3.
C. −5.
Câu 93. Khối chóp ngũ giác có số cạnh là
A. 9 cạnh.
B. 10 cạnh.
D. −7.
C. 12 cạnh.
D. 11 cạnh.
Câu 94. [2] Cho hình hộp chữ nhật ABCD.A B C D có AB = a, AD = b, AA = c. Khoảng cách từ điểm A
0
đến đường
√
√
√
√ thẳng BD bằng
b a2 + c2
a b2 + c2
c a2 + b2
abc b2 + c2
.
B. √
.
C. √
.
D. √
.
A. √
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
Câu 95. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
A. 12.
B. 27.
C.
.
D. 18.
2
Câu 96. Khối đa diện đều loại {3; 5} có số đỉnh
A. 20.
B. 30.
C. 8.
D. 12.
0
0
0
0
0
Câu 97. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M, N, P bằng
√
√
√
√
20 3
14 3
A. 8 3.
B. 6 3.
C.
.
D.
.
3
3
Trang 7/10 Mã đề 1
Câu 98. Khối lập phương thuộc loại
A. {3; 3}.
B. {5; 3}.
C. {3; 4}.
D. {4; 3}.
Câu 99. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 9 năm.
B. 7 năm.
C. 8 năm.
D. 10 năm.
Câu 100. [3] Cho khối chóp S .ABC có đáy là tam giác vng tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
a
2a
8a
5a
.
B. .
C.
.
D.
.
A.
9
9
9
9
Câu 101. Phát biểu nào sau đây là sai?
1
1
B. lim = 0.
A. lim k = 0.
n
n
C. lim qn = 0 (|q| > 1).
D. lim un = c (un = c là hằng số).
!
3n + 2
2
Câu 102. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 3.
B. 5.
C. 4.
D. 2.
Câu 103. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt
√ phẳng vng góc với (ABCD). Thể tích khối chóp
√ S .ABCD là
3
√
a3 2
a
3
a3 3
.
B.
.
C. a3 3.
D.
.
A.
2
2
4
Câu 104. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
B. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
C. Hàm số nghịch biến trên khoảng (−2; 1).
D. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
d = 60◦ . Đường chéo
Câu 105. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vng tại A, AC = a, ACB
BC 0 của mặt bên (BCC 0 B0 ) tạo với mặt phẳng (AA0C 0C) một góc 30◦ . Thể tích của khối lăng trụ ABC.A0 B0C 0
là
√
√
√
3
√
2a3 6
a
6
4a3 6
.
B.
.
C. a3 6.
D.
.
A.
3
3
3
[ = 60◦ , S O
Câu 106. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a.√Khoảng cách từ A đến (S
√ BC) bằng
√
a 57
2a 57
a 57
A.
.
B.
.
C.
.
D. a 57.
17
19
19
ln2 x
m
Câu 107. [3] Biết rằng giá trị lớn nhất của hàm số y =
trên đoạn [1; e3 ] là M = n , trong đó n, m là
x
e
các số tự nhiên. Tính S = m2 + 2n3
A. S = 32.
B. S = 22.
C. S = 135.
D. S = 24.
1
Câu 108. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 1.
B. 2.
C. 3.
D. 4.
x
Câu 109.
√ Tính diện tích hình phẳng giới hạn bởi các đường y = xe , y = 0, x = 1.
3
1
3
A.
.
B. .
C. .
D. 1.
2
2
2
Trang 8/10 Mã đề 1
x−2 x−1
x
x+1
+
+
+
và y = |x + 1| − x − m (m là tham
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−3; +∞).
B. (−∞; −3].
C. [−3; +∞).
D. (−∞; −3).
Câu 110. [4-1212d] Cho hai hàm số y =
Câu 111. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α
aα
D. aαβ = (aα )β .
A. aα bα = (ab)α .
B. aα+β = aα .aβ .
C. β = a β .
a
Câu 112. Khối đa diện đều loại {4; 3} có số đỉnh
A. 10.
B. 6.
C. 8.
D. 4.
Câu 113.
Z 0 Trong các khẳng định sau, khẳng định nào sai?
u (x)
dx = log |u(x)| + C.
A.
u(x)
B. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
C. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
D. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
1
Câu 114. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 < m ≤ 1.
