Tải bản đầy đủ (.pdf) (13 trang)

Đề ôn toán thptqg 7 (304)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (156.01 KB, 13 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
A. − .
B. − 2 .
C. −e.
e
e
Câu 2. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (2; +∞).
B. (0; 2).
C. (−∞; 1).

D. −

1
.
2e

D. R.

Câu 3. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là


A. −e2 .
B. 2e2 .
C. −2e2 .
D. 2e4 .
Câu 4. Khẳng định nào sau đây đúng?
A. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
B. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
C. Hình lăng trụ tứ giác đều là hình lập phương.
D. Hình lăng trụ đứng là hình lăng trụ đều.
Câu 5. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 20 mặt.
B. 12 đỉnh, 30 cạnh, 12 mặt.
C. 20 đỉnh, 30 cạnh, 20 mặt.
D. 20 đỉnh, 30 cạnh, 12 mặt.
x+2
Câu 6. Tính lim
bằng?
x→2
x
A. 3.
B. 1.
C. 2.
D. 0.
Câu 7. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 9 mặt.
C. 6 mặt.
D. 4 mặt.
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).

Câu 8. Cho hình chóp S .ABC có BAC
Thể tích√khối chóp S .ABC là



a3 3
a3 3
a3 2
A.
.
B.
.
C.
.
D. 2a2 2.
24
12
24
Câu 9. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 3.
B. 1.
C. 2.

D. 0.

Câu 10. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 8 mặt.
B. 10 mặt.
C. 6 mặt.


D. 4 mặt.

2

Câu 11. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 7.
B. 8.
C. 6.

D. 5.

Câu 12. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
11
9
A.
.
B. 7.
C. 5.
D. .
2
2
d = 30◦ , biết S BC là tam giác đều
Câu 13. [3] Cho hình chóp S .ABC có đáy là tam giác vuông tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39

a 39
A.
.
B.
.
C.
.
D.
.
26
9
13
16
x−2
Câu 14. Tính lim
x→+∞ x + 3
2
A. −3.
B. 2.
C. − .
D. 1.
3
Trang 1/10 Mã đề 1


Câu 15. Khối đa diện đều loại {3; 4} có số cạnh
A. 8.
B. 6.

C. 12.


D. 10.

Câu 16. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
.
D. 18.
A. 12.
B. 27.
C.
2
Câu 17. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 20 mặt.
B. 12 đỉnh, 30 cạnh, 20 mặt.
C. 20 đỉnh, 30 cạnh, 12 mặt.
D. 12 đỉnh, 30 cạnh, 12 mặt.
Câu 18. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh của khối chóp bằng 2n.
B. Số mặt của khối chóp bằng 2n+1.
C. Số mặt của khối chóp bằng số cạnh của khối chóp.
D. Số đỉnh của khối chóp bằng 2n + 1.
4x + 1
bằng?
x→−∞ x + 1
A. 2.
B. −4.
1 − n2
bằng?
Câu 20. [1] Tính lim 2

2n + 1
1
1
A. − .
B. .
2
2
Câu 19. [1] Tính lim

C. −1.

D. 4.

C. 0.

D.

1
.
3

Câu 21. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3. Tính
f (2) + f (4)?
A. 12.
B. 10.
C. 4.
D. 11.
Câu 22. Khối đa diện đều loại {3; 4} có số đỉnh
A. 8.
B. 4.


C. 10.

Câu 23. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Ba mặt.
B. Bốn mặt.
C. Một mặt.
Câu 24. Hàm số y = x +
A. 1.

1
có giá trị cực đại là
x
B. −1.

C. 2.

Câu 25. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = −3.
B. m = −2.
C. m = −1.

D. 6.
D. Hai mặt.

D. −2.
D. m = 0.

Câu 26. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 − 2; m = 1.

B. M = e−2 + 2; m = 1.
−2
C. M = e + 1; m = 1.
D. M = e2 − 2; m = e−2 + 2.
Câu 27. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối chóp S .ABCD là



a3 15
a3 5
a3 6
3
.
B. a 6.
.
D.
.
A.
C.
3
3
3
Câu 28. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R.
B. D = (0; +∞).

