Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thptqg 4 (607)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (152.64 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

[ = 60◦ , S O
Câu 1. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc với mặt đáy và S O = a.√Khoảng cách từ A đến (S
√ BC) bằng


a 57
a 57
2a 57
.
C.
.
D.
.
A. a 57.
B.
19
19
17
Câu 2. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là −3, phần ảo là −4.
B. Phần thực là −3, phần ảo là 4.


C. Phần thực là 3, phần ảo là 4.
D. Phần thực là 3, phần ảo là −4.
Câu 3. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (II) sai.

B. Khơng có câu nào C. Câu (III) sai.
D. Câu (I) sai.
sai.
Câu 4. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2]. Giá
trị của biểu thức P = (m2 − 4M)2019
A. 22016 .
B. 0.
C. e2016 .
D. 1.
Câu 5. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 − 2; m = 1.
B. M = e−2 + 2; m = 1.
2
−2
C. M = e − 2; m = e + 2.
D. M = e−2 + 1; m = 1.
Câu 6. Khối đa diện đều loại {5; 3} có số cạnh
A. 20.
B. 30.

C. 8.


D. 12.

Câu 7. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 12 mặt.
B. 12 đỉnh, 30 cạnh, 12 mặt.
C. 12 đỉnh, 30 cạnh, 20 mặt.
D. 20 đỉnh, 30 cạnh, 20 mặt.
Câu 8. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 2.

B. 0.

C. 3.

Câu 9. [1] Tập
! xác định của hàm số y != log3 (2x + 1) là
!
1
1
1
; +∞ .
B. −∞; .
C. − ; +∞ .
A.
2
2

2

D. 1.
!
1
D. −∞; − .
2

1
Câu 10. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 ln đồng biến trên
3

một đoạn có độ dài bằng 24.
A. −3 ≤ m ≤ 4.
B. m = 4.
C. m = −3, m = 4.
D. m = −3.
Trang 1/10 Mã đề 1


Câu 11. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất
√ của hàm số. Khi đó tổng
√M + m

A. 8 2.
B. 7 3.
C. 8 3.
D. 16.
Câu 12. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai

quyển sách cùng một môn nằm cạnh nhau là
2
1
9
1
A. .
B.
.
C.
.
D. .
5
10
10
5
Câu 13. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 50, 7 triệu đồng.
B. 70, 128 triệu đồng. C. 20, 128 triệu đồng. D. 3, 5 triệu đồng.
Câu 14. [1] Cho a > 0, a , 1. Giá trị của biểu thức log 1a a2 bằng
1
A. .
B. −2.
C. 2.
2
Câu 15. Trong các mệnh đề dưới đây, mệnh đề nào!sai?
un
A. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.

vn
B. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.

1
D. − .
2

!
un
= −∞.
C. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
v
n
!
un
D. Nếu lim un = a > 0 và lim vn = 0 thì lim
= +∞.
vn
2n + 1
Câu 16. Tìm giới hạn lim
n+1
A. 1.
B. 2.
C. 0.
D. 3.


4n2 + 1 − n + 2
bằng
Câu 17. Tính lim

2n − 3
3
A. +∞.
B. 2.
C. 1.
D. .
2
Câu 18. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S√B bằng
a 3
a
a
A.
.
B. a.
C. .
D. .
2
2
3
x
Câu 19. Tính diện tích hình phẳng
√ giới hạn bởi các đường y = xe , y = 0, x = 1.
3
1
3
A. 1.
B.
.
C. .

D. .
2
2
2
Câu 20. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Bốn mặt.
B. Ba mặt.
C. Một mặt.
D. Hai mặt.
1 − xy
Câu 21. [12210d] Xét các số thực dương x, y thỏa mãn log3
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
x + 2y
Pmin của P = x√+ y.



