Tải bản đầy đủ (.pdf) (13 trang)

Đề ôn tập toán thptqg 8 (357)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (153.3 KB, 13 trang )

Free LATEX

BÀI TẬP TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút
Mã đề thi 1

Câu 1. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) =
A. 1.

B. 2.

Câu 2. Khối đa diện đều loại {4; 3} có số đỉnh
A. 6.
B. 10.

a
1
+
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
C. 4.
D. 7.
C. 4.

D. 8.

Câu 3. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.


B. 6 mặt.
C. 3 mặt.
D. 9 mặt.
Câu 4. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. −2e2 .
B. 2e4 .
C. 2e2 .
D. −e2 .
Câu 5. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = −21.
B. P = 10.
C. P = 21.
D. P = −10.
Câu 6. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
.
B. log2 a =
.
C. log2 a = − loga 2.
D. log2 a = loga 2.
A. log2 a =
log2 a
loga 2

Câu 7. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.



√ tích khối chóp S .ABC3 √
3
a 6
a3 6
a3 6
a 2
.
B.
.
C.
.
D.
.
A.
6
36
6
18
d = 30◦ , biết S BC là tam giác đều
Câu 8. [3] Cho hình chóp S .ABC có đáy là tam giác vng tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
A.
.

B.
.
C.
.
D.
.
13
16
9
26
log2 240 log2 15
Câu 9. [1-c] Giá trị biểu thức

+ log2 1 bằng
log3,75 2 log60 2
A. 1.
B. 3.
C. 4.
D. −8.
log 2x
Câu 10. [3-1229d] Đạo hàm của hàm số y =

x2
1 − 2 ln 2x
1 − 4 ln 2x
1 − 2 log 2x
1
0
0
A. y0 = 3

.
B. y0 =
.
C.
y
=
.
D.
y
=
.
x ln 10
2x3 ln 10
x3
2x3 ln 10
Câu 11. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó không rút tiền
ra.
A. 212 triệu.
B. 220 triệu.
C. 210 triệu.
D. 216 triệu.
Câu 12. Khối đa diện đều loại {3; 3} có số đỉnh
A. 3.
B. 5.

C. 4.


D. 2.

Câu 13. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
ab
1
1
ab
A. √
.
B. √
.
C. √
.
D. 2
.
a + b2
a2 + b2
2 a2 + b2
a2 + b2
Trang 1/10 Mã đề 1


Câu 14. [2]√Tìm m để giá trị lớn nhất của hàm số y = 2x3 + (m2√+ 1)2 x trên [0; 1] bằng 8
A. m = ± 2.
B. m = ±3.
C. m = ± 3.
D. m = ±1.
π
Câu 15. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá

3

trị của biểu √
thức T = a + b 3.

A. T = 3 3 + 1.
B. T = 4.
C. T = 2 3.
D. T = 2.
Câu 16. Giá√trị cực đại của hàm số y√= x3 − 3x2 − 3x + 2

B. 3 + 4 2.
C. −3 + 4 2.
A. −3 − 4 2.


D. 3 − 4 2.

Câu 17. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng




a 6
B. a 6.
C.
.
D. 2a 6.
A. a 3.

2
Câu 18. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 1587 m.
B. 25 m.
C. 387 m.
D. 27 m.
Câu 19. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
7
5
A. .
B. .
C. 9.
D. 6.
2
2
Câu 20. [3] Biết rằng giá trị lớn nhất của hàm số y =
số tự nhiên. Tính S = m2 + 2n3
A. S = 22.
B. S = 135.

m
ln2 x
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
x
e


C. S = 24.

D. S = 32.

Câu 21. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 + 1; m = 1.
B. M = e−2 + 2; m = 1.
C. M = e2 − 2; m = e−2 + 2.
D. M = e−2 − 2; m = 1.
Câu 22. Khối đa diện đều loại {3; 3} có số cạnh
A. 5.
B. 8.

