Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thptqg 6 (208)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (154.39 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (2; 2).
B. (−1; −7).
C. (0; −2).
!
1
1
1
+ ··· +
Câu 2. [3-1131d] Tính lim +
1 1+2
1 + 2 + ··· + n
3
A. +∞.
B. 2.
C. .
2


Câu 3.√Tìm giá trị lớn nhất của hàm
−x
√ số y = x + 3 + 6 √


A. 2 3.
B. 2 + 3.
C. 3 2.

D. (1; −3).

D.

5
.
2

D. 3.

Câu 4. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2]. Giá
trị của biểu thức P = (m2 − 4M)2019
A. 22016 .
B. e2016 .
C. 0.
D. 1.
Câu 5. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối lập phương.
B. Khối tứ diện đều.

C. Khối bát diện đều.

D. Khối 12 mặt đều.

Câu 6. [2] Cho hàm số f (x) = 2 .5 . Giá trị của f (0) bằng
x


A. f 0 (0) = 1.

x

B. f 0 (0) = 10.

Câu 7. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = ln x − 1.
B. y0 = x + ln x.

0

1
.
ln 10

C. f 0 (0) = ln 10.

D. f 0 (0) =

C. y0 = 1 − ln x.

D. y0 = 1 + ln x.

Câu 8. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
ab
1
ab

1
A. √
.
B. √
.
C. 2
.
.
D. √
2
a +b
a2 + b2
a2 + b2
2 a2 + b2
x2 − 3x + 3
Câu 9. Hàm số y =
đạt cực đại tại
x−2
A. x = 1.
B. x = 3.
C. x = 2.
D. x = 0.
Câu 10. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. 3n3 lần.
B. n2 lần.
C. n3 lần.
D. n lần.


Câu 11. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể

tích của √
khối chóp S .ABCD là

3
3

a 3
a
3
a3
A.
.
B. a3 3.
C.
.
D.
.
12
3
4
Câu 12. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim+ f (x) = lim− f (x) = +∞.
B. lim+ f (x) = lim− f (x) = a.
x→a
x→a
x→a
x→a
C. lim f (x) = f (a).
D. f (x) có giới hạn hữu hạn khi x → a.
x→a


Câu 13. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. Vơ nghiệm.
B. 3 nghiệm.
C. 1 nghiệm.

D. 2 nghiệm.

Câu 14. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh của khối chóp bằng số mặt của khối chóp.
B. Số đỉnh của khối chóp bằng số mặt của khối chóp.
C. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
D. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
Trang 1/10 Mã đề 1


1
Câu 15. Hàm số y = x + có giá trị cực đại là
x
A. 2.
B. −2.

C. −1.

D. 1.

Câu 16. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vng
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√

a3 5

a3 3
a3 5
a3 5
A.
.
B.
.
C.
.
D.
.
4
12
6
12
3a
Câu 17. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng

a
2a
a
a 2
A. .
B.
.
C. .

D.
.
3
3
4
3
Câu 18. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. −1 + 2 sin 2x.
B. 1 − sin 2x.
C. −1 + sin x cos x.
D. 1 + 2 sin 2x.
Câu 19. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. −1.
B. 6.
C. 1.

D. 2.

Câu 20. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3. Tính
f (2) + f (4)?
A. 12.
B. 10.
C. 11.
D. 4.
x−2 x−1
x
x+1
Câu 21. [4-1212d] Cho hai hàm số y =
+
+

+
và y = |x + 1| − x − m (m là tham
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. [−3; +∞).
B. (−∞; −3).
C. (−∞; −3].
D. (−3; +∞).
Câu 22. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối bát diện đều.

C. Khối tứ diện đều.

D. Khối lập phương.

Câu 23. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 27cm3 .
B. 64cm3 .
C. 72cm3 .
D. 46cm3 .
Câu 24. Khối đa diện đều loại {3; 4} có số đỉnh
A. 8.
B. 10.
C. 4.
D. 6.

