Tải bản đầy đủ (.pdf) (10 trang)

99 Bài toán cực trị đơn điệu

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (164.46 KB, 10 trang )

WWW.MATHVN.COM
www.MATHVN.com
1

TUYỂN TẬP
99 BÀI TOÁN LIÊN QUAN ĐẾN
CỰC TRỊ VÀ TÍNH ĐƠN ĐIỆU CỦA HÀM SỐ


1.Câu I: (2 điểm) Cho hàm số
4 2 2
( ) 2( 2) 5 5
= + − + − +
f x x m x m m
; (C
m
)
1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số với m = 1
2) Tìm m để (C
m
) có các điểm cực đại, cực tiểu tạo thành 1 tam giác vuông cân.
2.Câu I (2 điểm) Cho hàm số y = x
3
+ (1 – 2m)x
2
+ (2 – m)x + m + 2 (m là tham số) (1)
1) Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1) khi m = 2.
2) Tìm các giá trị của m để đồ thị hàm số (1) có điểm cực đại, điểm cực tiểu, đồng thời hoành
độ của điểm cực tiểu nhỏ hơn 1.
3.Câu I (2 điểm). Cho hàm số
3 2


3
= + +
y x x m
(1)
1) Khảo sát sự biến thiên và vẽ đồ thị hàm số (1) khi m = −4.
2) Tìm m để đồ thị hàm số (1) có hai điểm cực trị A, B sao cho

0
120 .
=AOB

4.Câu I: (2 điểm) Cho hàm số :
3 2
(1 2 ) (2 ) 2
= + − + − + +
y x m x m x m
(1) ( m là tham số).
1) Khảo sát sự biến thiên và vẽ đồ thị của hàm số khi m = 2.
2) Tìm các giá trị của m để đồ thị hàm số (1) có điểm cực đại, điểm cực tiểu, đồng thời hoành
độ của điểm cực tiểu nhỏ hơn 1.
5.Câu I .(2 điểm) Cho hàm số
4 2 2
2
y x mx m m
= + + +
(1).
1) Khảo sát sự biến thiên và vẽ đồ thị hàm số khi m = –2.
2) Tìm m để đồ thị hàm số (1) có 3 điểm cực trị lập thành một tam giác có một góc bằng
0
120

.
6.Câu I. (2,0 điểm) Cho hàm số :
3 2 3
3 1
2 2
= − +
y x mx m

1) Khảo sát sự biến thiên và vẽ đồ thị hàm số với m = 1.
2) Xác định m để đồ thị hàm số có các điểm cực đại, cực tiểu đối xứng với nhau qua đường
thẳng y = x.
7.Câu I: (2 điểm) Cho hàm số
4 3 2
2 3 1 (1)
= + − − +y x mx x mx
.
1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số (1) khi m = 0.
2) Định m để hàm số (1) có hai cực tiểu.
8.Câu I (2 điểm): Cho hàm số
y x m m x m
4 2 2
2( 1) 1
= − − + + −
(1)
1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số khi m = 1.
2) Tìm m để đồ thị của hàm số (1) có khoảng cách giữa hai điểm cực tiểu ngắn nhất.
9.Câu I (2 điểm): Cho hàm số
y x mx m x
3 2 2
2 9 12 1

= + + +
(m là tham số).
1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số khi m = –1.
2) Tìm tất cả các giá trị của m để hàm số có cực đại tại x

, cực tiểu tại x
CT
thỏa mãn:
CÑ CT
x x
2
=
.
10.Câu 1: ( 2điểm)
Cho hàm số y = 4x
3
+ mx
2
– 3x
1. Khảo sát và vẽ đồ thị (C) hàm số khi m = 0.
2. Tìm m để hàm số có hai cực trị tại x
1
và x
2
thỏa x
1
= - 4x
2

11.Câu I (2 điểm) Cho hàm số

(
)
3 2
( ) 3 1 1
y f x mx mx m x
= = + − − −
, m là tham số
1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số trên khi m = 1.
2. Xác định các giá trị của m để hàm số
( )
y f x
=
không có cực trị.
12.Câu I: Cho hàm số
4 3 2
x 2x 3 x 1 (1)
y x m m= + − − +
.
WWW.MATHVN.COM
www.MATHVN.com
2

1). Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số (1) khi m = 0.
2). Định m để hàm số (1) có hai cực tiểu.
13.Câu I (2,0 điểm) Cho hàm số
( ) ( )
3 2
1
y m 1 x mx 3m 2 x
3

