TỐN PDF LATEX
TRẮC NGHIỆM ƠN THI MƠN TỐN THPT
(Đề thi có 11 trang)
Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
4
Câu 1. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 :
7
5
5
A. a 3 .
B. a 8 .
C. a 3 .
√3
a2 bằng
Câu 2. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
1
A. 2.
B. 1.
C. .
2
3
2
Câu 3. Hàm số y = x − 3x + 4 đồng biến trên:
A. (0; 2).
B. (−∞; 0) và (2; +∞). C. (−∞; 2).
2
D. a 3 .
D.
ln 2
.
2
D. (0; +∞).
Câu 4. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với đáy một góc 60◦ . Thể tích√khối chóp S .ABCD là
√
√
√
a3 3
2a3 3
a3 3
3
B.
.
C.
.
D.
.
A. a 3.
6
3
3
!
x+1
Câu 5. [3] Cho hàm số f (x) = ln 2017 − ln
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
2016
2017
4035
.
B. 2017.
C.
.
D.
.
A.
2018
2017
2018
Câu 6. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 1.
B. 3.
C. 4.
D. 2.
Câu 7. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
A. m ≥ 0.
B. m ≤ 0.
C. m > − .
D. − < m < 0.
4
4
1
Câu 8. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
xy + 1
0
y
0
A. xy = −e − 1.
B. xy = −e + 1.
C. xy0 = ey + 1.
D. xy0 = ey − 1.
Câu 9. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m < 3.
B. m > 3.
C. m ≥ 3.
D. m ≤ 3.
Câu 10. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 22.
B. 21.
C. 23.
D. 24.
Câu 11. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (4; +∞).
B. (4; 6, 5].
C. [6, 5; +∞).
D. (−∞; 6, 5).
Câu 12. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 12 cạnh, 4 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
Trang 1/11 Mã đề 1
Câu 13. Tính lim
x→2
A. 3.
x+2
bằng?
x
B. 2.
C. 1.
D. 0.
Câu 14. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
ab
ab
1
1
A. √
.
B. 2
.
C. √
.
D. √
.
2
a +b
a2 + b2
a2 + b2
2 a2 + b2
Câu 15. Tính lim
x→+∞
x−2
x+3
2
D. 1.
C. − .
3
Câu 16. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
1637
1079
23
1728
A.
.
B.
.
C.
.
D.
.
4913
4913
68
4913
x2 − 12x + 35
Câu 17. Tính lim
x→5
25 − 5x
2
2
A. +∞.
B. −∞.
C. .
D. − .
5
5
3
2
Câu 18. Hàm số y = 2x + 3x + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−∞; 0) và (1; +∞). B. (−∞; −1) và (0; +∞). C. (0; 1).
D. (−1; 0).
A. −3.
B. 2.
Câu 19. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 4 mặt.
C. 6 mặt.
D. 9 mặt.
!
1
1
1
+
+ ··· +
Câu 20. Tính lim
1.2 2.3
n(n + 1)
3
A. 2.
B. 0.
C. 1.
D. .
2
2
2n − 1
Câu 21. Tính lim 6
3n + n4
2
D. 0.
A. 1.
B. 2.
C. .
3
Câu 22. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. 0.
B. −3.
C. 3.
D. −6.
Câu 23. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. 13.
B. 2020.
C. log2 13.
D. log2 2020.
Câu 24. Trong các mệnh đề dưới đây, mệnh đề nào sai?
A. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
B. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn
!
un
C. Nếu lim un = a > 0 và lim vn = 0 thì lim
= +∞.
vn !
un
D. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.
vn
Câu 25.
!0 nào sau đây sai?
Z Mệnh đề
A.
f (x)dx = f (x).
Z
B. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
f (x)dx = F(x) + C.
Trang 2/11 Mã đề 1
C. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
D. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
Câu 26. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
.
C.
.
D.
.
A. a3 .
B.