2 11 − 3
18 11 − 29
9 11 − 19
9 11 + 19
A. Pmin =
.
B. Pmin =
. C. Pmin =
. D. Pmin =
.
3
21
9

9
Câu 22. Cho hình chóp S .ABC có đáy ABC là tam giác vng cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
A.
.
B. a3 .
C.
.
D.
.
6
24
12
Trang 2/10 Mã đề 1


Câu 23. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. 3.
B. −3.
C. 0.
D. −6.
x+2
Câu 24. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?

A. 1.
B. 2.
C. Vô số.
D. 3.
Câu 25. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
7
5
D. .
A. 6.
B. 9.
C. .
2
2
2
0
Câu 26. [2] Cho hàm số f (x) = x ln x. Giá trị f (e) bằng
2
A. .
B. 2e.
C. 2e + 1.
D. 3.
e

Câu 27. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 64.
B. 62.
C. Vơ số.
D. 63.

Câu 28. Khối đa diện đều loại {4; 3} có số mặt
A. 10.
B. 8.

C. 6.

D. 12.

Câu 29. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
D. − < m < 0.
A. m ≥ 0.
B. m ≤ 0.
C. m > − .
4
4
0
Câu 30. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f (x) = |x − 1|. Biết f (0) = 3. Tính
f (2) + f (4)?
A. 10.
B. 4.
C. 12.
D. 11.
Câu 31.
√ [4-1246d] Trong tất cả√các số phức z thỏa mãn |z − i| = 1. Tìm giá trị lớn nhất của |z|
B. 5.
C. 2.
D. 1.

A. 3.
Câu 32. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Một khối chóp tam giác, một khối chóp tứ giác.
B. Hai khối chóp tứ giác.
C. Hai khối chóp tam giác.
D. Một khối chóp tam giác, một khối chóp ngữ giác.
Câu 33. Khối đa diện đều loại {3; 5} có số mặt
A. 12.
B. 20.

C. 8.

D. 30.

Câu 34. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 x ) = 2 − x bằng
A. 1.
B. 3.
C. 2.
D. 7.
1
Câu 35. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (1; 3).
B. (−∞; 3).
C. (1; +∞).
D. (−∞; 1) và (3; +∞).





Câu 36. [12215d] Tìm m để phương trình 4 x+ 1−x − 4.2 x+ 1−x − 3m + 4 = 0 có nghiệm
3
3
9
A. 0 ≤ m ≤ .
B. 0 < m ≤ .
C. 0 ≤ m ≤ .
D. m ≥ 0.
4
4
4
Câu 37. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (2; +∞).
B. (0; 2).
C. (−∞; 1).
D. R.
2

2

Câu 38. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Bốn cạnh.
B. Năm cạnh.
C. Ba cạnh.

D. Hai cạnh.
Trang 3/10 Mã đề 1


Câu 39. Tứ diện đều thuộc loại

A. {5; 3}.
B. {3; 4}.

C. {3; 3}.

D. {4; 3}.

Câu 40. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 120 cm2 .
B. 1200 cm2 .
C. 160 cm2 .
D. 160 cm2 .
Câu 41. Trong các khẳng định sau, khẳng định nào sai?
A. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.

B. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
C. Cả ba đáp án trên.
D. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
Câu 42. [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc là mơn Tốn. Mơn thi này dưới hình thức
trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng. Mỗi câu trả lời đúng
được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm. Bạn An học kém mơn Tốn nên quyết định chọn
ngẫu nhiên hết 50 câu trả lời. Xác suất để bạn An đạt 4 điểm mơn Tốn là
C 10 .(3)40
C 20 .(3)20
C 40 .(3)10
C 20 .(3)30
B. 50 50 .
C. 50 50 .
D. 50 50 .

