Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thptqg 6 (929)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (148.88 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

x+1
bằng
x→−∞ 6x − 2
1
B. .
3

Câu 1. Tính lim
A. 1.

1
.
2

D.

1
.
6

C. 0.


D.

1
.
3

C.

12 + 22 + · · · + n2
Câu 2. [3-1133d] Tính lim
n3
2
A. .
B. +∞.
3

Câu 3. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. (−∞; +∞).
B. (1; 2).
C. [1; 2].
Câu 4. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
1
C. 1.
A. 2.
B. .
2

D. [−1; 2).

D.


ln 2
.
2

3

Câu 5. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e5 .
B. e3 .
C. e.

D. e2 .

Câu 6. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 9 cạnh, 6 mặt. B. 6 đỉnh, 9 cạnh, 5 mặt. C. 6 đỉnh, 6 cạnh, 6 mặt. D. 5 đỉnh, 9 cạnh, 6 mặt.
Câu 7. Khối đa diện đều loại {3; 5} có số mặt
A. 20.
B. 12.
C. 8.
log 2x
Câu 8. [3-1229d] Đạo hàm của hàm số y =

x2
1 − 2 ln 2x
1 − 2 log 2x
1
.
B. y0 = 3
.

C. y0 =
A. y0 = 3
.
2x ln 10
x ln 10
x3

D. 30.

D. y0 =

1 − 4 ln 2x
.
2x3 ln 10

Câu 9. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
C. T = e + 3.
D. T = e + .
A. T = e + 1.
B. T = 4 + .
e
e
Câu 10. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối 20 mặt đều.
B. Khối tứ diện đều.

C. Khối 12 mặt đều.


D. Khối bát diện đều.

Câu 11. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (0; 1).
B. Hàm số nghịch biến trên khoảng (1; +∞).
C. Hàm số nghịch biến trên khoảng (−∞; 0).
D. Hàm số đồng biến trên khoảng (1; 2).
Câu 12. Khối đa diện đều loại {3; 4} có số đỉnh
A. 10.
B. 8.

C. 6.

D. 4.

Câu 13. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 8 đỉnh, 10 cạnh, 6 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
Câu 14. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 20.
B. 15, 36.
C. 24.
D. 3, 55.
Trang 1/10 Mã đề 1



Câu 15. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ông ta muốn
hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ơng ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 2, 25 triệu đồng.
B. 3, 03 triệu đồng.
C. 2, 20 triệu đồng.
D. 2, 22 triệu đồng.
Câu 16.√Thể tích của tứ diện đều √
cạnh bằng a
3
3
a 2
a 2
.
B.
.
A.
6
2


a3 2
C.
.
12



a3 2
D.
.
4

Câu 17. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối

√ chóp S .ABCD là

a3 3
a3 3
a3 6
a3 2
.
B.
.
C.
.
D.
.
A.
16
48
24
48
Câu 18. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = R.
B. D = R \ {1; 2}.
C. D = [2; 1].


D. D = (−2; 1).

Câu 19. Khối đa diện đều loại {3; 3} có số đỉnh
A. 3.
B. 5.

D. 2.

2

C. 4.

Câu 20. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m > .
B. m < .
C. m ≤ .
D. m ≥ .
4
4
4
4
Câu 21. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối bát diện đều.


C. Khối lập phương.

Câu 22. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 4 mặt.
C. 9 mặt.
Câu 23. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2
A. .
B. 2e + 1.
C. 2e.
e
5
Câu 24. Tính lim
n+3
A. 2.
B. 3.
C. 1.
Câu 25. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 5 mặt.
C. 6 mặt.
!4x
!2−x
2
3
Câu 26. Tập các số x thỏa mãn


3

2
#
"
!
"
!
2
2
2
A. −∞; .
B.
; +∞ .
C. − ; +∞ .
5
5
3
Câu 27. Dãy số nào có giới hạn bằng 0?
n3 − 3n
A. un = n2 − 4n.
B. un =
.
n+1

D. Khối tứ diện đều.
D. 6 mặt.

D. 3.

D. 0.
D. 4 mặt.


#
2
D. −∞; .
3

!n
−2
C. un =
.
3

!n
6
D. un =
.
5

Câu 28. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) √
bằng


a 38
3a 58
3a 38
3a
A.
.