= − + + −
(1)
1. Khảo sát sự biến thiên và vẽ đồ thị hàm số (1) khi
m 2
=

2. Tìm tất cả các giá trị của tham số m để hàm số (1) đồng biến trên tập xác định của nó.
14.Câu I: (2 điểm) Cho hàm số:
(
)
3 2
3 1 9 2
y x m x x m
= − + + + −
(1) có đồ thị là (C
m
)
1) Khảo sát và vẽ đồ thị hàm số (1) với m =1.
2) Xác định m để (C
m
) có cực đại, cực tiểu và hai điểm cực đại cực tiểu đối xứng với nhau qua
đường thẳng
1
2
y x
=
.
15.Câu I: Cho hàm số y = x
3
+ mx + 2 (1)

1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1) khi m = -3.
2. Tìm m để đồ thị hàm số (1) cắt trục hòanh tại một điểm duy nhất.
16.Câu I Cho hàm số :
323
m
2
1
mx
2
3
xy +−=

1/ Khảo sát và vẽ đồ thị hàm số khi m=1.
2/ Xác định m để đồ thị hàm số có cực đại, cực tiểu đối xứng nhau qua đt y = x
17.Câu I Cho hàm số:
2 2 3
( 1) 4
mx m x m m
y
x m
+ + + +
=
+

( )
m
C

1.Khảo sát sự biến thiên và vẽ đồ thò của hàm số khi m= -1
2.Tìm các giá trò của tham số m để đồ thò

( )
m
C
có 1 điểm cực trò thuộc góc phần tư thứ
(II) và 1
điểm cực trò thuộc góc phần tư thứ (IV) của mặt phẳng toạ độ
18.Câu I. (2.0 điểm) Cho hàm số y =
x
x-1
(C)
1. Khảo sát sự biến thiên và vẽ đồ thị hàm số (C)
2. Viết phương trình tiếp tuyến với đồ thị (C), biết rằng khoảng cách từ tâm đối xứng của đồ
thị (C)
đến tiếp tuyến là lớn nhất.
19.Câu I. (2,0 điểm)Cho hàm số y = − x
3
− 3x
2
+ mx + 4, trong đó m là tham số thực.
1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho, với m = 0.
2. Tìm tất cả các giá trị của tham số m để hàm số đã cho nghịch biến trên khoảng (0 ; + ∞).
20.Câu I. (2 điểm) Cho hàm số y = − x
3
− 3x
2
+ mx + 4, trong đó m là tham số thực.
3. Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho, với m = 0.
4. Tìm tất cả các giá trị của tham số m để hàm số đã cho nghịch biến trên khoảng (0 ; + ∞).
21.Câu I. (2,0 điểm) Cho hàm số
mxxmxy −++−= 9)1(3

23
, với
m
là tham số thực.
1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho ứng với
1
=
m
.
2. Xác định
m
để hàm số đã cho đạt cực trị tại
21
, xx
sao cho
2
21
≤− xx
.
22.Câu I (2 điểm): Cho hàm số y = x
3
– 3(m+1)x
2
+ 9x – m (1), m là tham số thực
1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1) khi m = 1.
2. Xác định các giá trị m để hàm số (1) nghịch biến trên một khoảng có độ dài bằng 2.
WWW.MATHVN.COM
www.MATHVN.com
3


23.Câu I (2 điểm)
Cho hàm số y = x
3
+ (1 – 2m)x
2
+ (2 – m)x + m + 2 (m là tham số) (1)
1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1) khi m = 2
2. Tìm các giá trị của m để đồ thị hàm số (1) có điểm cực đại, điểm cực tiểu, đồng thời hoành
độ của điểm cực tiểu nhỏ hơn 1.
24.Câu I (2 điểm): Cho hàm số y =
1
3
x
3
– mx
2
+(m
2
– 1)x + 1 ( có đồ thị (C
m
) )
1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số khi m = 2.
2. Tìm m, để hàm số (C
m
) có cực đại, cực tiểu và y

+ y
CT
> 2 .
25.Câu I (2 điểm): Cho hàm số : y = (x – m)

3
– 3x (1)
1. Xác định m để hàm số (1) đạt cực tiểu tại điểm có hoành độ x = 0.
2. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số (1) khi m = 1.
26.Câu I. (2 điểm) Cho hàm số
4 2
2 1
y x mx m
= − + −
(1) , với
m
là tham số thực.
1. Khảo sát sự biến thiên và vẽ đồ thị hàm số (1) khi
1
m
=
.
2. Xác định
m
để hàm số (1) có ba điểm cực trị, đồng thời các điểm cực trị của đồ thị tạo thành
một tam giác có bán kính đường tròn ngoại tiếp bằng
1
.
27.Câu I. (2 điểm) Cho hàm số y = –x
3
+ 3x
2
+ mx – 2 (1), m là tham số thực.
1. Khảo sát sự biến thiên và vẽ đồ thị hàm số khi m = 0.
2. Tìm các giá trị của m để hàm số (1) nghịch biến trên khoảng (0; 2).