1
Câu 25. [1] Giá trị của biểu thức log √3
bằng
10
1
1
A. − .
B. −3.
C. .
D. 3.
3
3
Câu 26. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m > .
B. m ≥ .
C. m ≤ .
D. m < .
4
4
4
4
x−3 x−2
x−3
x−2
Câu 27. [12212d] Số nghiệm của phương trình 2 .3 − 2.2 − 3.3 + 6 = 0 là
A. Vô nghiệm.

B. 1.
C. 2.
D. 3.
Câu 28. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. 2e2 .
B. −2e2 .
C. −e2 .
D. 2e4 .
x+3
Câu 29. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng
x−m
(0; +∞)?
A. 3.
B. Vô số.
C. 1.
D. 2.
Trang 2/10 Mã đề 1


Câu 30. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. Không tồn tại.
B. 0.
C. 13.

D. 9.

Câu 31. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Đường phân giác góc phần tư thứ nhất.
B. Trục ảo.

C. Trục thực.
D. Hai đường phân giác y = x và y = −x của các góc tọa độ.
2x + 1
Câu 32. Tính giới hạn lim
x→+∞ x + 1
1
A. .
B. −1.
2

C. 1.

D. 2.


Câu 33. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 63.
B. Vô số.
C. 62.
D. 64.
Câu 34. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; −3; 3).
B. A0 (−3; 3; 3).
C. A0 (−3; −3; −3).
D. A0 (−3; 3; 1).
Câu 35. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng

(S AB). Thiết diện của


√mặt phẳng (AIC) có diện tích
√ hình chóp S .ABCD với
2
2
2
2
a 5
a 7
a 2
11a
A.
.
B.
.
C.
.
D.
.
16
8
4
32
Câu 36. Nếu khơng sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Một tứ diện đều và bốn hình chóp tam giác đều.
B. Bốn tứ diện đều và một hình chóp tam giác đều.
C. Năm tứ diện đều.

D. Năm hình chóp tam giác đều, khơng có tứ diện đều.
Câu 37. Dãy! số nào có giới hạn bằng 0?!
n
n
−2
6
A. un =
.
B. un =
.
5
3

C. un =

n3 − 3n
.
n+1

D. un = n2 − 4n.

Câu 38. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).

(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Cả hai câu trên sai.

B. Cả hai câu trên đúng. C. Chỉ có (I) đúng.

D. Chỉ có (II) đúng.

Câu 39. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −5.
B. −9.
C. −12.
D. −15.
0 0 0 0
0
Câu 40.√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
√ bằng
a 6
a 6
a 6
a 3
A.
.
B.
.
C.
.
D.

.
2
2
7
3

Trang 3/10 Mã đề 1


Câu 41. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
D. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
d = 120◦ .
Câu 42. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
A. 2a.
B.
.
C. 4a.
D. 3a.
2
Câu 43. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng





a 6
.
B. a 3.
C. a 6.
D.
A. 2a 6.
2
Câu 44. Cho
Z hai hàm yZ = f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
A. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
B. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
Z
Z
0
C. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f (x)dx =
g0 (x)dx.
Z
Z
0
D. Nếu
f (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Câu 45. Trong các khẳng định sau, khẳng định nào sai?√

A. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
B. Cả ba đáp án trên.
C. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
D. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
log 2x

x2
1 − 2 ln 2x
1
1 − 2 log 2x
1 − 4 ln 2x
.
C. y0 = 3
.
D. y0 = 3
.
A. y0 =
.
B. y0 =
3
3
x
2x ln 10
x ln 10
2x ln 10
d = 30◦ , biết S BC là tam giác đều
Câu 47. [3] Cho hình chóp S .ABC có đáy là tam giác vng tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách

√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
A.
.
B.
.
C.
.
D.
.
9
13
16
26
Câu 46. [1229d] Đạo hàm của hàm số y =

Câu 48. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
A.
.
B. 12.
C. 27.
D. 18.
2
[ = 60◦ , S O
Câu 49. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD

vng góc với mặt đáy và S O = a.
√ Khoảng cách từ A đến (S
√ BC) bằng


a 57
a 57
2a 57
A. a 57.
B.
.
C.
.
D.
.
17
19
19
Câu 50. Tính lim
x→5

2
A. − .
5

x2 − 12x + 35
25 − 5x
B. +∞.