A. 50 50 .
4
4
4
4
Câu 43. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Trục thực.
B. Trục ảo.
C. Đường phân giác góc phần tư thứ nhất.
D. Hai đường phân giác y = x và y = −x của các góc tọa độ.
a
1
Câu 44. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
A. 1.
B. 7.
C. 4.
D. 2.
Câu 45. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 22.
B. 24.
C. 23.
D. 21.
Câu 46. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng
√ góc với đáy, S C = a3 √3. Thể tích khối chóp S 3.ABCD là

3
a 3
a
a 3
A.
.
B.
.
C.
.
D. a3 .
9
3
3
Câu 47. Biểu thức nào sau đây khơng có nghĩa


−3
A. 0−1 .
B. (−1)−1 .
C. (− 2)0 .
D.
−1.
Câu 48. Hàm số y =
A. x = 1.

x2 − 3x + 3
đạt cực đại tại
x−2
B. x = 3.


Câu 49. Khối đa diện đều loại {3; 3} có số đỉnh
A. 3.
B. 5.

C. x = 0.

D. x = 2.

C. 4.

D. 2.

Câu 50. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
ab
1
1
ab
A. √
.
B. √
.
C. √
.
D. 2
.
a + b2
a2 + b2
a2 + b2

2 a2 + b2
Câu 51. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
ln 2
1
A. 1.
B.
.
C. .
2
2

D. 2.
Trang 4/10 Mã đề 1


Câu 52. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
B. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngồi ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
C. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
D. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
log(mx)
= 2 có nghiệm thực duy nhất
log(x + 1)
C. m ≤ 0.
D. m < 0.

Câu 53. [3-1226d] Tìm tham số thực m để phương trình
A. m < 0 ∨ m > 4.

B. m < 0 ∨ m = 4.


Câu 54. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số đỉnh của khối chóp bằng số mặt của khối chóp.
B. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
C. Số cạnh của khối chóp bằng số mặt của khối chóp.
D. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
Câu 55. Dãy số
!n nào có giới hạn bằng 0?
−2
A. un =
.
B. un = n2 − 4n.
3

n3 − 3n
C. un =
.
n+1

!n
6
D. un =
.
5

Câu 56. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = −8.
B. x = 0.
C. x = −5.


D. x = −2.

Câu 57. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 6.
B. −1.
C. 2.

D. 1.

Câu 58. Cho hàm số y = x + 3x . Mệnh đề nào sau đây là đúng?
A. Hàm số nghịch biến trên khoảng (−2; 1).
B. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
C. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
D. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
3

2

1 − 2n
bằng?
Câu 59. [1] Tính lim
3n + 1
1
2
2
A. .
B. − .
C. 1.
D. .
3

3
3
Câu 60. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 64cm3 .
B. 48cm3 .
C. 91cm3 .
D. 84cm3 .
Câu 61. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
9
3
A. 1.
B. 3.
C. .
D. .
2
2

Câu 62. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng



3a 58
3a 38
3a
a 38
A.

.
B.
.
C.
.
D.
.
29
29
29
29
Câu 63. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 22.
B. y(−2) = 2.
C. y(−2) = −18.
D. y(−2) = 6.
Câu 64. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối lập phương.

C. Khối tứ diện đều.

D. Khối bát diện đều.
Trang 5/10 Mã đề 1


Câu 65.√Thể tích của tứ diện đều √
cạnh bằng a
3

3
a 2
a 2
A.
.
B.
.
4
2


a3 2
C.
.
12


a3 2
D.
.
6

Câu 66. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
A. log2 a = − loga 2.
B. log2 a = loga 2.
C. log2 a =
.
D. log2 a =

.
loga 2
log2 a
Câu 67. Khối lập phương thuộc loại
A. {3; 4}.
B. {5; 3}.

C. {3; 3}.

D. {4; 3}.

Câu 68. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối
√ chóp S .ABCD là


3
3
a 6
a3 3
a3 2
a 3
.
B.
.
C.
.
D.
.
A.

48
48
24
16
Câu 69. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 3ac
3b + 3ac
3b + 2ac
A.
.
B.
.
C.
.
c+2
c+1
c+3

D.