28.Câu I (2 điểm) Cho hàm số y = 2x
3
– 3(2m + 1)x
2
+ 6m(m + 1)x +1 có đồ thị (C
m
).
1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số khi m = 0.
2. Tìm m để hàm số đồng biến trên khoảng
(
)
+∞;2

29.Câu I.(2đ) Cho hàm số
(
)
4 2
1 3 5
y m x mx
= − − +

1.Khảo sát với m=2
2.Tìm m để hàm số có cực đại mà không có cực tiểu.
30.Câu I ( 2,0điểm) Cho hàm số
(
)
(
)
4 2 2
2 2 5 5

y f x x m x m m
= = + − + − +

1/ Khảo sát sự biến thiên và vẽ đồ thị (C ) hàm số với m = 1
2/ Tìm các giá trị của m để đồ thị hàm số có các điểm cực đại, cực tiểu tạo thành 1 tam giác
vuông
cân.
31.Câu I: (2 điểm) Cho hàm số:
(
)
3 2
y x 3 m 1 x 9x m 2
= − + + + −
(1) có đồ thị là (C
m
)
1) Khảo sát và vẽ đồ thị hàm số (1) với m=1.
1) Xác định m để (C
m
) có cực đại, cực tiểu và hai điểm cực đại cực tiểu đối xứng với nhau qua
đường thẳng
1
2
y x
=
.
32.Câu I:(2,0 điểm) Cho hàm số
3
(3 1)
y x x m

= − −
(C ) với m là tham số.
1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số (C) khi
1
m
=
.
2. Tìm các gíá trị của m để đồ thị của hàm số (C) có hai điểm cực trị và chứng tỏ rằng hai
điểm cực trị này ở về hai phía của trục tung.
33.Câu 1: Cho hàm số
7)1(2)1(
24
−+++−= mxmxmy

1) Định m để hàm số chỉ có cực đại mà không có cực tiểu
2) a) Khảo sát và vẽ đồ thị (C) hàm số khi m=0
b) Dùng (C), biện luận theo tham số a số nghiệm của phương trình:

0
4
4
12
8)
4
4
12
(
2
2
2

2
2
=+
+

+−

+

+−
a
x
x
xx
x
x
xx

WWW.MATHVN.COM
www.MATHVN.com
4

34.Câu 1: Cho hàm số:
m
x
mmxmmx
y
+
++++
=

24)2(
222

1) Tìm các giá trị của m để đồ thị hàm tương ứng có 1 điểm cực trị thuộc góc phần tư thứ
(II) và 1 điểm cực trị thuộc góc phần tư thứ (IV) của mặt phẳng toạ độ.
2) Khảo sát và vẽ đồ thị (C) của hàm số khi m=-1. Dùng (C), biện luận theo a số nghiệm
thuộc
]3;0[
π
của phương trình:
04cos)1(cos
2
=−+−+ mxmx

35.Câu 1: Cho hàm số
mxmxmy −++−+= 2)1(3)1(
3
(C
m
)
1) Chứng minh họ đồ thị (C
m
) có 3 điểm cố định thẳng hàng
2) Khảo sát hàm số khi m=1
3) Tìm phương trình parabol (P) qua điểm cực đại, cực tiểu của (C) và tiếp xúc với y=4x+9
36.Câu 1: Cho hàm số
323
43 aaxxy +−=
(a là tham số) có đồ thị là (C
a

)
1) Xác định a để (C
a
) có các điểm cực đại và cực tiểu đối xứng nhau qua đừơng thẳng y=x
2) Gọi (C’
a
) là đừơng con đối xứng (C
a
) qua đừơng thẳng: x=1. Tìm phương trình của (C’
a
).
Xác định a để hệ số góc lớn nhất của tiếp tuyến của (C’
a
) là 12
37.Câu I: (2 điểm). Cho hàm số y = - x
3
+ 3mx
2
-3m – 1.
1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số khi m = 1.
2. Tìm các giá trị của m để hàm số có cực đại, cực tiểu. Với giá trị nào của m thì đồ thị hàm số
có điểm cực đại, điểm cực tiểu đối xứng với nhau qua đường thẳng d: x + 8y – 74 = 0.
38.Câu I (2 điểm) Cho hàm số
3 2
2 3(2 1) 6 ( 1) 1
y x m x m m x
= − + + + +
có đồ thị (C
m
).