C. D = R \ {1}.

D. D = R \ {0}.


0 0 0 0
0
Câu 29.√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
√ bằng
a 3
a 6
a 6
a 6
A.
.
B.
.
C.
.
D.
.
2
7
2
3

Trang 2/10 Mã đề 1


1
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0

y
B. xy = −e + 1.
C. xy0 = −ey − 1.
D. xy0 = ey − 1.

Câu 30. [3-12217d] Cho hàm số y = ln
A. xy0 = ey + 1.

Câu 31. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
A. 96.

B. 64.

C. 82.

D. 81.

8
x

Câu 32. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có nguyên hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (I) sai.

B. Câu (III) sai.

C. Câu (II) sai.


D. Khơng có câu nào
sai.

Câu 33. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ
C đến đường thẳng BB0 bằng 2, khoảng

cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2
3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng
3


2 3
A.
.
B. 3.
C. 2.
D. 1.
3
9x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
Câu 34. [2-c] Cho hàm số f (x) = x
9 +3
1
A. 2.
B. −1.

C. .
D. 1.
2
Câu 35. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai đường thẳng S B và AD bằng




a 2
a 2
B. a 3.
C.
.
D.
.
A. a 2.
2
3
Câu 36. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {3}.
B. {5; 2}.
C. {5}.
D. {2}.
Câu 37. Trong các mệnh đề dưới đây, mệnh đề nào sai?
A. Nếu lim un
B. Nếu lim un
C. Nếu lim un
D. Nếu lim un


!
un
= a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn
= +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
= a > 0 và lim vn = 0 thì lim
= +∞.
vn !
un
= a , 0 và lim vn = ±∞ thì lim
= 0.
vn

Câu 38. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 10.
B. ln 4.
C. ln 12.
D. ln 14.
1 + 2 + ··· + n
Câu 39. [3-1132d] Cho dãy số (un ) với un =
. Mệnh đề nào sau đây đúng?
n2 + 1
A. lim un = 1.
B. Dãy số un khơng có giới hạn khi n → +∞.
1
C. lim un = .
D. lim un = 0.

2
Trang 3/10 Mã đề 1


Câu 40. Cho hình chóp S .ABCD có √
đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
S .ABCD là
của AD, biết S H ⊥ (ABCD), S A = a 5. Thể tích khối chóp √

2a3
4a3
2a3 3
4a3 3
A.
.
B.
.
C.
.
D.
.
3
3
3
3
Câu 41. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Một hình chóp tam giác và một hình chóp tứ giác.
B. Hai hình chóp tam giác.
C. Một hình chóp tứ giác và một hình chóp ngũ giác.

D. Hai hình chóp tứ giác.
Câu 42. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Khơng có.
B. Có một.
C. Có hai.
D. Có vơ số.
Câu 43. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim− f (x) = f (a) và lim+ f (x) = f (b).
B. lim− f (x) = f (a) và lim− f (x) = f (b).
x→a

x→b

x→a

x→b

C. lim+ f (x) = f (a) và lim− f (x) = f (b).
x+1
bằng
x→+∞ 4x + 3
B. 3.

x→a

x→b

x→a


x→b

D. lim+ f (x) = f (a) và lim+ f (x) = f (b).

Câu 44. Tính lim
A. 1.

C.

1
.
4

D.

1
.
3

x+2
Câu 45. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. 1.
B. 3.
C. Vô số.
D. 2.
Câu 46.

√ [4-1246d] Trong tất cả√các số phức z thỏa mãn |z − i| = 1. Tìm giá trị lớn nhất của |z|
B. 3.
C. 1.
D. 2.
A. 5.
Câu 47. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. −6.
B. 0.
C. 3.
D. −3.
Câu 48. Dãy! số nào có giới hạn bằng 0?
n
6
A. un =
.
B. un = n2 − 4n.
5

!n
−2
C. un =
.
3

D. un =

n3 − 3n
.
n+1


1
Câu 49. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 ln đồng biến trên
3

một đoạn có độ dài bằng 24.
A. m = −3, m = 4.
B. −3 ≤ m ≤ 4.
C. m = 4.
D. m = −3.
!2x−1
!2−x
3
3
Câu 50. Tập các số x thỏa mãn


5
5
A. [3; +∞).
B. [1; +∞).
C. (−∞; 1].
D. (+∞; −∞).
1
Câu 51. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 3.
B. 4.
C. 1.
D. 2.