C.


2
.
5

D. −∞.
Trang 4/10 Mã đề 1


Câu 51. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (0; 2).
B. (−∞; 0) và (2; +∞). C. (−∞; 2).

D. (0; +∞).

Câu 52. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.


√ tích khối chóp S .ABC3 √
3
a 6
a3 2
a3 6
a 6
.
B.
.
C.

.
D.
.
A.
6
18
6
36

Câu 53. [1] Biết log6 a = 2 thì log6 a bằng
A. 4.
B. 36.
C. 6.
D. 108.
Câu 54. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Bốn cạnh.
B. Ba cạnh.
C. Năm cạnh.

D. Hai cạnh.

Câu 55. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối bát diện đều.

D. Khối 12 mặt đều.

C. Khối lập phương.

Câu 56. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của

môđun z.




5 13
A. 2 13.
.
D. 26.
B. 2.
C.
13
Câu 57. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 6 mặt.
C. 3 mặt.
D. 4 mặt.
8
Câu 58. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 81.
B. 82.
C. 96.
D. 64.
1
Câu 59. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 ln đồng biến trên
3

một đoạn có độ dài bằng 24.
A. m = 4.

B. −3 ≤ m ≤ 4.
C. m = −3.
D. m = −3, m = 4.
Câu 60. [1] Hàm số nào đồng biến trên khoảng (0; +∞)?
A. y = log √2 x.
B. y = log 14 x.

C. y = loga x trong đó a = 3 − 2.
D. y = log π4 x.
Câu 61.
Z Trong các khẳng định sau, khẳng định nào sai? Z
dx = x + C, C là hằng số.

A.
Z
C.

B.

xα+1
x dx =
+ C, C là hằng số.
α+1

Z

α

1
1

1
Câu 62. Tính lim
+
+ ··· +
1.2 2.3
n(n + 1)

D.

0dx = C, C là hằng số.
1
dx = ln |x| + C, C là hằng số.
x

!

3
.
2
Câu 63. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 3, 55.
B. 20.
C. 24.
D. 15, 36.
A. 1.

B. 0.


C. 2.

D.

Câu 64. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18. √
A. 27.
B. 9.
C. 8.
D. 3 3.
2

Câu 65. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 2 − log2 3.
B. 1 − log3 2.
C. 3 − log2 3.

D. 1 − log2 3.
Trang 5/10 Mã đề 1


Câu 66. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng BD và S C bằng



a 6
a 6
a 6
D.
A.

.
B.
.
C. a 6.
.
6
2
3
Câu 67. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 2.

B. 3.

C. 1.

D. 0.

π
Câu 68. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3

trị của biểu √
thức T = a + b 3.

A. T = 2 3.
B. T = 3 3 + 1.
C. T = 4.

D. T = 2.
1
Câu 69. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 2 < m ≤ 3.
B. 0 ≤ m ≤ 1.
C. 2 ≤ m ≤ 3.
D. 0 < m ≤ 1.
Câu 70. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối
√ chóp S .ABCD là


a3 6
a3 2
a3 3
a3 3
.
B.
.
C.
.
D.
.
A.
48
48
16
24
Câu 71. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng

2
B. 2e.
C. 2e + 1.
D. 3.
A. .
e
Câu 72. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. 1.
B. e.
C. 4 − 2 ln 2.
D. −2 + 2 ln 2.
x−2
Câu 73. Tính lim
x→+∞ x + 3
2
A. 1.
B. − .
C. 2.
D. −3.
3
Câu 74. Phát biểu nào sau đây là sai?
1
1
A. lim k = 0 với k > 1.
B. lim √ = 0.
n
n
n
C. lim q = 1 với |q| > 1.
D. lim un = c (Với un = c là hằng số).