1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số khi m = 0.
2. Tìm m để hàm số đồng biến trên khoảng
(
)
+∞;2

39.Câu I : ( 2 điểm ). Cho hàm số y = x
3
+ ( 1 – 2m)x
2
+ (2 – m )x + m + 2 . (C
m
)
1.Khảo sát sự biến thiên và vẽ đồ thị hàm số khi m = 2.
2. Tìm m để đồ thị hàm số (C
m
) có cực trị đồng thời hoành độ cực tiểu nhỏ hơn 1.
40.Câu I. (2,0 điểm)
Cho hàm số y = − x
3
− 3x
2
+ mx + 4, trong đó m là tham số thực.
5. Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho, với m = 0.
6. Tìm tất cả các giá trị của tham số m để hàm số đã cho nghịch biến trên khoảng (0 ; + ∞).
41.Câu I (2 điểm)
Cho hàm số
4 2
2 1
y x mx m

= + − −
(1) , với m là tham số thực.
1. Khảo sát sự biến thiên và vẽ đồ thị hàm số (1) khi
1
m
= −
.
2. Xác định
m
để hàm số (1) có ba điểm cực trị, đồng thời các điểm cực trị của đồ thị tạo thành m
ột
tam giác
có diện tích bằng
4 2
.
42.Câu I (2 điểm) Cho hàm số
3
3 1
y x x
= − +
(1)
1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số (1).
2. Đường thẳng
( ): 1
y mx
∆ = +
cắt (C) tại ba điểm. Gọi A và B là hai điểm có hoành độ khác
0 trong ba điểm nói ở trên; gọi D là điểm cực tiểu của (C). Tìm m để

ADB

là góc vuông.
43.Câu I (2,0 điểm)
Cho hàm số
4 2 2
y x 2m x 1
= − −
(1), trong đó m là tham số thực.
7. Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1) khi m = 1.
8. Tìm giá trị của tham số m để hàm số (1) có ba điểm cực trị là ba đỉnh của một tam giác có
diện tích bằng 32.
44.Câu I (2 điểm)
WWW.MATHVN.COM
www.MATHVN.com
5

Cho hm s
4 2 2
2
y x mx m m
= + + +
(1) , vi
m
l tham s thc.
1. Kho sỏt s bin thiờn v v th hm s (1) khi
2
m
=
.
2. Xỏc nh m hm s (1) cú ba im cc tr, ng thi cỏc im cc tr ca th to
thnh mt tam giỏc cú gúc bng 120

0
.
45.Cõu I (2 im)
Cho hm s
4 2
2
y x mx
=
(1), vi m l tham s thc.
1. Kho sỏt s bin thiờn v v th ca hm s (1) khi
1
m
=
.
2. Tỡm m th hm s (1) cú hai im cc tiu v hỡnh phng gii hn bi th hm s vi
ng thng i qua hai im cc tiu y cú din tớch bng 1.
46.Cõu I (2 im) Cho hm s
3 2
1
2 3
3
y x x x
= +
(1)
1. Kho sỏt s bin thiờn v v th ca hm s (1) .
2. Gi
A, B
ln lt l cỏc im cc i, cc tiu ca th hm s (1). Tỡm im M thuc
trc honh sao cho tam giỏc MAB cú din tớch bng 2.
47.Cõu I (2 im)

Cho hm s
(
)
3 2 2 2
3 3 1 3 1
y x x m x m
= + +
(1), vi m l tham s thc.
1. Kho sỏt s bin thiờn v v th ca hm s (1) khi
1
m
=
.
2. Tỡm m hm s (1) cú cc i v cc tiu, ng thi cỏc im cc tr ca th cựng vi
gc to O to thnh mt tam giỏc vuụng ti O.
48.Cõu I (2 im)
Cho hm s
23
23
+= mxxxy
(1) vi m l tham s thc.
1. Kho sỏt s bin thiờn v v th ca hm s (1) khi m = 0.
2. nh m hm s (1) cú cc tr, ng thi ng thng i qua hai im cc tr ca th
hm s to vi hai trc ta mt tam giỏc cõn.
49.Cõu I (2 im) Cho hm s
mmmxxy +=
224
22
(1) vi m l tham s thc.
1. Kho sỏt s bin thiờn v v th ca hm s (1) khi m = 1.