6
12
24
Câu 27. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 4 mặt.
C. 5 mặt.
D. 6 mặt.
Câu 28. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có hai.
B. Có một.
C. Có vơ số.
D. Khơng có.
q
2
Câu 29. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 = 0
√ i
h
có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 2].
B. m ∈ [0; 1].
C. m ∈ [−1; 0].
D. m ∈ [0; 4].
m
ln2 x
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
Câu 30. [3] Biết rằng giá trị lớn nhất của hàm số y =
x
e
số tự nhiên. Tính S = m2 + 2n3
A. S = 32.
B. S = 22.
C. S = 135.
D. S = 24.
log2 240 log2 15
Câu 31. [1-c] Giá trị biểu thức
−
+ log2 1 bằng
log3,75 2 log60 2
A. −8.
B. 1.
C. 4.
D. 3.
Câu 32. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối lăng trụ tam giác.
B. Khối bát diện đều.
C. Khối tứ diện.
D. Khối lập phương.
Câu 33. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Cả hai câu trên đúng. B. Cả hai câu trên sai.
C. Chỉ có (I) đúng.
Câu 35. Khối đa diện đều loại {3; 5} có số đỉnh
A. 12.
B. 8.
C. 30.
D. Chỉ có (II) đúng.
! x3 −3mx2 +m
1
Câu 34. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
nghịch biến trên
π
khoảng (−∞; +∞)
A. m ∈ R.
B. m ∈ (0; +∞).
C. m , 0.
D. m = 0.
D. 20.
Câu 36. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M,
√ N, P bằng
√
√
√
20 3
14 3
A.
.
B. 6 3.
C. 8 3.
D.
.
3
3
Trang 3/11 Mã đề 1
Câu 37. [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc là mơn Tốn. Mơn thi này dưới hình thức
trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng. Mỗi câu trả lời đúng
được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm. Bạn An học kém mơn Tốn nên quyết định chọn
ngẫu nhiên hết 50 câu trả lời. Xác suất để bạn An đạt 4 điểm mơn Tốn là
C 40 .(3)10
C 20 .(3)30
C 20 .(3)20
C 10 .(3)40
B. 50 50 .
C. 50 50 .
D. 50 50 .
A. 50 50 .
4
4
4
4
x2 +2x
2−x
Câu 38. [2] Tổng các nghiệm của phương trình 2
= 8 là
A. −5.
B. 6.
C. 5.
D. −6.
Câu 39. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 1134 m.
B. 1202 m.
C. 6510 m.
D. 2400 m.
!2x−1
!2−x
3
3
Câu 40. Tập các số x thỏa mãn
≤
là
5
5
A. [3; +∞).
B. [1; +∞).
C. (−∞; 1].
D. (+∞; −∞).
Câu 41. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính qng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 12 m.
B. 16 m.
C. 24 m.
D. 8 m.
Câu 42. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 + 2e
1 + 2e
1 − 2e
1 − 2e
A. m =
.
B. m =
.
C. m =
.
D. m =
.
4e + 2
4 − 2e
4e + 2
4 − 2e
Câu 43. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là 4, phần ảo là −1.
B. Phần thực là 4, phần ảo là 1.
C. Phần thực là −1, phần ảo là −4.
D. Phần thực là −1, phần ảo là 4.
Câu 44. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 9 lần.
B. Tăng gấp 3 lần.
C. Tăng gấp 18 lần.
D. Tăng gấp 27 lần.
tan x + m
nghịch biến trên khoảng
Câu 45. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
m tan x + 1
π
0; .
4
A. (−∞; 0] ∪ (1; +∞). B. (1; +∞).
C. [0; +∞).
D. (−∞; −1) ∪ (1; +∞).
a
1
Câu 46. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
A. 7.
B. 1.
C. 4.
D. 2.
Câu 47. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng
√
a
a 3
a
A. .
B.
.