Câu 75. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 3.
B. Vô nghiệm.
C. 2.
D. 1.
Câu 76. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 − 2; m = 1.
B. M = e−2 + 2; m = 1.
2
−2
C. M = e − 2; m = e + 2.
D. M = e−2 + 1; m = 1.
1 − xy
Câu 77. [12210d] Xét các số thực dương x, y thỏa mãn log3
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
x + 2y
Pmin của P = x√+ y.



9 11 − 19
9 11 + 19
18 11 − 29
2 11 − 3
. B. Pmin =
. C. Pmin =
. D. Pmin =
.
A. Pmin =
9

9
21
3

Câu 78. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by = ab.
Giá trị
" nhỏ! nhất của biểu thức P" = x!+ 2y thuộc tập nào dưới đây?
5
5
A.
;3 .
B. 2; .
C. [3; 4).
D. (1; 2).
2
2
Trang 6/10 Mã đề 1


Câu 79. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 220 triệu.
B. 216 triệu.
C. 212 triệu.
D. 210 triệu.
Câu 80. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai
quyển sách cùng một môn nằm cạnh nhau là

2
9
1
1
B. .
C.
.
D.
.
A. .
5
5
10
10
! x3 −3mx2 +m
1
Câu 81. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
nghịch biến trên
π
khoảng (−∞; +∞)
A. m , 0.
B. m ∈ (0; +∞).
C. m = 0.
D. m ∈ R.

x2 + 3x + 5
Câu 82. Tính giới hạn lim
x→−∞
4x − 1
1

1
D. .
A. 0.
B. 1.
C. − .
4
4
Câu 83. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 4 lần.
B. Tăng gấp đôi.
C. Tăng gấp 8 lần.
D. Tăng gấp 6 lần.
Câu 84. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
67
.
B. −2.
C. −4.
D. −7.
A.
27
Câu 85. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 4.
B. V = 3.
C. V = 6.
D. V = 5.
Câu 86. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả

vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất không thay đổi?
A. 17 tháng.
B. 15 tháng.
C. 16 tháng.
D. 18 tháng.
q
2
Câu 87. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 =
√ i
h
0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 4].
B. m ∈ [0; 1].
C. m ∈ [0; 2].
D. m ∈ [−1; 0].
Câu 88. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Chỉ có (II) đúng.
B. Cả hai đều đúng.

C. Chỉ có (I) đúng.

D. Cả hai đều sai.

Câu 89. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ơng ta muốn
hồn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số

tiền mỗi tháng ơng ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 2, 20 triệu đồng.
B. 2, 22 triệu đồng.
C. 3, 03 triệu đồng.
D. 2, 25 triệu đồng.
Trang 7/10 Mã đề 1


 π π
Câu 90. Cho hàm số y = 3 sin x − 4 sin3 x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. 3.
B. 1.
C. −1.
D. 7.
Câu 91. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất của hàm số. Khi đó tổng

√M + m

A. 16.
B. 8 3.
C. 7 3.
D. 8 2.
2mx + 1
1
Câu 92. Giá trị lớn nhất của hàm số y =
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3

A. 1.
B. 0.
C. −5.
D. −2.
Câu 93. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 20 mặt.
B. 20 đỉnh, 30 cạnh, 20 mặt.
C. 12 đỉnh, 30 cạnh, 12 mặt.
D. 20 đỉnh, 30 cạnh, 12 mặt.
Câu 94. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R.
B. D = R \ {1}.