2 nh m th ca hm s (1) cú ba im cc tr l ba nh ca mt tam giỏc vuụng.
50.Cõu 1. ( 2,0 im ) Cho hm s y = x
3
+ 2(m 1)x
2
+(m
2
4m + 1)x 2(m
2
+ 1) (1).
1. Kho sỏt s bin thiờn v v th (C) ca hm s khi m = 0.
2. Tỡm cỏc giỏ tr ca m hm s cú cc i, cc tiu v ng thng i qua cỏc im cc i,
cc tiu ca th hm s (1) vuụng gúc vi ng thng
5
2
9
+= xy
.
51.Cõu 1: ( 2,0 im)Cho hm s
3 2
2( 1) 9 2
y x m x x m
= + +
(1)
1) Vi
4
m
=
. Kho sỏt s bin thiờn v v th hm s.
2) Tỡm m

( )
m


hm s (1) t cc tr ti
1 2
,
x x
tho món
1 2
2.
x x
=

52.Câu I: (2 im) Cho hm s
(
)
mxmmxmxxf ++++= 2)2(3)1(3
23
(1) (m là tham số)
1. Kho sát s bin thiên v v đồ th hm s (1) khi
2

=
m
.
2. Tìm m để đồ th hm s (1) có cực trị đồng thời khoảng cách từ điểm cực đại của th
hm s (1)
tới trục
Ox

bằng khoảng cách từ điểm cực tiểu của th hm s (1) tới trục
Oy
.
53.Cõu I (2 im) Cho hm s y = x
3
3x
2
3m(m + 2) x 1 (1) , vi m l tham s thc.

1. Kho sỏt s bin thiờn v v th ca hm s (1) khi m=0.
2. Tỡm cỏc giỏ tr ca m hm s (1) cú hai giỏ tr cc tr cựng du.
54.Cõu I (2 im) Cho hm s
(
)
3
3 2
m
y x mx C
= +

WWW.MATHVN.COM
www.MATHVN.com
6

1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số
(
)
1
C


2. Tìm m để đường thẳng đi qua điểm cực đại, cực tiểu của
(
)
m
C
cắt đường tròn tâm
(
)
1;1 ,
I

bán kính bằng 1 tại hai điểm phân biệt A, B sao cho diện tích tam giác IAB đạt giá trị lớn
nhất
55.Câu I: ( 2,0 điểm ) Cho hàm số
1mx2xy
24
+
++
+−
−−
−=
==
=
(1).
1/.Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số (1) khi 1m

−−

=
==

=
.
2/.Tìm các giá trị của tham số
m
để đồ thị hàm số (1) có ba điểm cực trị và đường tròn đi qua
ba điểm này có bán kính bằng 1.
56.Câu I:(2.0 điểm). Cho hàm số
4 2 2
2(1 ) 1
y x m x m
= − − + +
(1)
1. Khảo sát sự biến thiên và vẽ đồ thị hàm số (1) với m = 0.
2. Tìm m để hàm số có đại cực, cực tiểu và các điểm cực trị của đồ thị hàm số lập thành tam
giác có diện
tích lớn nhất.
57.Câu I (2,0 điểm) Cho hàm số y = x
4
− 2x
2
+ 2 (1)
1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số (1).
2. Tìm tọa độ hai điểm A, B thuộc (C) sao cho đường thẳng AB song song với trục hoành và
khoảng cách từ điểm cực đại của (C) đến AB bằng 8.
58.Câu I (2 điểm)
Cho hàm số
4 2
2 1
y x mx m
= + − −

(1) , với m là tham số thực.
1. Khảo sát sự biến thiên và vẽ đồ thị hàm số (1) khi
1
m
= −
.
2. Xác định
m
để hàm số (1) có ba điểm cực trị, đồng thời các điểm cực trị của đồ thị tạo thành m
ột
tam giác
có diện tích bằng
4 2
.
59.Câu I (2 điểm) Cho hàm số
3
3 1
y x x
= − +
(1)
1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số (1).
2. Đường thẳng
( ): 1
y mx
∆ = +
cắt (C) tại ba điểm. Gọi A và B là hai điểm có hoành độ khác
0 trong ba điểm nói ở trên; gọi D là điểm cực tiểu của (C). Tìm m để

ADB
là góc vuông.

60.Câu I (2 điểm) Cho hàm số
4 2
2
y x mx
= −
(1), với m là tham số thực.
1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1) khi
1
m
= −
.
2. Tìm m để đồ thị hàm số (1) có hai điểm cực tiểu và hình phẳng giới hạn bởi đồ thị hàm số với
đường thẳng đi qua hai điểm cực tiểu ấy có diện tích bằng 1.
61.Câu I (2 điểm) Cho hàm số
3 2
1
2 3
3
y x x x
= − +
(1)
1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1) .
2. Gọi
A, B
lần lượt là các điểm cực đại, cực tiểu của đồ thị hàm số (1). Tìm điểm M thuộc
trục hoành sao cho tam giác MAB có diện tích bằng 2.
62.Câu I (2 điểm) Cho hàm số
(
)
3 2 2 2