B.
.
C.
.
D.
.
29
29
29
29
Trang 2/10 Mã đề 1


Câu 29. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [−3; 1].
B. [1; +∞).
C. [−1; 3].
D. (−∞; −3].
Câu 30. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên

A. Chỉ có (II) đúng.

B. Cả hai câu trên đúng. C. Cả hai câu trên sai.

x2 + 3x + 5
Câu 31. Tính giới hạn lim
x→−∞
4x − 1
1
A. 1.
B. 0.
C. .
4
2
Câu 32. Tìm giá trị nhỏ nhất của hàm số y = (x − 2x + 3)2 − 7
A. −3.
B. −5.
C. Không tồn tại.
Câu 33. Hàm số f có nguyên hàm trên K nếu
A. f (x) liên tục trên K.
C. f (x) xác định trên K.

D. Chỉ có (I) đúng.

1
D. − .
4
D. −7.

B. f (x) có giá trị nhỏ nhất trên K.

D. f (x) có giá trị lớn nhất trên K.

Câu 34. Trong khơng gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0) lần
lượt là hình chiếu
của B, C lên các cạnh! AC, AB. Tọa độ hình chiếu
!
! của A lên BC là
5
8
7
; 0; 0 .
B.
; 0; 0 .
C.
; 0; 0 .
D. (2; 0; 0).
A.
3
3
3
Câu 35. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 8 mặt.
B. 7 mặt.
C. 9 mặt.

D. 6 mặt.

Câu 36. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).


√ Thể tích khối chóp S 3.ABC
√ là

a3 3
a 3
a3 2
a3 3
A.
.
B.
.
C.
.
D.
.
12
4
12
6
Câu 37. Phát biểu nào sau đây là sai?
A. lim un = c (Với un = c là hằng số).
B. lim qn = 1 với |q| > 1.
1
1
C. lim k = 0 với k > 1.
D. lim √ = 0.
n
n
Câu 38. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 + 2e

1 − 2e
1 − 2e
1 + 2e
A. m =
.
B. m =
.
C. m =
.
D. m =
.
4e + 2
4 − 2e
4e + 2
4 − 2e
x2 − 12x + 35
Câu 39. Tính lim
x→5
25 − 5x
2
2
A. .
B. −∞.
C. +∞.
D. − .
5
5
mx − 4
Câu 40. Tìm m để hàm số y =
đạt giá trị lớn nhất bằng 5 trên [−2; 6]

x+m
A. 26.
B. 67.
C. 34.
D. 45.
d = 300 .
Câu 41. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vuông tại A. BC = 2a, ABC
0
Độ dài cạnh bên CC = 3a. Thể tích V của khối lăng trụ đã cho. √


a3 3
3a3 3
3
3
A. V = 6a .
B. V = 3a 3.
C. V =
.
D. V =
.
2
2
Trang 3/10 Mã đề 1



Câu 42. [2] Phương trình log4 (x + 1)2 + 2 = log √2 4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
A. Vơ nghiệm.
B. 1 nghiệm.

C. 3 nghiệm.
D. 2 nghiệm.
Câu 43. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 21.
B. 22.
C. 24.
D. 23.
Câu 44. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối
√ chóp S .ABCD là

3
3

a 15
a 5
a3 6
A.
.
B.
.
C.
.
D. a3 6.
3
3
3
Câu 45. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là

A. Vô nghiệm.
B. 3.
C. 2.
D. 1.
Câu 46. Dãy số nào sau đây có giới hạn khác 0?
n+1
1
B.
A. √ .
.
n
n

C.

sin n
.
n

D.

1
.
n

Câu 47. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 4).
B. (1; 3; 2).
C. (2; 4; 6).

D. (2; 4; 3).
Câu 48. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. 3.
B. −3.
C. −6.
D. 0.
Câu 49. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là 4, phần ảo là 1.
B. Phần thực là −1, phần ảo là 4.
C. Phần thực là −1, phần ảo là −4.
D. Phần thực là 4, phần ảo là −1.
Câu 50. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 6.
B. −1.
C. 1.
−2x2

Câu 51. [2-c] Giá trị lớn nhất của hàm số y = xe
1
1
A. 2 .
B. √ .
e
2 e

trên đoạn [1; 2] là
1
C. 3 .
2e


D. 2.

D.