C. 4.

D. 6.

Câu 23. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
5
23
13
9
A. − .
B. −
.
C.
.
D.

.
16
100
100
25

Câu 24. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) √
bằng


a 38
3a 58
3a
3a 38
A.
.
B.
.
C.
.
D.
.
29
29
29
29
Câu 25. Cho z là√nghiệm của phương trình√ x2 + x + 1 = 0. Tính P = z4 + 2z3 − z
−1 + i 3

−1 − i 3
A. P =
.
B. P =
.
C. P = 2i.
D. P = 2.
2
2
Câu 26. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
1
A. f 0 (0) =
.
B. f 0 (0) = ln 10.
C. f 0 (0) = 10.
ln 10

D. f 0 (0) = 1.
Trang 2/10 Mã đề 1


Câu 27. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
ABC.A0 B0C 0 là


a3 3
a3 3
a3
3
.

B.
.
C. a .
D.
.
A.
3
2
6
Câu 28. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45√◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD là
10a3 3
A.
.
B. 10a3 .
C. 40a3 .
D. 20a3 .
3
Câu 29. [1] Cho a > 0, a , 1. Giá trị của biểu thức log 1a a2 bằng
1
1
A. −2.
B. − .
C. 2.
D. .
2
2
1
Câu 30. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3

biến trên R.
A. −2 ≤ m ≤ −1.
B. −2 < m < −1.
C. (−∞; −2] ∪ [−1; +∞). D. (−∞; −2) ∪ (−1; +∞).
Câu 31. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
A. T = e + 1.
B. T = e + .
C. T = e + 3.
D. T = 4 + .
e
e
0 0 0 0
Câu 32. [2] Cho hình hộp chữ nhật ABCD.A B C D có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
1
ab
1
ab
A. √
.
.
B. √
.
C. √
.
D. 2
a + b2

a2 + b2
a2 + b2
2 a2 + b2
Câu 33. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (2; 2).
B. (−1; −7).
C. (1; −3).

D. (0; −2).

Câu 34. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 4 đỉnh, 12 cạnh, 4 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
Câu 35. Cho số phức z thỏa mãn |z +
√ 3| = 5 và |z − 2i| = |z − 2√− 2i|. Tính |z|.
A. |z| = 10.
B. |z| = 10.
C. |z| = 17.
D. |z| = 17.
d = 300 .
Câu 36. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vuông tại A. BC = 2a, ABC
Độ dài cạnh bên
CC 0 = 3a. Thể tích V √của khối lăng trụ đã cho.


a3 3
3a3 3
.

B. V =
.
C. V = 6a3 .
D. V = 3a3 3.
A. V =
2
2
Câu 37. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, biết S H ⊥ (ABCD). Thể √
tích khối chóp S .ABCD là√
3
3
a
2a 3
4a3 3
a3
A.
.
B.
.
C.
.
D.
.
3
3
3
6
Câu 38. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm

mới rút lãi thì người đó thu được số tiền lãi là
A. 50, 7 triệu đồng.
B. 3, 5 triệu đồng.
C. 20, 128 triệu đồng. D. 70, 128 triệu đồng.
Câu 39. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
Trang 3/10 Mã đề 1


(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. Cả ba mệnh đề.

B. (I) và (II).

C. (II) và (III).

D. (I) và (III).

[ = 60◦ , S O
Câu 40. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc với mặt đáy và S O = a.
√ Khoảng cách từ O đến (S√BC) bằng


a 57
2a 57
a 57

B.
A. a 57.
.
C.
.
D.
.
17
19
19
Câu 41. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Cả hai đều đúng.
B. Chỉ có (II) đúng.

C. Chỉ có (I) đúng.

D. Cả hai đều sai.

Câu 42.
đề nào sau đây sai?
Z [1233d-2] Mệnh
Z
A.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
Z
B.

f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
Z
C.
[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
Z
Z
D.
[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
Câu 43. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất


√ của hàm số. Khi đó tổng M + m
B. 16.
C. 8 2.
D. 7 3.
A. 8 3.
Câu 44. Phát biểu nào sau đây là sai?
A. lim un = c (Với un = c là hằng số).
C. lim qn = 1 với |q| > 1.