3 3 1 3 1
y x x m x m
= − + + − − −
(1), với m là tham số thực.
1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1) khi
1
m
=
.
2. Tìm m để hàm số (1) có cực đại và cực tiểu, đồng thời các điểm cực trị của đồ thị cùng với
gốc toạ độ O tạo thành một tam giác vuông tại O.
63.Câu I (2 điểm) Cho hàm số
23
23
+−−= mxxxy
(1) với m là tham số thực.
1.Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1) khi m = 0.
2.Định m để hàm số (1) có cực trị, đồng thời đường thẳng đi qua hai điểm cực trị của đồ thị hàm
số tạo với hai trục tọa độ một tam giác cân.
64.Câu I (2,0 điểm) Cho hàm số
(
)
4 2
4 1 2 1
y x m x m
= − − + −
có đồ thị
(
)
m

C

WWW.MATHVN.COM
www.MATHVN.com
7

1. Khảo sát sự biến thiên và vẽ đồ thị
(
)
C
của hàm số khi
3
2
m
=
.
2. Xác định tham số m để hàm số có 3 cực trị tạo thành 3 đỉnh của một tam giác đều
65.Câu I: (2,0 điểm) Cho hàm số y = x
4
– 2(m
2
– m + 1)x
2
+ m – 1 (1)
1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số (1) khi m = 1
2. Tìm m để đồ thị của hàm số (1) có khoảng cách giữa hai điểm cực tiểu ngắn nhất.
66.Câu I (2.0 điểm). Cho hàm số: y = f(x) = x
3
– 3mx
2

+ 3(m
2
– 1)x – m
3
(C
m
)
1. Khảo sát sự biến thiên và vẽ đồ thò của hàm số khi m = –2.
2. Chứng minh rằng (C
m
) ln có điểm cực đại và điểm cực tiểu lần lượt chạy trên mỗi
đường thẳng cố định
67.Câu I. (2 điểm) Cho hàm số
3 2
3 2
y x x
= − +

(
)
C

1.Khảo sát sự biến thiên và vẽ đồ thị
(
)
C
của hàm số
2.Tìm m để đường thẳng đi qua hai điểm cực trị của
(
)

C
tiếp xúc với đường tròn có phương
trình

( ) ( )
2 2
1 5
x m y m
− + − − =

68.Câu I.(2 điểm) Cho hàm số y =
3
2
1
( 3) 2( 1) 1 (1)
3 2
x
m x m x− + − + +
( m là tham số thực)
1) Khảo sát sự biến thiên và vẽ đồ thị hàm số (1) khi m = 1 .
2) Tìm tất cả các giá trị của m để đồ thị hàm số (1) có hai điểm cực trị với hồnh độ lớn hơn 1.
69.Câu I (2 điểm) Cho hàm số
(
)
3 2
( ) 3 1 1
y f x mx mx m x
= = + − − −
, m là tham số
1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số trên khi m = 1.

2. Xác định các giá trị của m để hàm số
( )
y f x
=
khơng có cực trị.
70.Câu I (2 điểm): Cho hàm số
3 2 2 3
3 3( 1)
y x mx m x m m
= − + − − +
(1)
1.Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1) ứng với m=1
2.Tìm m để hàm số (1) có cực trị đồng thời khoảng cách từ điểm cực đại của đồ thị hàm số
đến góc tọa độ O bằng
2
lần khoảng cách từ điểm cực tiểu của đồ thị hàm số đến góc tọa độ
O.
71.Câu I : ( 2 điểm ). Cho hàm số y = x
3
+ ( 1 – 2m)x
2
+ (2 – m )x + m + 2 . (C
m
)
1.Khảo sát sự biến thiên và vẽ đồ thị hàm số khi m = 2.
2. Tìm m để đồ thị hàm số (C
m
) có cực trị đồng thời hồnh độ cực tiểu nhỏ hơn 1.
72.Câu I ( 2,0 điểm) Cho hàm số
mxmxxy 296

23
+++=
(1), với m là tham số thực.
1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1) khi m = 1.
2. Tìm m để đồ thị hàm số (1) có hai điểm cực trị thoả mãn khoảng cách từ gốc toạ độ O đến
đường thẳng đi qua hai điểm cực trị bằng
5
4
.
73.Câu I ( 2,0 điểm ) Cho hàm số
3 2 2
y x 3x m m 1
= − + − +
(1)
1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1) khi m = 1.
2. Tìm m để đồ thị hàm số (1) có hai điểm cực đại , cực tiểu là A và B sao cho diện tích tam
giác
ABC bằng 7, với điểm C( – 2; 4 ).
74.Câu I (2 điểm) Cho hàm số
3 2
2 3(2 1) 6 ( 1) 1
y x m x m m x
= − + + + +
có đồ thị (C
m
).
1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số khi m = 0.
2. Tìm m để hàm số đồng biến trên khoảng
(
)