2
.
e3

Câu 52. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 3.
B. 2.
C. 5.
D. 1.
!
!
!
x
1
2
2016
4
Câu 53. [3] Cho hàm số f (x) = x
. Tính tổng T = f
+f
+ ··· + f
4 +2
2017
2017
2017
2016

A. T = 2017.
B. T = 1008.
C. T =
.
D. T = 2016.
2017
Câu 54. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. F(x) = G(x) trên khoảng (a; b).
B. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
C. Cả ba câu trên đều sai.
D. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
!
5 − 12x
Câu 55. [2] Phương trình log x 4 log2
= 2 có bao nhiêu nghiệm thực?
12x − 8
A. 2.
B. 3.
C. 1.
D. Vô nghiệm.
Trang 4/10 Mã đề 1


Câu 56. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng
thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay
đổi trong thời gian gửi.
A. 0, 5%.
B. 0, 6%.
C. 0, 8%.

D. 0, 7%.
Câu 57. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. 3 nghiệm.
B. 2 nghiệm.
C. Vô nghiệm.

D. 1 nghiệm.

Câu 58. Khối đa diện đều loại {3; 4} có số mặt
A. 8.
B. 6.

D. 12.

C. 10.

Câu 59. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m ≥ 0.
B. m > −1.
C. m > 0.

D. m > 1.

Câu 60. [1] Hàm số nào đồng biến trên khoảng (0; +∞)?
B. y = log √2 x.
A. y = log π4 x.
D. y = loga x trong đó a =

C. y = log 14 x.



3 − 2.

Câu 61.
đề nào sau đây
Z [1233d-2] Mệnh Z
Z sai?
[ f (x) − g(x)]dx =

A.
Z
B.

[ f (x) + g(x)]dx =

g(x)dx, với mọi f (x), g(x) liên tục trên R.

f (x)dx −
Z

f (x)dx +

Z
g(x)dx, với mọi f (x), g(x) liên tục trên R.

Z

f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z

D.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
C.

Câu 62. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞

A. lim [ f (x) − g(x)] = a − b.

x→+∞

x→+∞

C. lim [ f (x)g(x)] = ab.
x→+∞

B. lim [ f (x) + g(x)] = a + b.
x→+∞
f (x) a
= .
D. lim
x→+∞ g(x)
b

Câu 63. [12214d] Với giá trị nào của m thì phương trình
A. 0 < m ≤ 1.

B. 2 < m ≤ 3.


1
3|x−2|

= m − 2 có nghiệm

C. 2 ≤ m ≤ 3.

D. 0 ≤ m ≤ 1.

Câu 64. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất
√ của hàm số. Khi đó tổng
√M + m

B. 7 3.
C. 8 3.
D. 16.
A. 8 2.
Câu 65.! Dãy số nào sau đây có giới
!n hạn là 0?
n
4
5
A.
.
B.
.
e
3


!n
5
C. − .
3

!n
1
D.
.
3

Câu 66. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
A. 96.

B. 81.

C. 64.

D. 82.

8
x

x−1
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác đều ABI có hai đỉnh A, √
B thuộc (C), đoạn thẳng AB

√ có độ dài bằng

A. 2.
B. 2 2.
C. 2 3.
D. 6.
!x
1
1−x
Câu 68. [2] Tổng các nghiệm của phương trình 3 = 2 +

9
A. log2 3.
B. − log2 3.
C. − log3 2.
D. 1 − log2 3.
Câu 67. [3-1214d] Cho hàm số y =

Trang 5/10 Mã đề 1


Câu 69. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Trục ảo.
B. Hai đường phân giác y = x và y = −x của các góc tọa độ.
C. Đường phân giác góc phần tư thứ nhất.
D. Trục thực.
Câu 70. Khối đa diện đều loại {5; 3} có số mặt
A. 30.
B. 20.

C. 12.


D. 8.

Câu 71. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 2ac
3b + 3ac
3b + 3ac
3b + 2ac
A.
.
B.
.
C.
.
D.
.
c+2
c+1
c+2
c+3
Câu 72. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 3.
B. 6.
C. 8.
D. 4.
Câu 73. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 − 2; m = 1.
B. M = e−2 + 1; m = 1.
C. M = e2 − 2; m = e−2 + 2.
D. M = e−2 + 2; m = 1.