B. 0 ≤ m ≤ 1.
C. 2 ≤ m ≤ 3.
D. 2 < m ≤ 3.
x
x−3 x−2 x−1
+
+
+
và y = |x + 2| − x − m (m là tham
Câu 115. [4-1213d] Cho hai hàm số y =
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (2; +∞).
B. [2; +∞).
C. (−∞; 2].
D. (−∞; 2).
Câu 116. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp đôi.
B. Tăng gấp 6 lần.
C. Tăng gấp 4 lần.
D. Tăng gấp 8 lần.
cos n + sin n
Câu 117. Tính lim
n2 + 1
A. −∞.
B. 1.
C. 0.
D. +∞.
6
Câu 118. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x2 f (x3 ) − √
. Tính
3x
+
1
Z 1
f (x)dx.
0
A. 4.
B. 2.
C. 6.
D. −1.
Câu 119. ZCho hai hàm Zy = f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
0
B. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f (x)dx =
g0 (x)dx.
Z
Z
C. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
Z
Z
D. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
A. Nếu
f 0 (x)dx =
Câu 120. Cho hình chóp S .ABCD có√đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết
a 5. Thể tích khối chóp √
S .ABCD là
√ S H ⊥ (ABCD), S A =
3
3
3
2a 3
4a
4a 3
2a3
A.
.
B.
.
C.
.
D.
.
3
3
3
3
Trang 9/10 Mã đề 1
√
Câu 121. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga 3 a bằng
1
C. −3.
A. 3.
B. − .
3
Câu 122. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m , 0.
B. m = 0.
C. m > 0.
√
Câu 123. Thể tích của khối lập phương có cạnh bằng a 2
√
√
A. V = 2a3 .
B. 2a3 2.
C. V = a3 2.
Câu 124. Khối đa diện đều loại {5; 3} có số mặt
A. 20.
B. 12.
C. 8.
Câu 125. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng
√
1
A. .
B. 25.
C. 5.
5
Câu 126. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
B. Số cạnh của khối chóp bằng số mặt của khối chóp.
C. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
D. Số đỉnh của khối chóp bằng số mặt của khối chóp.
D.
1
.
3
D. m < 0.
√
2a3 2
D.
.
3
D. 30.
√
D. 5.
Câu 127. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
23
9
5
13
.
B. −
.
C.
.
D. − .
A.
100
100
25
16
Câu 128. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng
(cả vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất không thay đổi?
A. 16 tháng.
B. 18 tháng.
C. 15 tháng.
D. 17 tháng.
Câu 129. [1]! Tập xác định của hàm số y! = log3 (2x + 1) là
!
1
1
1
A.
; +∞ .
B. −∞; − .
C. −∞; .
2
2
2
!
1
D. − ; +∞ .
2
Câu 130. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Ba mặt.
B. Năm mặt.
C. Hai mặt.
D. Bốn mặt.
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 10/10 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A
3.
2. A
B
4.
D
D
5.
C
6.
7.
C
8.
9. A
11.
B
13.
15.
C
B
17.
19.
C
10.
D
12.
D
14.
B
16.
B
18.
D
D
20.
B
21.
D
22. A
23.
C
24.
25.
C
26.
27. A
28.
29. A
30. A
31.
C
D
32.
33. A
C
B
C
B
34.
37.
D
38. A
39. A
40.
41. A
42. A
43.
D
D
44. A
45. A
46.
47.
D
36.
C
35.
C
D
B
48. A
49. A
50.
51. A
52.
C
54.
C
56.
C
53.
D
55. A
D
57.
B
58.
D
59.
B
60.
D
61.
B
62.
D
64.
D
63.
C
65. A
67.
66. A
68.
C
1
D
69.
B
70. A
71.
B
72. A
73.
75.
74.
C
B
76.
B
77.
D
78.
79.
D
80. A
D
C
81. A
82.
C
83. A
84.
C
85.
87. A
88.
D
89.
93.
97.
94.
D
B
99. A
C
101.
C
107. A
96.
D
98.
D
100.
D
D
111.
104.
B
106.
B
110.
C
B
117.
B
112.
113. A
C
C
114.
D
116.
D
118. A
119.
D
120.
121.
D
122. A
123.
B
124.
125.
B
126.
127.
B
128. A
129.
C
108. A
109.
115.
B
102.
103. A
105.
C
92. A
B
95.
B
90.
C
91.
D
86.
C
D
130. A
2
B
B
D