C. .
D. a.
3
2
2
Câu 48. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
67
A.
.
B. −7.
C. −4.
D. −2.
27
d = 300 .
Câu 49. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vuông tại A. BC = 2a, ABC
Độ dài cạnh bên CC 0 = 3a. Thể tích V √của khối lăng trụ đã cho.
√
√
3a3 3
a3 3
3
3
.
C. V = 3a 3.
D. V =
.
A. V = 6a .
B. V =
2
2
√
√
Câu 50. Phần thực và √
phần ảo của số phức
√ z = 2 − 1 − 3i lần lượt √l
√
A. Phần thực là 1√− 2, phần ảo là −√ 3.
B. Phần thực là √2 − 1, phần ảo là −√ 3.
C. Phần thực là 2, phần ảo là 1 − 3.
D. Phần thực là 2 − 1, phần ảo là 3.
Trang 4/11 Mã đề 1
Câu 51. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 70, 128 triệu đồng. B. 50, 7 triệu đồng.
C. 3, 5 triệu đồng.
D. 20, 128 triệu đồng.
Câu 52. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Thập nhị diện đều. B. Tứ diện đều.
C. Nhị thập diện đều.
D. Bát diện đều.
Câu 53. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 6.
B. −1.
C. 1.
D. 2.
Câu 54. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
B. k = .
C. k = .
D. k = .
A. k = .
6
15
18
9
Câu 55. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m > .
B. m ≤ .
C. m < .
D. m ≥ .
4
4
4
4
Câu 56. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
D. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
√
√
4n2 + 1 − n + 2
Câu 57. Tính lim
bằng
2n − 3
3
A. +∞.
B. .
C. 2.
D. 1.
2
Câu 58. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. n3 lần.
B. 2n3 lần.
C. 2n2 lần.
D. n3 lần.
Câu 59. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 2.
B. 3.
C. Vơ nghiệm.
D. 1.
Câu 60. [2]√Tìm m để giá trị nhỏ nhất của hàm số y = 2x3 + (m2 + 1)2 x trên [0; 1] bằng 2√
A. m = ± 2.
B. m = ±1.
C. m = ±3.
D. m = ± 3.
Câu 61. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
A. f 0 (0) = 10.
B. f 0 (0) = 1.
C. f 0 (0) = ln 10.
D. f 0 (0) =
1
.
ln 10
Câu 62. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
B. Số đỉnh của khối chóp bằng số mặt của khối chóp.
C. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
D. Số cạnh của khối chóp bằng số mặt của khối chóp.
Câu 63. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số đồng biến trên khoảng (0; 2).
B. Hàm số nghịch biến trên khoảng (−∞; 2).
C. Hàm số nghịch biến trên khoảng (0; 2).
D. Hàm số đồng biến trên khoảng (0; +∞).
Câu 64. Cho
√ số phức z thỏa mãn |z + 3| = 5 và |z − 2i| = |z − 2√− 2i|. Tính |z|.
A. |z| = 17.
B. |z| = 10.
C. |z| = 10.
D. |z| = 17.
Trang 5/11 Mã đề 1
Câu 65. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 13.
B. 0.
C. 9.
D. Không tồn tại.
Câu 66. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
B. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
C. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
D. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
Câu 67. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
9
11
.
C. .
D. 7.
A. 5.
B.
2
2
[ = 60◦ , S A ⊥ (ABCD).
Câu 68. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng√ khoảng cách từ A đến cạnh S C là a. Thể tích khối√chóp S .ABCD là
√
√
a3 2
a3 2
a3 3
3
.
B. a 3.
C.
.
D.
.
A.
6
4
12
Câu 69. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 2.
B. 1.
C. 3.
D. 0.
Câu 70. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 3.
B. 27.
C. 10.
Câu 71. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 3.
B. 1.
C. 2.
D. 12.
1
3|x−1|
= 3m − 2 có nghiệm duy
D. 4.
8
Câu 72. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 81.