Câu 74. [4-1244d] Trong tất cả các số phức z = a + bi,
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
9
5
B.
.
C.
A. − .
16
25
x−2
Câu 75. Tính lim
x→+∞ x + 3
A. 1.
B. −3.
C.

a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
13
.
100

D. −

23
.
100

2
D. − .

3
0 0 0
d = 60◦ . Đường chéo
Câu 76. Cho lăng trụ đứng ABC.A B C có đáy là tam giác vng tại A, AC = a, ACB
BC 0 của mặt bên (BCC 0 B0 ) tạo với mặt phẳng (AA0C 0C) một góc 30◦ . Thể tích của khối lăng trụ ABC.A0 B0C 0





2a3 6
4a3 6
a3 6
3
.
B.
.
C. a 6.
D.
.
A.
3
3
3
Câu 77. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 48cm3 .
B. 91cm3 .
C. 64cm3 .
D. 84cm3 .

2.

Câu 78. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
A. 12.
B. 18.
C.
.
D. 27.
2
Câu 79. Cho hàm số y = x3 − 2x2 + x + 1. !Mệnh đề nào dưới đây đúng?
!
1
1
A. Hàm số nghịch biến trên khoảng ; 1 .
B. Hàm số đồng biến trên khoảng ; 1 .
3
3
!
1
C. Hàm số nghịch biến trên khoảng −∞; .
D. Hàm số nghịch biến trên khoảng (1; +∞).
3
Câu 80. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 27cm3 .
B. 46cm3 .
C. 72cm3 .
D. 64cm3 .


Câu 81. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã

√ cho là


πa3 3
πa3 3
πa3 3
πa3 6
A. V =
.
B. V =
.
C. V =
.
D. V =
.
6
2
3
6
Trang 6/10 Mã đề 1


x+3
Câu 82. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng
x−m

(0; +∞)?
A. 2.
B. 3.
C. Vô số.
D. 1.


Câu 83. Phần thực và √
phần ảo của số phức
√ z = 2 − 1 − 3i lần lượt √l

B. Phần thực là √2, phần ảo là 1 − √
3.
A. Phần thực là 1√− 2, phần ảo là −√ 3.
C. Phần thực là 2 − 1, phần ảo là 3.
D. Phần thực là 2 − 1, phần ảo là − 3.
Câu 84. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 12 mặt.
B. 20 đỉnh, 30 cạnh, 12 mặt.
C. 12 đỉnh, 30 cạnh, 20 mặt.
D. 20 đỉnh, 30 cạnh, 20 mặt.
Câu 85. Khối đa diện đều loại {5; 3} có số cạnh
A. 20.
B. 8.

C. 30.

D. 12.

Câu 86. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng

có độ dài lớn hơn 1.
5
5
D. − < m < 0.
A. m ≤ 0.
B. m ≥ 0.
C. m > − .
4
4
1 − xy
Câu 87. [12210d] Xét các số thực dương x, y thỏa mãn log3
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
x + 2y
Pmin của P = x +
√ y.



18 11 − 29
9 11 + 19
9 11 − 19
2 11 − 3
A. Pmin =
. B. Pmin =
. C. Pmin =
. D. Pmin =
.
21
9
9

3
Câu 88. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 x ) = 2 − x bằng
A. 1.
B. 2.
C. 7.
D. 3.
!
3n + 2
2
+ a − 4a = 0. Tổng các phần tử
Câu 89. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
n+2
của S bằng
A. 2.
B. 5.
C. 4.
D. 3.
1 + 2 + ··· + n
Câu 90. [3-1132d] Cho dãy số (un ) với un =
. Mệnh đề nào sau đây đúng?
n2 + 1
A. Dãy số un khơng có giới hạn khi n → +∞.
B. lim un = 1.
1
C. lim un = 0.
D. lim un = .
2
2
Câu 91. [2-c] Giá trị lớn nhất của hàm số y = ln(x + x + 2) trên đoạn [1; 3] là
A. ln 14.