+∞;2

WWW.MATHVN.COM
www.MATHVN.com
8

75.Câu I (2,0 điểm) Cho hàm số
2
m
y x m
x
= + +


1.Khảo sát sự biến thiên và vẽ đồ thị hàm số đã cho với m = 1.
2.Tìm m để hàm số có cực đại và cực tiểu sao cho hai điểm cực trị của đồ thị hàm số cách
đường
thẳng d: x – y + 2 = 0 những khoảng bằng nhau.
76.Câu I (2 điểm) Cho hàm số y = x
3
– 3x
2
+2 (1)
1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1).
2. Tìm điểm M thuộc đường thẳng y=3x-2 sao tổng khoảng cách từ M tới hai điểm cực trị nhỏ
nhất.
77.Câu I: (2,0 điểm). Cho hàm số y = x
3
– 3mx
2

+ (m-1)x + 2.
1. Chứng minh rằng hàm số có cực trị với mọi giá trị của m.
2. Xác định m để hàm số có cực tiểu tại x = 2. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm
số
trong trường hợp đó.
78.Câu I (2 điểm): Cho hàm số
3 2 2 3
3 3( 1)
y x mx m x m m
= − + − − +
(1)
1.Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1) ứng với m=1
2.Tìm m để hàm số (1) có cực trị đồng thời khoảng cách từ điểm cực đại của đồ thị hàm số đến
góc tọa độ O bằng
2
lần khoảng cách từ điểm cực tiểu của đồ thị hàm số đến góc tọa độ O.
79.Câu I (2 điểm) Cho hàm số y = x
3
– 3x
2
+2 (1)
1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1).
2. Tìm điểm M thuộc đường thẳng y=3x-2 sao tổng khoảng cách từ M tới hai điểm cực trị nhỏ
nhất.
80.Câu I (2,0 điểm) Cho hàm số
4 2
(3 1) 3
y x m x
= + + −
(với

m
là tham số)
1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số với
1
m
= −
.
2. Tìm tất cả các giá trị của
m
để đồ thị hàm số có ba điểm cực trị tạo thành một tam giác cân
sao
cho độ dài cạnh đáy bằng
3
2
lần độ dài cạnh bên.
81.Câu I: (2,0 điểm) Cho hàm số y = x
4
– 2(m
2
– m + 1)x
2
+ m – 1 (1)
1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số (1) khi m = 1
2. Tìm m để đồ thị của hàm số (1) có khoảng cách giữa hai điểm cực tiểu ngắn nhất.

82.Câu I. (2,0 điểm) Cho hàm số
mxxmxy −++−= 9)1(3
23
, với
m

là tham số thực.
1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho ứng với
1
=
m
.
2. Xác định
m
để hàm số đã cho đạt cực trị tại
21
, xx
sao cho
2
21
≤− xx
.
83.Câu I (2 điểm)Cho hàm số
y
=
2)1(2
24
−+−− mxmx
(1).
1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số (1) khi
2
=
m
.
2. Tìm
m

để hàm số (1) đồng biến trên khoảng
;1( )3
.
84.Câu I (2 điểm)Cho hàm số
y
=
2)1(2
24
−+−− mxmx
(1).
1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số (1) khi
2
=
m
.
2. Tìm
m
để hàm số (1) đồng biến trên khoảng
;1( )3
.
85.Câu I :( 2, 0 điểm) Cho hàm số
3 2
y (m 2)x 3x mx 5
= + + + −
, m là tham số
1. Khảo sát sự biến thiên và vẽ đồ thị (C ) của hàm số khi m = 0
WWW.MATHVN.COM
www.MATHVN.com
9


2. Tìm các giá trị của m để các điểm cực đại, cực tiểu của đồ thị hàm số đã cho có hoành độ
là các số dương.
86.Câu 1: ( 2 điểm) Cho hàm số
(
)
m
Cmmxmxy 55)2(2
224
+−+−+=

1, Khảo sát sự biến thiên và vẽ đồ thị hàm số khi m = 1.
2, Với những giá trị nào của m thì đồ thị ( C
m
) có điểm cực đại và điểm cực tiểu, đồng thời
các điểm
cực đại và điểm cực tiểu lập thành một tam giác đều.
87.Câu I (2 điểm) Cho hàm số
(
)
3
3 2
m
y x mx C
= − +

3. Khảo sát sự biến thiên và vẽ đồ thị của hàm số
(
)
1
C


Tìm m để đường thẳng đi qua điểm cực đại, cực tiểu của
(
)
m
C
cắt đường tròn tâm
(
)
1;1 ,
I
bán
kính bằng 1 tại
hai điểm phân biệt A, B sao cho diện tích tam giác IAB đạt giá trị lớn nhất
88.Câu I: ( 2,0 điểm ) Cho hàm số
1mx2xy
24
+
++
+−
−−
−=
==
=
(1).
1/.Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số (1) khi 1m