3b + 2ac
.
c+2

Câu 70. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
23
5
13
9

.
B. −
.
C. − .
D.
.
A.
25
100
16
100
1
Câu 71. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 2.
B. 3.
C. 4.
D. 1.
2x + 1
Câu 72. Tính giới hạn lim
x→+∞ x + 1
1
A. −1.
B. 2.
C. 1.
D. .
2
cos n + sin n
Câu 73. Tính lim

n2 + 1
A. 0.
B. −∞.
C. 1.
D. +∞.
Câu 74. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. −3 ≤ m ≤ 3.
B. m ≥ 3.
C. m ≤ 3.
D. −2 ≤ m ≤ 2.
 π π
3
Câu 75. Cho hàm số y = 3 sin x − 4 sin x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. 1.
B. 7.
C. −1.
D. 3.
2
Câu 76. [2] Tìm m để giá trị nhỏ nhất của hàm số y = 2x3 + (m√
+ 1)2 x trên [0; 1] bằng 2√
A. m = ±3.
B. m = ±1.
C. m = ± 2.
D. m = ± 3.
q
2
Câu 77. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 = 0
√ i
h

có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 1].
B. m ∈ [0; 4].
C. m ∈ [0; 2].
D. m ∈ [−1; 0].

Câu 78. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp
√ đã cho
√ là 1728. Khi đó, các kích thước của hình hộp là
A. 2 3, 4 3, 38.
B. 6, 12, 24.
C. 2, 4, 8.
D. 8, 16, 32.

Câu 79. [1] Biết log6 a = 2 thì log6 a bằng
A. 36.
B. 6.
C. 108.
D. 4.
Trang 6/10 Mã đề 1


Câu 80. Hàm số f có nguyên hàm trên K nếu
A. f (x) có giá trị lớn nhất trên K.
C. f (x) có giá trị nhỏ nhất trên K.

B. f (x) xác định trên K.
D. f (x) liên tục trên K.


Câu 81. Bát diện đều thuộc loại
A. {3; 3}.
B. {3; 4}.

C. {5; 3}.

D. {4; 3}.

Câu 82. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (−∞; −1).
B. (1; +∞).
C. (−1; 1).
D. (−∞; 1).
!
1
1
1
+ ··· +
Câu 83. [3-1131d] Tính lim +
1 1+2
1 + 2 + ··· + n
5
3
A. .
B. .
C. 2.
D. +∞.
2
2
Câu 84. Cho hai hàm y = f (x), y = g(x)

Z có đạo hàm
Z trên R. Phát biểu nào sau đây đúng?
A. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f 0 (x)dx =
g0 (x)dx.
Z
Z
0
B. Nếu
f (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
C. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
Z
Z
D. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.

Câu 85. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 5 mặt.
B. 4 mặt.
C. 3 mặt.

D. 6 mặt.



Câu 86. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã
√ cho là



πa3 3
πa3 3
πa3 3
πa3 6
.
B. V =
.
C. V =
.
D. V =
.
A. V =
6
2
6
3
Câu 87. [3] Biết rằng giá trị lớn nhất của hàm số y =
số tự nhiên. Tính S = m2 + 2n3
A. S = 22.
B. S = 135.
2n − 3
Câu 88. Tính lim 2
bằng
2n + 3n + 1

A. 0.
B. −∞.

ln2 x
m
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
x
e

C. S = 24.

D. S = 32.

C. +∞.

D. 1.

Câu 89. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 15, 36.
B. 24.
C. 3, 55.
D. 20.
Câu 90. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC) một góc bằng 60◦ . Thể√tích khối chóp S .ABC là √

a3 3
a3 3
a3 3

a3
.
B.
.
C.
.
D.
.
A.
4
12
4
8
Câu 91. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
A. T = e + .
B. T = 4 + .
C. T = e + 3.
D. T = e + 1.
e
e
!4x
!2−x
2
3
Câu 92. Tập các số x thỏa mãn



3
2
Trang 7/10 Mã đề 1


"

!
2
A. − ; +∞ .
3

"