Câu 52. Mệnh đề nào sau đây sai?
Z
A. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì

f (x)dx = F(x) + C.
Trang 4/10 Mã đề 1


B. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
!0
Z
C.
f (x)dx = f (x).
D. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
Câu 53. [2] Tổng các nghiệm của phương trình 2 x +2x = 82−x là
A. −5.
B. 5.
C. −6.
D. 6.



x = 1 + 3t




Câu 54. [1232h] Trong không gian Oxyz, cho đường thẳng d : 
y = 1 + 4t . Gọi ∆ là đường thẳng đi qua





z = 1
điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương
 trình là











x
=
1
+
7t
x
=
1
+
3t
x
=

−1
+
2t
x = −1 + 2t
















A. 
.
B. 
C. 
y=1+t
y = 1 + 4t .
y = −10 + 11t . D. 
y = −10 + 11t .

















z = 1 + 5t
z = 1 − 5t
z = 6 − 5t
z = −6 − 5t
2

Câu 55.
Z Trong các khẳng định sau, khẳng định nào sai? Z
dx = x + C, C là hằng số.

A.

B.

0dx = C, C là hằng số.


1
xα+1
+ C, C là hằng số.
D.
dx = ln |x| + C, C là hằng số.
α+1
x
Câu 56. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng
hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD

√ là

3
3
3
3
a 3
4a 3
8a 3
8a 3
.
B.
.
C.
.
D.
.
A.

9
9
9
3
Câu 57. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
9
5
23
13
.
B.
.
C. − .
D. −
.
A.
100
25
16
100
1 − xy
Câu 58. [12210d] Xét các số thực dương x, y thỏa mãn log3
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
x + 2y
Pmin của P = x√+ y.



2 11 − 3

9 11 + 19
18 11 − 29
9 11 − 19
A. Pmin =
.
B. Pmin =
. C. Pmin =
. D. Pmin =
.
3
9
21
9
Câu 59. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. 0.
B. 1.
C. e2016 .
D. 22016 .
Z

C.

Z

xα dx =

Câu 60. Khối đa diện đều loại {3; 3} có số đỉnh
A. 5.
B. 4.


C. 3.
D. 2.

Câu 61. Phần thực√và phần ảo của số √
phức z = 2 − 1 − 3i lần lượt √l

A. Phần thực là 2, √
phần ảo là 1 − √
3.
B. Phần thực là √2 − 1, phần ảo là −√ 3.
C. Phần thực là 1 − 2, phần ảo là − 3.
D. Phần thực là 2 − 1, phần ảo là 3.
log 2x
Câu 62. [1229d] Đạo hàm của hàm số y =

x2
1 − 4 ln 2x
1 − 2 log 2x
1 − 2 ln 2x
1
A. y0 =
.
B. y0 =
.
C. y0 = 3
.
D. y0 = 3
.
3

3
2x ln 10
x
x ln 10
2x ln 10
Câu 63. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 6 mặt.
C. 8 mặt.
D. 7 mặt.


Trang 5/10 Mã đề 1


Câu 64. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
B. T = 4 + .
C. T = e + 3.
D. T = e + 1.
A. T = e + .
e
e
Câu 65. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1
B. V = 3S h.
C. V = S h.

D. V = S h.
A. V = S h.
2
3
Câu 66.
!
Z Các khẳng định nào sau
Z đây là sai?
Z
0

f (x)dx = F(x) +C ⇒

A.
Z

Z

f (t)dt = F(t) + C. D.
!
1
1
1
Câu 67. Tính lim
+
+ ··· +
1.2 2.3
n(n + 1)
3
A. 2.

B. .
C. 1.
2
C.

f (x)dx = F(x) + C ⇒

f (u)dx = F(u) +C. B.

Z

f (x)dx = f (x).
Z
k f (x)dx = k
f (x)dx, k là hằng số.