−−

=

==
=
.
2/.Tìm các giá trị của tham số
m
để đồ thị hàm số (1) có ba điểm cực trị và đường tròn đi qua
ba điểm này có bán kính bằng 1.
89.Câu I:(2.0 điểm). Cho hàm số
4 2 2
2(1 ) 1
y x m x m
= − − + +
(1)
1. Khảo sát sự biến thiên và vẽ đồ thị hàm số (1) với m = 0.
2. Tìm m để hàm số có đại cực, cực tiểu và các điểm cực trị của đồ thị hàm số lập thành tam
giác có diện
tích lớn nhất.
90.Câu I (2 điểm) Cho hàm số
3
3 1
y x x
= − +
(1)
1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số (1).
2. Đường thẳng
( ): 1
y mx
∆ = +
cắt (C) tại ba điểm. Gọi A và B là hai điểm có hoành độ khác
0 trong ba điểm nói ở trên; gọi D là điểm cực tiểu của (C). Tìm m để


ADB
là góc vuông.
91.Câu I (2,0 điểm)
Cho hàm số
4 2 2
y x 2m x 1
= − −
(1), trong đó m là tham số thực.
9. Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1) khi m = 1.
10. Tìm giá trị của tham số m để hàm số (1) có ba điểm cực trị là ba đỉnh của một tam giác có
diện tích bằng 32.
92.Câu I (2 điểm)
Cho hàm số
4 2 2
2
y x mx m m
= + + +
(1) , với
m
là tham số thực.
1. Khảo sát sự biến thiên và vẽ đồ thị hàm số (1) khi
2
m
= −
.
2. Xác định m để hàm số (1) có ba điểm cực trị, đồng thời các điểm cực trị của đồ thị tạo
thành một tam giác có góc bằng 120
0
.

93.Câu I (2 điểm) Cho hàm số
4 2
2
y x mx
= −
(1), với m là tham số thực.
1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1) khi
1
m
= −
.
2. Tìm m để đồ thị hàm số (1) có hai điểm cực tiểu và hình phẳng giới hạn bởi đồ thị hàm số với
đường thẳng đi qua hai điểm cực tiểu ấy có diện tích bằng 1.
94.Câu I (2 điểm) Cho hàm số
3 2
1
2 3
3
y x x x
= − +
(1)
1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1) .
2. Gọi
A, B
lần lượt là các điểm cực đại, cực tiểu của đồ thị hàm số (1). Tìm điểm M
thuộc trục hoành sao cho tam giác MAB có diện tích bằng 2.
95.Câu I (2 điểm)
WWW.MATHVN.COM
www.MATHVN.com
10


Cho hm s
(
)
3 2 2 2
3 3 1 3 1
y x x m x m
= + +
(1), vi m l tham s thc.
1. Kho sỏt s bin thiờn v v th ca hm s (1) khi
1
m
=
.
2. Tỡm m hm s (1) cú cc i v cc tiu, ng thi cỏc im cc tr ca th cựng vi
gc to O to thnh mt tam giỏc vuụng ti O.
96.Cõu I (2 im) Cho hm s
23
23
+= mxxxy
(1) vi m l tham s thc.
3. Kho sỏt s bin thiờn v v th ca hm s (1) khi m = 0.
4. nh m hm s (1) cú cc tr, ng thi ng thng i qua hai im cc tr ca th
hm s to vi hai trc ta mt tam giỏc cõn.
97.Cõu I (2,0 im) Cho hm s
(
)
4 2
4 1 2 1
y x m x m

= +
cú th
(
)
m
C

1. Kho sỏt s bin thiờn v v th
(
)
C
ca hm s khi
3
2
m
=
.
2. Xỏc nh tham s m hm s cú 3 cc tr to thnh 3 nh ca mt tam giỏc u
98.Cõu I (2,0 im) Cho hm s
4 2
2 1
y x ( m )x m
= + +
(1), m l tham s.
1. Kho sỏt s bin thiờn v v th hm s (1) khi m = 1.
2. Tỡm m th hm s (1) cú ba im cc tr A, B, C sao cho OA = BC, O l gc ta , A l
cc tr thuc trc tung, B v C l hai im cc tr cũn li.
99. Câu I.(2 điểm). Cho hàm số y = x
3
+( 1-2m)x

2
+(2-m)x + m +2. ( m là tham số ) (1)
1. Khảo sát Sự biến thiên và vẽ đồ thị của hàm số (1) khi m = 2.
2.Tìm các giá trị của m để đồ thị hàm số (1) có điểm cực đại ,điểm cực tiểu ,đồng thời hoành
độ của điểm cực tiểu nhỏ hơn 1.




www.MATHVN.com

×