!
2
B.
; +∞ .
5

#
2
C. −∞; .
3

#
2
D. −∞; .
5


Câu 93. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 3 lần.
B. Tăng gấp 9 lần.
C. Tăng gấp 27 lần.
D. Tăng gấp 18 lần.
Câu 94. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. n3 lần.
B. n3 lần.
C. 2n3 lần.
D. 2n2 lần.
Câu 95. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1
1
B. .
C. 4.
D. .
A. .
2
8
4
x+1
bằng
Câu 96. Tính lim
x→−∞ 6x − 2
1
1
1

A. .
B. 1.
C. .
D. .
3
2
6
2
Câu 97. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −15.
B. −12.
C. −9.
D. −5.
x
x+1
x−2 x−1
+
+
+
và y = |x + 1| − x − m (m là tham
Câu 98. [4-1212d] Cho hai hàm số y =
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; −3).
B. (−∞; −3].
C. [−3; +∞).

D. (−3; +∞).

2
3
Câu 99. [2] Phương trình log4 (x + 1) + 2 = log √2 4 − x + log8 (4 + x) có tất cả bao nhiêu nghiệm?
A. 3 nghiệm.
B. Vơ nghiệm.
C. 1 nghiệm.
D. 2 nghiệm.
Câu 100. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√

a3 3
a3 5
a3 5
a3 5
.
B.
.
C.
.
D.
.
A.
4
12
12
6
Câu 101. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d song song với (P).

B. d nằm trên P.
C. d ⊥ P.
D. d nằm trên P hoặc d ⊥ P.
Câu 102. Khối đa diện đều loại {3; 4} có số đỉnh
A. 10.
B. 4.

C. 6.

D. 8.

Câu 103. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
Câu 104. [1] Đạo hàm của hàm số y = 2 x là
1
A. y0 = x
.
B. y0 = 2 x . ln 2.
2 . ln x
Câu 105. Khối đa diện đều loại {3; 3} có số cạnh
A. 6.
B. 4.

C. y0 =

1
.

ln 2

D. y0 = 2 x . ln x.

C. 8.

D. 5.

Câu 106. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t − 6t(m/s). Tính quãng đường chất
điểm đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 8 m.
B. 16 m.
C. 24 m.
D. 12 m.
2

Trang 8/10 Mã đề 1


3
2
x
Câu 107. [2] Tìm m để giá trị lớn nhất
√ của hàm số y = 2x + (m + 1)2 trên [0; 1] bằng 8√
C. m = ±1.
D. m = ± 2.
A. m = ±3.
B. m = ± 3.

Câu 108. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +

log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 6).
B. (1; 3; 2).
C. (2; 4; 4).
D. (2; 4; 3).
Câu 109. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9
tháng thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không
thay đổi trong thời gian gửi.
A. 0, 7%.
B. 0, 6%.
C. 0, 5%.
D. 0, 8%.
π
Câu 110. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3

trị của biểu √
thức T = a + b 3.

A. T = 2 3.
B. T = 4.
C. T = 2.
D. T = 3 3 + 1.
Câu 111. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m < 0.
B. m > 0.
C. m , 0.

D. m = 0.


Câu 112. √
Cho số phức z thỏa mãn |z + 3| = 5 và |z − 2i| = |z −√2 − 2i|. Tính |z|.
B. |z| = 17.
C. |z| = 10.
D.
A. |z| = 17.
2n + 1
Câu 113. Tính giới hạn lim
3n + 2
3
1
B. .
C. 0.
D.
A. .
2
2
Câu 114. [1] Đạo hàm của làm số y = log x là
1
1
1
.
B. y0 = .
C. y0 =
.
D.
A.
10 ln x
x
x ln 10

Câu 115. Tính mơ đun của số phức z√biết (1 + 2i)z2 = 3 + 4i. √
A. |z| = 5.
B. |z| = 2 5.
C. |z| = 5.
D.

|z| = 10.
2
.
3
y0 =

ln 10
.
x

|z| =

√4
5.