B. 64.
C. 82.
D. 96.
Câu 73. Trong các khẳng định sau, khẳng định nào sai?
A. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
Z
u0 (x)
B.
dx = log |u(x)| + C.
u(x)
C. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
D. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
Câu 74. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (I) và (III).
B. (I) và (II).
C. (II) và (III).
D. Cả ba mệnh đề.
Câu 75. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối√chóp S .ABMN là
√
√
√
2a3 3
5a3 3
4a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
2
3
3
3
Trang 6/11 Mã đề 1
Câu 76. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai đường thẳng BD và S C bằng
√
√
√
√
a 6
a 6
a 6
B.
A. a 6.
.
C.
.
D.
.
3
6
2
Câu 77. [1] Hàm số nào đồng√biến trên khoảng (0; +∞)?
A. y = loga x trong đó a = 3 − 2.
B. y = log π4 x.
√
D. y = log 14 x.
C. y = log 2 x.
Câu 78. [1] Cho a > 0, a , 1. Giá trị của biểu thức log 1a a2 bằng
1
1
A. − .
B. 2.
C. −2.
D. .
2
2
Câu 79. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 20 mặt.
B. 20 đỉnh, 30 cạnh, 20 mặt.
C. 12 đỉnh, 30 cạnh, 12 mặt.
D. 20 đỉnh, 30 cạnh, 12 mặt.
t
9
Câu 80. [4] Xét hàm số f (t) = t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
9 + m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. 1.
B. 0.
C. 2.
D. Vô số.
Câu 81. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1
1
B. .
C. 4.
D. .
A. .
2
8
4
Câu 82.√Thể tích của tứ diện đều √
cạnh bằng a
√
√
3
3
a 2
a 2
a3 2
a3 2
A.
.
B.
.
C.
.
D.
.
4
6
12
2
Câu 83. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 2.
B. 1.
C. 3.
D. Vô nghiệm.
x+3
Câu 84. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng
x−m
(0; +∞)?
A. 1.
B. 3.
C. Vô số.
D. 2.
ln x p 2
1
Câu 85. Gọi F(x) là một nguyên hàm của hàm y =
ln x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
1
8
8
1
A. .
B. .
C. .
D. .
3
9
3
9
3
2
Câu 86. Hàm số y = x − 3x + 3x − 4 có bao nhiêu cực trị?
A. 3.
B. 2.
C. 1.
D. 0.
3
Câu 87. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e3 .
B. e2 .
C. e5 .
Câu 88. Phát biểu nào sau đây là sai?
1
A. lim √ = 0.
n
n
C. lim q = 1 với |q| > 1.
D. e.
1
= 0 với k > 1.
nk
D. lim un = c (Với un = c là hằng số).
B. lim
log 2x
Câu 89. [1229d] Đạo hàm của hàm số y =
là
x2
1 − 2 ln 2x
1 − 4 ln 2x
1 − 2 log 2x
A. y0 = 3
.
B. y0 =
.
C. y0 =
.
3
x ln 10
2x ln 10
x3
Câu 90. Dãy số nào sau đây có giới hạn là 0?
n2 + n + 1
n2 − 2
1 − 2n
A. un =
.
B.
u
=
.
C. un =
.
n
2
2
(n + 1)
5n − 3n
5n + n2
D. y0 =
D. un =
2x3
1
.
ln 10
n2 − 3n
.
n2
Trang 7/11 Mã đề 1
Câu 91. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (1; +∞).
B. Hàm số nghịch biến trên khoảng (−∞; 0).
C. Hàm số đồng biến trên khoảng (1; 2).
D. Hàm số nghịch biến trên khoảng (0; 1).
Câu 92. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (2; +∞).
B. (0; 2).
C. (−∞; 1).
D. R.
2
Câu 93. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 1 − log2 3.
B. 1 − log3 2.
C. 2 − log2 3.
D. 3 − log2 3.
Câu 94. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. 2e2 .