B. ln 4.
C. ln 10.
D. ln 12.
2
ln x
m
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
Câu 92. [3] Biết rằng giá trị lớn nhất của hàm số y =
x
e
số tự nhiên. Tính S = m2 + 2n3
A. S = 135.
B. S = 24.
C. S = 22.
D. S = 32.
3
x −1
Câu 93. Tính lim
x→1 x − 1
A. 3.
B. −∞.
C. +∞.
D. 0.
Câu 94. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {5}.
B. {5; 2}.
C. {3}.
D. {2}.
Câu 95. Khối đa diện đều loại {3; 3} có số cạnh
A. 5.

B. 6.

C. 4.

3
2
Câu 96. Giá√trị cực đại của hàm số y =
√ x − 3x − 3x + 2

A. −3 + 4 2.
B. −3 − 4 2.
C. 3 + 4 2.

D. 8.

D. 3 − 4 2.
Trang 7/10 Mã đề 1


9t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
9t + m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. 2.
B. 0.
C. Vô số.
D. 1.
Z 2
ln(x + 1)
Câu 98. Cho

dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
x2
1
A. 1.
B. 0.
C. 3.
D. −3.
Câu 97. [4] Xét hàm số f (t) =

2

2

sin x
Câu 99.
+ 2cos x lần
√ [3-c] Giá trị nhỏ nhất và giá√trị lớn nhất của hàm số f (x) = 2
√ lượt là
A. 2 và 3.
B. 2 và 2 2.
C. 2 và 3.
D. 2 2 và 3.

Câu 100. Thể tích của khối lập phương có cạnh bằng a 2

3


2a
2

A. V = a3 2.
B. V = 2a3 .
C. 2a3 2.
D.
.
3

Câu 101. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
B. m > .
C. m < .
D. m ≤ .
A. m ≥ .
4
4
4
4
Câu 102. Khối đa diện đều loại {5; 3} có số đỉnh
A. 30.
B. 8.

C. 12.

D. 20.

Câu 103. Khối đa diện đều loại {4; 3} có số đỉnh
A. 8.

B. 4.
C. 6.
!2x−1
!2−x
3
3


Câu 104. Tập các số x thỏa mãn
5
5
A. [1; +∞).
B. (−∞; 1].
C. [3; +∞).

D. (+∞; −∞).

Câu 105. Khối đa diện đều loại {3; 4} có số cạnh
A. 6.
B. 12.

C. 8.

D. 10.

C. 1.

D. 0.

Câu 106. Tính lim

A.

2
.
3

D. 10.

2n2 − 1
3n6 + n4
B. 2.

Câu 107. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng
hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD

√ là

3
3
3
3
8a 3
a 3
8a 3
4a 3
A.
.
B.

.
C.
.
D.
.
3
9
9
9
Câu 108. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung
điểm cạnh√AB, biết S H ⊥ (ABCD). Thể tích khối chóp S .ABCD là

2a3 3
a3
a3
4a3 3
A.
.
B.
.
C.
.
D.
.
3
3
6
3
Câu 109. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp đã cho là 1728. Khi đó, các kích thước của hình hộp

√ là√
A. 2, 4, 8.
B. 8, 16, 32.
C. 2 3, 4 3, 38.
D. 6, 12, 24.
Câu 110. Trong các khẳng định sau, khẳng định nào sai?
A. Cả ba đáp án trên.
B. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.

C. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
D. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
Trang 8/10 Mã đề 1


Câu 111. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
B. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
C. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
D. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
Câu 112. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
9
11
.
C. .
D. 5.
A. 7.
B.
2
2



Câu 113.
Tìm
giá
trị
lớn
nhất
của
hàm
số
y
=
x
+
3
+
6−


√x
A. 2 3.
B. 3.
C. 2 + 3.
D. 3 2.
Câu 114. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. −2.
B. 2.
C. 4.

D. −4.


Câu 115. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách √
từ C đến đường thẳng BB0 bằng 2, khoảng
0
0
cách từ A đến các đường thẳng BB và CC lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
3
2
. Thể tích khối lăng trụ đã cho bằng
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
3


2 3
A. 2.
B.
.
C. 3.
D. 1.
3
!
x+1
Câu 116. [3] Cho hàm số f (x) = ln 2017 − ln
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
2017
2016
4035
.