Câu 116. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 2.
B. Vô nghiệm.
C. 3.
D. 1.
Câu 117. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; 3; 1).
B. A0 (−3; 3; 3).

C. A0 (−3; −3; −3).
D. A0 (−3; −3; 3).
Câu 118. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 1202 m.
B. 2400 m.
C. 1134 m.
D. 6510 m.
Câu 119. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng√hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD
√ là

3
3
3
3
8a 3
8a 3
a 3
4a 3
A.
.
B.
.
C.
.
D.
.
9

9
3
9
Câu 120. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất không thay đổi?
A. 102.423.000.
B. 102.016.000.
C. 102.424.000.
D. 102.016.000.
2
2n − 1
Câu 121. Tính lim 6
3n + n4
2
A. 2.
B. 0.
C. 1.
D. .
3
Trang 9/10 Mã đề 1


Câu 122. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R.
B. D = (0; +∞).

C. D = R \ {1}.


D. D = R \ {0}.

Câu 123. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).

√ là

√ Thể tích khối chóp S 3.ABC
3
a 3
a3 2
a3 3
a 3
.
B.
.
C.
.
D.
.
A.
4
12
12
6
Câu 124. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. Không tồn tại.
B. 0.
C. 9.
D. 13.


Câu 125. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. Vơ số.
B. 64.
C. 63.
D. 62.

Câu 126. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by = ab.
Giá trị
" nhỏ! nhất của biểu thức P = x + 2y thuộc tập nào dưới
" đây?
!
5
5
A. 2; .
B. (1; 2).
C.
;3 .
D. [3; 4).
2
2
1
Câu 127. [1] Giá trị của biểu thức log √3
bằng
10
1
1
A. −3.
B. − .

C. 3.
D. .
3
3
Câu 128. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
x+1 y−5
z
d:
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vuông góc với đường thẳng
2
2
−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (2; 1; 6).
B. ~u = (2; 2; −1).
C. ~u = (3; 4; −4).
D. ~u = (1; 0; 2).
Câu 129. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 5.
B. 1.
C. 2.

D. 3.

Câu 130. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với
đáy một góc 45◦ và AB = 3a, BC = 4a.
√ Thể tích khối chóp S .ABCD là
3

10a 3
.
C. 40a3 .
D. 10a3 .
A. 20a3 .
B.
3
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

B

2.

B

3.

B

4.

B


6.

B

5. A
7.

C

9.

C

11.

8. A
D

13.

C

15.

D

17.

C


10.

C

12.

C

14.

B

16.

B

18.

B

19. A

20. A

21. A

22.

23.


B

24.

25.
27.

D
B

C
C

30.

31.

C

32. A

B

34.
D

35.

41.


C
B

43.

D

38.

C

40.

C

42.

C

44.

45. A

46.

47. A

48. A


49.
53.

D

52.

B

56. A

57. A

58.
B

B

D

60. A

61.

D

62. A

63.


C

64.

65.

C

66.

67.

C

54. A

55. A
59.

B

50. A

C

51.

C

36. A


B

39.

D

28.
C

37.

B

26.

29.
33.

D

D

68. A
1

B
C



69. A
D

71.

70.

B

72.

B

73. A

74. A

75. A

76.

B
B

77.

D

78.


79.

D

80.

81.
85.

82.

B

83.

C
B
D

87.

C

84.

D

86.

D


88. A
90.

89. A
91.

C

92. A

93.

C

94. A
D

95.
97.

D

D

D

96.
98.


B

B

99.

D

100.

C

101.

D

102.

C

103. A

104.

B

105. A

106.


B

107.

D

108. A

109. A

110.
C

111.

112.

C
C

113.

D

114.

115.

D


116. A

117.

B

118.

119.

B

120.

121.

B

122. A

123.

B

124.

125.
127.
129.


D

126.
128.

B

130. A

C

2

B

D
C
B
C
D



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×