B. −e2 .
C. −2e2 .
D. 2e4 .
Câu 95. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
.
C. log2 a =
.
D. log2 a = loga 2.
A. log2 a = − loga 2.
B. log2 a =
log2 a
loga 2
Câu 96. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 4.
B. V = 5.
C. V = 3.
D. V = 6.
Câu 97. Khối đa diện đều loại {5; 3} có số mặt
A. 30.
B. 20.
D. 8.
Z 1
6
2
3
. Tính
f (x)dx.
Câu 98. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
0
3x + 1
A. −1.
B. 6.
C. 12.
C. 2.
D. 4.
1
Câu 99. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. (−∞; −2) ∪ (−1; +∞). B. −2 < m < −1.
C. (−∞; −2] ∪ [−1; +∞). D. −2 ≤ m ≤ −1.
Câu 100. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ơng muốn hồn
nợ ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng không đổi trong thời gian ông A hoàn nợ.
(1, 01)3
120.(1, 12)3
triệu.
B.
m
=
triệu.
A. m =
(1, 12)3 − 1
(1, 01)3 − 1
100.1, 03
100.(1, 01)3
C. m =
triệu.
D. m =
triệu.
3
3
Z 1
Câu 101. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
0
1
1
.
C. 1.
D. .
2
4
Câu 102. Hàm số nào sau đây khơng có cực trị
1
x−2
A. y =
.
B. y = x4 − 2x + 1.
C. y = x + .
D. y = x3 − 3x.
2x + 1
x
Câu 103. Tính thể tích khối lập phương biết tổng diện tích√tất cả các mặt bằng 18.
A. 27.
B. 9.
C. 3 3.
D. 8.
A. 0.
B.
Câu 104. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Một mặt.
B. Ba mặt.
C. Hai mặt.
D. Bốn mặt.
Câu 105. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối lập phương.
D. Khối 12 mặt đều.
C. Khối bát diện đều.
Trang 8/11 Mã đề 1
Câu 106. Trong các khẳng định sau, khẳng định nào sai?
A. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
B. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
C. Cả ba đáp án trên.
√
D. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
Câu 107. Khối chóp ngũ giác có số cạnh là
A. 11 cạnh.
B. 12 cạnh.
C. 9 cạnh.
D. 10 cạnh.
Câu 108. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 9 mặt.
C. 3 mặt.
D. 6 mặt.
Z 3
a
a
x
Câu 109. Cho I =
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá
√
d
d
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = 16.
B. P = −2.
C. P = 4.
D. P = 28.
√
Câu 110. Thể tích của khối lập phương có cạnh bằng a 2 √
√
√
2a3 2
B. V = a3 2.
C.
.
D. V = 2a3 .
A. 2a3 2.
3
Câu 111. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 72.
B. 0, 8.
C. 7, 2.
D. −7, 2.
Câu 112. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 64cm3 .
B. 72cm3 .
C. 27cm3 .
D. 46cm3 .
Câu 113. Tính lim
x→3
x2 − 9
x−3
C. +∞.
√
Câu 114. Xác định phần ảo của số phức z = ( 2 + 3i)2
√
A. 7.
B. −7.
C. −6 2.
A. 6.
B. −3.
D. 3.
√
D. 6 2.
Câu 115. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng
cách giữa
√ hai đường thẳng S B và√AD bằng
√
√
a 2
a 2
.
B.
.
C. a 2.
D. a 3.
A.
2
3
1 + 2 + ··· + n
Câu 116. [3-1132d] Cho dãy số (un ) với un =
. Mệnh đề nào sau đây đúng?
n2 + 1
1
A. lim un = .
B. lim un = 0.
2
C. lim un = 1.
D. Dãy số un khơng có giới hạn khi n → +∞.
Câu 117. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1
A. 9.
B. 7.
C. 5.
D. 0.
Câu 118. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m < 3.