D. 0.

1
Câu 68. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 2 < m ≤ 3.
B. 0 ≤ m ≤ 1.
C. 2 ≤ m ≤ 3.
D. 0 < m ≤ 1.
Câu 69. Dãy số nào sau đây có giới hạn là 0?
n2 + n + 1
1 − 2n
A. un =
.

B. un =
.
2
(n + 1)
5n + n2

n2 − 2
n2 − 3n
.
D.
u
=
.
n
5n − 3n2
n2



x=t




Câu 70. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : 
y = −1 và hai mặt phẳng (P), (Q)





z = −t
lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I
thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).
9
9
B. (x − 3)2 + (y − 1)2 + (z − 3)2 = .
A. (x − 3)2 + (y + 1)2 + (z + 3)2 = .
4
4
9
9
2
2
2
2
2
2
C. (x + 3) + (y + 1) + (z + 3) = .
D. (x + 3) + (y + 1) + (z − 3) = .
4
4
3a
Câu 71. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng

a
2a

a
a 2
B.
.
C. .
D.
.
A. .
3
3
4
3
Câu 72. Giá trị của lim(2x2 − 3x + 1) là
x→1
A. 2.
B. 0.
C. 1.
D. +∞.
Câu 73. Bát diện đều thuộc loại
A. {4; 3}.
B. {5; 3}.

C. un =

C. {3; 3}.

D. {3; 4}.

Câu 74. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt

√ S .ABCD là
√ phẳng vng góc với (ABCD). Thể tích khối chóp
3

a3 3
a3 3
a
2
A.
.
B.
.
C. a3 3.
D.
.
2
4
2
Câu 75. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (0; 1).
B. Hàm số nghịch biến trên khoảng (1; +∞).
C. Hàm số nghịch biến trên khoảng (−∞; 0).
D. Hàm số đồng biến trên khoảng (1; 2).
Trang 6/10 Mã đề 1


Câu 76. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 3.
B. 0.
C. 1.


D. 2.

Câu 77. Khối lập phương thuộc loại
A. {5; 3}.
B. {3; 4}.

D. {4; 3}.

Câu 78. [1] Đạo hàm của làm số y = log x là
ln 10
1
.
B. y0 =
.
A.
10 ln x
x
Câu 79. Phát biểu nào sau đây là sai?

C. {3; 3}.
C. y0 =

1
.
x ln 10

1
D. y0 = .
x


1
= 0.
n
1
C. lim un = c (un = c là hằng số).
D. lim k = 0.
n
Câu 80. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng
thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay
đổi trong thời gian gửi.
A. 0, 8%.
B. 0, 6%.
C. 0, 5%.
D. 0, 7%.
A. lim qn = 0 (|q| > 1).

B. lim

Câu 81. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 4.
B. V = 3.
C. V = 5.
D. V = 6.
x−1 y z+1
= =

Câu 82. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình
2

1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. −x + 6y + 4z + 5 = 0.
B. 2x − y + 2z − 1 = 0.
C. 2x + y − z = 0.
D. 10x − 7y + 13z + 3 = 0.
log(mx)
Câu 83. [1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0 ∨ m = 4.
B. m < 0.
C. m ≤ 0.
D. m < 0 ∨ m > 4.
Câu 84. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
B. k = .
C. k = .
D. k = .
A. k = .
15
9
18

6
Câu 85. Khối đa diện đều loại {4; 3} có số đỉnh
A. 4.
B. 10.
C. 8.
D. 6.
Câu 86. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc
Thể tích khối chóp S .ABC √là
√ với đáy và S C = a 3.3 √

3
a 3
a 6
2a3 6
a3 3
A.
.
B.
.
C.
.
D.
.
2
12
9
4
Câu 87. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.

Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. V = 4π.
B. 16π.
C. 32π.
D. 8π.
Câu 88. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {5; 3}.
B. {3; 3}.
C. {4; 3}.

D. {3; 4}.

Câu 89. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể√tích của khối chóp S .ABC√ theo a

a3 15
a3
a3 5
a3 15
A.
.
B.
.
C.
.
D.
.
5
25
3

25
Trang 7/10 Mã đề 1


Câu 90. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối √
chóp S .ABMN là



3
5a 3
2a3 3
a3 3
4a3 3
A.
.
B.
.
C.
.
D.
.
3
3
2
3
1
Câu 91. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.