C. D = R \ {0}.

Câu 95. Khối đa diện đều loại {5; 3} có số đỉnh
A. 8.
B. 30.

C. 12.

D. D = (0; +∞).

D. 20.
un
Câu 96. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. 1.
B. −∞.
C. 0.

D. +∞.
Câu 97. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 2.
B. 3.
C. 1.

D. Vô nghiệm.

Câu 98. Khối đa diện đều loại {4; 3} có số cạnh
A. 12.
B. 20.

D. 30.

Câu 99. [2] Tổng các nghiệm của phương trình 2
A. 6.
B. −6.

C. 10.
x2 +2x

= 82−x là
C. 5.

D. −5.

Câu 100. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 3.
B. Vô nghiệm.
C. 2.

D. 1.
Câu 101. [4-1246d] Trong tất cả
√ các số phức z thỏa mãn√|z − i| = 1. Tìm giá trị lớn nhất của |z|
A. 2.
B. 3.
C. 5.
D. 1.
log 2x
Câu 102. [3-1229d] Đạo hàm của hàm số y =

x2
1 − 2 ln 2x
1 − 2 log 2x
1
1 − 4 ln 2x
A. y0 = 3
.
B. y0 = 3
.
C. y0 =
.
D. y0 =
.
3
2x ln 10
x ln 10
x
2x3 ln 10
Câu 103. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)

cùng vng góc với đáy, S C = a 3. Thể tích khối chóp S .ABCD



3
3
a
a 3
a3 3
3
A.
.
B. a .
C.
.
D.
.
3
9
3
Câu 104. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 25 m.
B. 1587 m.
C. 27 m.
D. 387 m.
Câu 105. Khối đa diện đều loại {5; 3} có số cạnh

A. 20.
B. 8.

C. 30.

D. 12.

Câu 106. [1] Giá trị của biểu thức 9log3 12 bằng
A. 2.
B. 144.

C. 24.

D. 4.
Trang 8/10 Mã đề 1


4x + 1
Câu 107. [1] Tính lim
bằng?
x→−∞ x + 1
A. 4.
B. −4.

C. 2.

D. −1.

Câu 108. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.

B. 8 mặt.
C. 4 mặt.
Câu 109. [1-c] Giá trị của biểu thức 3 log0,1 10
A. 72.
B. −7, 2.

2,4

bằng
C. 7, 2.

Câu 110.
Các khẳng định nào Z
sau đây là sai?
Z
A.
Z
C.

f (x)dx = F(x) + C ⇒
!0
f (x)dx = f (x).

f (t)dt = F(t) + C. B.

Z
Z

D.


D. 10 mặt.
D. 0, 8.
Z

f (x)dx = F(x) +C ⇒
f (u)dx = F(u) +C.
Z
k f (x)dx = k
f (x)dx, k là hằng số.

Câu 111. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 9 năm.
B. 7 năm.
C. 10 năm.
D. 8 năm.
1
Câu 112. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
0
y
A. xy = −e − 1.
B. xy = −e + 1.
C. xy0 = ey + 1.
D. xy0 = ey − 1.
Câu 113. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.

A. m < 0.
B. m > 0.
C. m = 0.

D. m , 0.

Câu 114.
Cho hàm sốZf (x), g(x)Zliên tục trên R. Trong các
Z
Z mệnh đề sau, mệnhZđề nào sai? Z
A.
Z
C.

f (x)g(x)dx =
f (x)dx g(x)dx.
Z
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.

( f (x) − g(x))dx =

B.
Z
D.

( f (x) + g(x))dx =

f (x)dx −
Z


f (x)dx +

g(x)dx.
Z
g(x)dx.