B. m ≥ 3.
C. m > 3.
D. m ≤ 3.
Câu 119. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 84cm3 .
B. 91cm3 .
C. 48cm3 .
D. 64cm3 .
Trang 9/11 Mã đề 1
Câu 120. Cho hình chóp S .ABCD có√đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết
√ S H ⊥ (ABCD), S A =
√a 5. Thể tích khối chóp3 S .ABCD là
4a3 3
2a3 3
2a
4a3
A.
.
B.
.
C.
.
D.
.
3
3
3
3
√
Câu 121. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.
√ tích khối chóp S .ABC3 √
√
√
a3 6
a 6
a3 6
a3 2
A.
.
B.
.
C.
.
D.
.
18
6
36
6
Câu 122. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m ≤ .
B. m > .
C. m < .
D. m ≥ .
4
4
4
4
x
Câu 123. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 ) = 2 − x bằng
A. 7.
B. 2.
C. 1.
D. 3.
0 0 0 0
Câu 124.
a. Khoảng cách từ C đến √
AC 0 bằng
√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh √
a 6
a 6
a 6
a 3
A.
.
B.
.
C.
.
D.
.
3
7
2
2
Câu 125. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của
nó
A. Tăng lên n lần.
B. Tăng lên (n − 1) lần. C. Giảm đi n lần.
D. Không thay đổi.
x−1 y z+1
Câu 126. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình
= =
và
2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. 2x + y − z = 0.
B. 10x − 7y + 13z + 3 = 0.
C. 2x − y + 2z − 1 = 0.
D. −x + 6y + 4z + 5 = 0.
Câu 127.
hạn là 0?
!n Dãy số nào sau đây có !giới
n
4
1
.
B.
.
A.
3
e
!n
5
C.
.
3
!n
5
D. − .
3
Câu 128. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {4; 3}.
B. {5; 3}.
C. {3; 4}.
D. {3; 5}.
Câu 129. Khối lập phương thuộc loại
A. {4; 3}.
B. {3; 3}.
D. {5; 3}.
C. {3; 4}.
Câu 130. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. f (x) có giới hạn hữu hạn khi x → a.
B. lim+ f (x) = lim− f (x) = a.
x→a
x→a
C. lim f (x) = f (a).
D. lim+ f (x) = lim− f (x) = +∞.
x→a
x→a
x→a
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 10/11 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
3.
D
2. A
4.
B
D
5.
7.
C
9.
C
6.
D
10. A
B
12.
13.
B
14. A
D
17.
B
8.
11.
15.
D
B
16. A
18.
C
19. A
D
20.
21.
D
22.
C
B
23.
C
24.
C
25.
C
26.
C
27.
28. A
B
C
29.
30. A
31. A
32.
33. A
34.
35. A
36.
37.
D
41.
40.
B
48.
49.
D
50.
51.
D
52. A
53. A
55.
B
58.
D
D
D
62.
B
63. A
65.
D
67.
69.
C
1
B
59.
61.
66.
B
D
B
C
D
57.
60.
68.
C
46. A
B
D
64.
B
44.
47.
56.
B
42.
43. A
45.
D
38. A
C
39.
C
C
B
C
D
70. A
71.
B
72. A
73.
B
74.
75. A
B
76.
C
77.
78.
C
79. A
80.
C
81.
82.
C
83. A
84.
B
85.
D
86.
C
D
B
87.
88.
C
89. A
90.
C
91.
C
D
92.
B
93.
C
94.
B
95.
C
97.
C
96. A
98.
100.
99.
D
101.
B
102. A
D
105. A
106.
D
107.
C
109.
111.
D
D
C
112.
114.
115. A
116. A
117. A
118.
119.
C
110. A
113. A
D
D
B
120.
121. A
125.
B
103.
104.
123.
D
D
122. A
B
124. A
C
126.
127. A
128.
129. A
130.
2
B
D
C