3
A. (1; 3).
B. (1; +∞).
C. (−∞; 1) và (3; +∞). D. (−∞; 3).
Câu 92. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Chỉ có (I) đúng.

B. Cả hai câu trên sai.

C. Chỉ có (II) đúng.

D. Cả hai câu trên đúng.

Câu 93. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là 3, phần ảo là −4.
B. Phần thực là −3, phần ảo là −4.
C. Phần thực là −3, phần ảo là 4.
D. Phần thực là 3, phần ảo là 4.
Câu 94. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có

thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 24.
B. 21.
C. 23.
D. 22.
Câu 95. Hàm số nào sau đây khơng có cực trị
1
x−2
.
C. y = x4 − 2x + 1.
D. y = x + .
A. y = x3 − 3x.
B. y =
2x + 1
x
Câu 96. [3] Cho khối chóp S .ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
2a
5a
a
8a
.
B.
.
C.
.
D. .
A.
9

9
9
9
Câu 97. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối bát diện đều. B. Khối 12 mặt đều.
C. Khối 20 mặt đều.
D. Khối tứ diện đều.
Câu 98. Khối đa diện đều loại {5; 3} có số cạnh
A. 12.
B. 8.

C. 30.

D. 20.

Câu 99. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C)√và (A0C 0 D) bằng



a 3
2a 3
a 3
A.
.
B. a 3.
C.
.
D.
.

3
2
2
!
3n + 2
2
Câu 100. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 2.
B. 4.
C. 5.
D. 3.
Câu 101. [1] Tập
! xác định của hàm số! y = log3 (2x + 1) là
!
1
1
1
A. − ; +∞ .
B. −∞; .
C.
; +∞ .
2
2
2

!
1

D. −∞; − .
2
Trang 8/10 Mã đề 1


Câu 102. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 3.
B. 8.
C. 6.
D. 4.
Câu 103. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|




12 17
B.
.
C. 68.
D. 34.
A. 5.
17
Câu 104. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. log2 13.
B. 13.
C. 2020.
D. log2 2020.
Câu 105. Cho hình chóp S .ABCD

√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng

√ góc với đáy, S C = a3 3. Thể tích khối chóp S 3.ABCD

a3 3
a
a 3
A.
.
B.
.
C.
.
D. a3 .
9
3
3
Câu 106. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính quãng đường chất
điểm đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 8 m.
B. 24 m.
C. 12 m.
D. 16 m.
2n − 3
bằng
Câu 107. Tính lim 2
2n + 3n + 1
A. 1.
B. −∞.

C. +∞.
D. 0.
Câu 108. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Cả hai đều đúng.
B. Chỉ có (I) đúng.

C. Cả hai đều sai.

D. Chỉ có (II) đúng.

Câu 109. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18. √
A. 9.
B. 8.
C. 27.
D. 3 3.
Câu 110. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Hai đường phân giác y = x và y = −x của các góc tọa độ.
B. Trục thực.
C. Trục ảo.
D. Đường phân giác góc phần tư thứ nhất.
Câu 111. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 70, 128 triệu đồng. B. 50, 7 triệu đồng.
C. 3, 5 triệu đồng.
D. 20, 128 triệu đồng.
Câu 112. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu khơng

rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất khơng thay đổi và người đó khơng rút tiền ra?
A. 11 năm.
B. 14 năm.
C. 12 năm.
D. 10 năm.
d = 300 .
Câu 113. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vng tại A. BC = 2a, ABC
0
Độ dài cạnh bên

√ CC = 3a. Thể tích V của khối lăng trụ đã cho.
3

a3 3
3a 3
3
3
.
B. V = 3a 3.
C. V = 6a .
D. V =
.
A. V =
2
2
Trang 9/10 Mã đề 1



Câu 114. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 48cm3 .
B. 91cm3 .
C. 64cm3 .
D. 84cm3 .
x2 − 3x + 3
đạt cực đại tại
Câu 115. Hàm số y =
x−2
A. x = 0.
B. x = 2.
C. x = 3.
D. x = 1.
Câu 116. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(−4; 8).
B. A(4; −8).
C. A(−4; −8)(.
D. A(4; 8).
Câu 117. Cho số phức z thỏa mãn |z√+ 3| = 5 và |z − 2i| = |z − 2 − 2i|. Tính |z|.