1
= 0 với k > 1.
nk
1

D. lim √ = 0.
n
B. lim

2n2 − 1
Câu 45. Tính lim 6
3n + n4
2
A. .
B. 0.
C. 2.
3
Câu 46. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số mặt của khối chóp bằng số cạnh của khối chóp.
B. Số cạnh của khối chóp bằng 2n.
C. Số đỉnh của khối chóp bằng 2n + 1.
D. Số mặt của khối chóp bằng 2n+1.
Câu 47. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. −4.
B. 2.
C. 4.

D. 1.

D. −2.

Câu 48. Cho
Z hai hàm yZ = f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
A. Nếu
f (x)dx =

g(x)dx thì f (x) , g(x), ∀x ∈ R.
Z
Z
B. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Trang 4/10 Mã đề 1


Z

Z

C. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f (x)dx =
g0 (x)dx.
Z
Z
0
D. Nếu
f (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
0

Câu 49. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt phẳng vng góc với (ABCD).
Thể tích khối chóp

√ S .ABCD là
3

3
3

a 3
a 3
a 2
.
B. a3 3.
C.
.
D.
.
A.
2
2
4

Câu 50. Thể tích của khối lập phương

cạnh
bằng
a
2

3


2a 2
A. V = 2a3 .
B.

.
C. V = a3 2.
D. 2a3 2.
3

x2 + 3x + 5
Câu 51. Tính giới hạn lim
x→−∞
4x − 1
1
1
B. − .
C. 1.
D. 0.
A. .
4
4
Câu 52. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vuông cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng góc với đáy, S C = a 3. Thể tích khối chóp S .ABCD



3
3
a
a 3
a3 3
3
A. a .

B.
.
C.
.
D.
.
3
3
9
x2 − 12x + 35
Câu 53. Tính lim
x→5
25 − 5x
2
2
A. .
B. − .
C. −∞.
D. +∞.
5
5

Câu 54. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by = ab.
Giá trị nhỏ nhất của biểu thức P" = x!+ 2y thuộc tập nào dưới đây?
"
!
5
5
;3 .
A. (1; 2).

B.
C. [3; 4).
D. 2; .
2
2
Câu 55.
Z Trong các khẳng định sau, khẳng định nào sai? Z
0dx = C, C là hằng số.

A.
Z
C.

xα dx =

xα+1
+ C, C là hằng số.
α+1

1
dx = ln |x| + C, C là hằng số.
Z x
D.
dx = x + C, C là hằng số.

B.

Câu 56. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là 3, phần ảo là 4.
B. Phần thực là −3, phần ảo là 4.

C. Phần thực là −3, phần ảo là −4.
D. Phần thực là 3, phần ảo là −4.
d = 120◦ .
Câu 57. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
A. 2a.
B. 4a.
C. 3a.
D.
.
2
Câu 58. Khối đa diện đều loại {3; 3} có số mặt
A. 5.
B. 3.
C. 2.
D. 4.
Câu 59. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 2.
B. y(−2) = 22.
C. y(−2) = 6.
D. y(−2) = −18.
Câu 60. Khối đa diện đều loại {4; 3} có số mặt
A. 8.
B. 6.

C. 10.

D. 12.

Trang 5/10 Mã đề 1


Câu 61. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
B. Số đỉnh của khối chóp bằng số mặt của khối chóp.
C. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
D. Số cạnh của khối chóp bằng số mặt của khối chóp.
Câu 62. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 4 lần.
B. Tăng gấp đôi.
C. Tăng gấp 8 lần.
D. Tăng gấp 6 lần.
Câu 63. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là −1, phần ảo là 4.
B. Phần thực là −1, phần ảo là −4.
C. Phần thực là 4, phần ảo là −1.
D. Phần thực là 4, phần ảo là 1.
Câu 64. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim+ f (x) = lim− f (x) = +∞.
B. lim+ f (x) = lim− f (x) = a.
x→a