B.
.
C. 2017.
D.
.
A.
2018
2018
2017
Câu 117. Tứ diện đều thuộc loại
A. {5; 3}.
B. {4; 3}.
C. {3; 4}.
D. {3; 3}.

2
Câu 118.
√ Xác định phần ảo của số phức z = ( 2 + 3i)

A. 6 2.
B. −7.
C. −6 2.
D. 7.
Câu 119. Hàm số nào sau đây khơng có cực trị
1
A. y = x + .
B. y = x4 − 2x + 1.
x

x−2

C. y =
.
D. y = x3 − 3x.
2x + 1
√3
Câu 120. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga a bằng
1
1
A. 3.
B. − .
C. −3.
D. .
3
3
Câu 121. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim+ f (x) = f (a) và lim− f (x) = f (b).
B. lim+ f (x) = f (a) và lim+ f (x) = f (b).
x→a

x→b

x→a

x→b

C. lim− f (x) = f (a) và lim+ f (x) = f (b).

x→a


x→b

x→a

x→b

D. lim− f (x) = f (a) và lim− f (x) = f (b).

Câu 122. Khối đa diện đều loại {4; 3} có số cạnh
A. 30.
B. 20.
C. 10.
log7 16
Câu 123. [1-c] Giá trị của biểu thức
bằng
15
log7 15 − log7 30
A. −2.
B. −4.
C. 4.

D. 12.

D. 2.

Câu 124. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
ab
1
1

ab
A. √
.
B. √
.
C. √
.
D. 2
.
a + b2
a2 + b2
2 a2 + b2
a2 + b2
Trang 9/10 Mã đề 1


1
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
B. xy = −e + 1.
C. xy0 = ey + 1.
D. xy0 = ey − 1.

Câu 125. [3-12217d] Cho hàm số y = ln
A. xy0 = −ey − 1.

n−1
Câu 126. Tính lim 2

n +2
A. 3.
B. 0.

C. 2.

Câu 127. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Ba mặt.
B. Hai mặt.
C. Năm mặt.

D. 1.
D. Bốn mặt.

0

Câu 128. Cho hai đường thẳng d và d cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có một.
B. Có vơ số.
C. Khơng có.
D. Có hai.
Câu 129. Khối chóp ngũ giác có số cạnh là
A. 12 cạnh.
B. 9 cạnh.

C. 10 cạnh.

D. 11 cạnh.
[ = 60◦ , S O

Câu 130. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a. Khoảng cách từ A đến (S
√ BC) bằng


2a 57
a 57
a 57
A.
.
B. a 57.
C.
.
D.
.
19
17
19
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

D


2.

D

3. A

4. A

5. A

6.

B

7. A

8.

B

C

9.
11. A
13.

B
D


12.

C
B

16.

C

18. A

B
C

19.

C

14.

15.
17.

10.

C

20.

21.


D

23.

D

24.

D

25.

D

26.

C

27.

28.

B

29. A

30.

B


31.

32.

C

33. A

34.

C

35.

36. A

37.

38.

C

39. A

40.

C

41.


42.

D

44.

43.

C

C
B
D
B
C
C

B

47.

48.

B

49.

52.


D

45.

46.
50. A

C

D

51. A
B

53.

B

54.

D

55.

56.

D

57.


B

59.

B

58. A
60.

C

61.

B

62.

D

63.

64.

D

65.

66.

B


67.

68.

B

69.
1

D
B
D
C
B


70.

71.

C

72. A

73. A

74.

D


76.
78.

75. A
77.

C

81.

82.

B

83.

84.

B

85.

B
D

91. A

92.


D

93. A

94. A

95.

96. A

97. A
D

98.
C

102.

D

D
C

B

99.

D

101.


D

105.

106.

D

107.

108.

D

109.

110.

C

111.

112.

C

113.

114. A


B
C
D
C
D

115. A
117.

B

118. A

D

119.

120.

D

121. A

122.

D

123.


C
B

125.

124. A
128.

C

103. A

104. A

126.

D

89.

90.

100.

C

87.

C


86.

116.

C

79. A

B

80. A

88.

C

D

127. A

B
D

129.

130. A

2

C




Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×