A. |z| = 10.
B. |z| = 17.
C. |z| = 17.
D. |z| = 10.
Câu 118. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng (S AB). Thiết diện của
√ hình chóp S .ABCD với
√mặt phẳng (AIC) có diện

√tích là
2
2
2
2
11a
a 2
a 5
a 7
A.
.
B.
.
C.
.
D.
.
32
4
16
8
Câu 119. Khối chóp ngũ giác có số cạnh là
A. 9 cạnh.
B. 11 cạnh.
C. 12 cạnh.
D. 10 cạnh.
3

Câu 120. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e3 .

B. e5 .
C. e2 .
D. e.
Câu 121. Giá trị của lim (3x2 − 2x + 1)
x→1
A. 1.
B. 3.

C. 2.

D. +∞.

0

Câu 122. Cho hai đường thẳng phân biệt d và d đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Khơng có.
B. Có một hoặc hai.
C. Có hai.
D. Có một.
Câu 123. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
0 0
ABC.A0 B
√ C là

3
a 3
a3
a3 3
3

A.
.
B. a .
C.
.
D.
.
2
3
6
Câu 124. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 3.
B. 2.
C. 1.
D. 5.
2
3
7n − 2n + 1
Câu 125. Tính lim 3
3n + 2n2 + 1
7
2
A. 0.
B. .
C. - .
D. 1.
3
3
6
Câu 126. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x2 f (x3 ) − √

. Tính
3x
+
1
Z 1
f (x)dx.
0

A. −1.

B. 4.

C. 6.

D. 2.

Câu 127. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai
quyển sách cùng một môn nằm cạnh nhau là
2
1
1
9
A. .
B. .
C.
.
D.
.
5
5

10
10
π
Câu 128. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3

trị của biểu √
thức T = a + b 3.

A. T = 3 3 + 1.
B. T = 2 3.
C. T = 4.
D. T = 2.
Trang 10/10 Mã đề 1


Câu 129. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−∞; −1) và (0; +∞). B. (0; 1).
C. (−1; 0).
D. (−∞; 0) và (1; +∞).
2−n
Câu 130. Giá trị của giới hạn lim
bằng
n+1
A. 1.
B. −1.
C. 2.
D. 0.
- - - - - - - - - - HẾT- - - - - - - - - -


Trang 11/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

D

2.

B

3. A

4.

B

5. A

6.

C

7. A

8.


C

10.

C

D

9.
11. A

12.

D

13.

C

14.

D

15.

C

16.

D


17.

C

18. A
D

19.

20. A

21. A

22.

D
D

23.

B

24.

25.

B

26. A


27.

D

28. A

29.

D

30.

D

31.

D

32.

D
D

33.

C

34.


35.

C

36.

37.

C

38.

39.

C

40.

41.

B

43.

C

44.

C


46.

47.

D

48.

C

53. A

D
C

50.

B

52.

B

54.

55.

C

56. A


C

57.

D

58. A

59. A
61.

B
C

D

51.

D

42.

45.
49. A

C

60.
B


63. A

62.

C

64.

C

65.

C

66. A

67.

C

68. A
1

B


69.

B


70. A

71.

B

72.

73.

D

74. A

75. A

76.

77.

B

D

B

78.

C


79. A

80.

D

81. A

82.

D

83. A

85.

86.

B

88. A

89.

B

90.

C

C

91.

C

92.

D

93.

C

94.

D

95.

B

97.

96. A
98.

C

99. A


100.

101. A

C
B

102. A

103.

B

104. A

105.

B

106.

D
D

107.

D

108.


109.

D

110. A

111.

D

112. A

113. A

114.

C

115.

D

116.

D

117.

D


118.

D

119.

D

120.

B

122.

B

124.

B

126.

B

121.

C

123. A

125.

C

127.
129.

D

128.

C

130.

2

C
B



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×