6
. Tính
Câu 115. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x2 f (x3 ) − √
3x + 1
Z 1
f (x)dx.
0

A. 6.

B. −1.

C. 2.

D. 4.

Câu 116. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
BC là
. Khi đó thể tích khối lăng trụ là

4




a3 3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
24
12
36
6

Câu 117. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã

√ cho là


πa3 3
πa3 3

πa3 6
πa3 3
A. V =
.
B. V =
.
C. V =
.
D. V =
.
6
2
6
3
x+1
Câu 118. Tính lim
bằng
x→+∞ 4x + 3
1
1
A. 1.
B. .
C. .
D. 3.
4
3
1
Câu 119. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?

A. 2.
B. 1.
C. 3.
D. 4.
Trang 9/10 Mã đề 1


Câu 120. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x+1 y−4 z−4
x−2 y−3 z+4
đường thẳng d :
=
=
và d0 :
=
=
2
3
−5
3
−2
−1
x−2 y+2 z−3
x y−2 z−3
=
.
B.
=
=
.

A. =
2
3
−1
2
2
2
x−2 y−2 z−3
x y z−1
C.
=
=
.
D. = =
.
2
3
4
1 1
1
Câu 121. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 2.
B. y(−2) = −18.
C. y(−2) = 6.
D. y(−2) = 22.
Câu 122. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 4).
B. (1; 3; 2).

C. (2; 4; 3).
D. (2; 4; 6).
x+1
Câu 123. Tính lim
bằng
x→−∞ 6x − 2
1
1
1
A. .
B. 1.
C. .
D. .
2
6
3
Câu 124. Khối đa diện đều loại {3; 4} có số cạnh
A. 6.
B. 12.
C. 8.
D. 10.
!
5 − 12x
Câu 125. [2] Phương trình log x 4 log2
= 2 có bao nhiêu nghiệm thực?
12x − 8
A. 3.
B. 1.
C. Vô nghiệm.
D. 2.

Câu 126. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(4; −8).
B. A(4; 8).
C. A(−4; 8).
D. A(−4; −8)(.
n−1
Câu 127. Tính lim 2
n +2
A. 2.
B. 0.
C. 3.
D. 1.
Câu 128. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 1134 m.
B. 1202 m.
C. 6510 m.
D. 2400 m.
Câu 129. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt√bên (S BC) và (S AD) cùng√hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD
√ là
3
3
3
3
8a 3
4a 3
8a 3
a 3
.

B.
.
C.
.
D.
.
A.
9
3
9
9
Câu 130. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 2.
B. 1.
C. 0.
D. 3.
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

C

2.


3.

C

4.

C

6.

C

5.

B
D

7.

8. A

9. A
C

11.

D

13.


B

10.

C

12.

C

14.

15.

B

16.

17.

B

18. A

19.

B

20. A


B
D

22.

D

23. A

24.

D

25. A

26.

C

28.

C

21.

C

C

27.

29. A

30.

31.

D

33.

32.

C

34.

35.

B

36. A

37.

B

38.

39.
41.


B

42.
C

D

B
C

B

B

54.

B

59.

60. A

61.

62. A

63.
D


65. A

66. A

67. A
69. A

C
1

C

52.
56.

B

64.

D

50.

58. A

68.

D

48.


B

53. A
55.

B

46.

49.
51.

B

44. A

45. A
47.

D

40.

C

43.

B


C
D
C
D


71.

70. A
72.

B

D

73. A
75.

D

76. A

77.

D

78. A

79.


C

C

74.

80.

C

81.

C

82.

C

83.

C

84.

85. A

B

86.
88. A


89.

90.

B

91. A

92.

B

93. A
C

96.

C
D

99.
C

100.

101. A

B


104.

103. A
105.

C

C

107. A

B

108. A
110.

D

97.

98. A

106.

B

95.

94. A


102.

D

87.

C

109.
B

B

111. A

112.

D

114. A

113.

D

115.

D
D


116.

B

117.

118.

B

119.

B
B

120.

D

121.

122.

D

123.

C

124.


B

125.

B

126.

B

127.

B

128.

C

130.

C

129.

2

D




Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×