x→a

x→a

C. f (x) có giới hạn hữu hạn khi x → a.
Câu 65. Tính lim

A. +∞.

x→1

x3 − 1
x−1

B. −∞.

x→a

D. lim f (x) = f (a).
x→a

C. 3.

D. 0.


Câu 66. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã

√ cho là


πa3 3
πa3 3
πa3 6
πa3 3
A. V =

.
B. V =
.
C. V =
.
D. V =
.
3
2
6
6
Câu 67. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngồi ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
B. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
C. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
D. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
Câu 68. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC)
một góc bằng 60◦ . Thể√tích khối chóp S .ABC là √

a3 3
a3 3
a3 3
a3
.
B.
.
C.
.
D.

.
A.
8
4
12
4
Câu 69. [1] Đạo hàm của hàm số y = 2 x là
1
A. y0 =
.
B. y0 = 2 x . ln x.
ln 2
x−3
Câu 70. [1] Tính lim
bằng?
x→3 x + 3
A. +∞.
B. 1.
Câu 71. [1] Đạo hàm của làm số y = log x là
1
1
A. y0 = .
B.
.
x
10 ln x

C. y0 =

1

2 x . ln

x

.

C. 0.
C. y0 =

D. y0 = 2 x . ln 2.

D. −∞.
1
.
x ln 10

D. y0 =

ln 10
.
x

Câu 72. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ
C đến đường thẳng BB0 bằng 2, khoảng

cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2 3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng

3


2 3
A.
.
B. 2.
C. 1.
D. 3.
3
Trang 6/10 Mã đề 1


Câu 73. Hàm số f có nguyên hàm trên K nếu
A. f (x) liên tục trên K.
C. f (x) có giá trị nhỏ nhất trên K.

B. f (x) có giá trị lớn nhất trên K.
D. f (x) xác định trên K.

Câu 74. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −12.
B. −5.
C. −15.
D. −9.
Câu 75. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối tứ diện đều.
C. Khối bát diện đều. D. Khối lập phương.

1 + 2 + ··· + n
. Mệnh đề nào sau đây đúng?
Câu 76. [3-1132d] Cho dãy số (un ) với un =
n2 + 1
1
A. lim un = 1.
B. lim un = .
2
C. Dãy số un khơng có giới hạn khi n → +∞.
D. lim un = 0.
log 2x
Câu 77. [1229d] Đạo hàm của hàm số y =

x2
1 − 4 ln 2x
1 − 2 ln 2x
1
1 − 2 log 2x
A. y0 =
.
B. y0 = 3
.
C. y0 = 3
.
D. y0 =
.
3
2x ln 10
x ln 10
2x ln 10

x3

Câu 78. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng

1
A. 25.
B. .
C. 5.
D. 5.
5
Câu 79. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 2.
B. Vơ số.
C. 3.
D. 1.
Câu 80. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).
√ là


√ Thể tích khối chóp S 3.ABC
3
a 2
a3 3
a3 3
a 3
.
B.
.

C.
.
D.
.
A.
12
12
4
6
Câu 81.
đề nào sai? Z
Z Cho hàm sốZf (x), g(x) liên tục trên R. Trong cácZmệnh đề sau, mệnh Z
k f (x)dx = f

A.
Z
C.

f (x)g(x)dx =

Z

f (x)dx, k ∈ R, k , 0.
Z
f (x)dx g(x)dx.

( f (x) + g(x))dx =

B.
Z

D.

( f (x) − g(x))dx =

f (x)dx +

Z

g(x)dx.
Z

f (x)dx −

g(x)dx.

Câu 82. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Hai khối chóp tứ giác.
B. Một khối chóp tam giác, một khối chóp tứ giác.
C. Hai khối chóp tam giác.
D. Một khối chóp tam giác, một khối chóp ngữ giác.
Câu 83. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (−∞; 0) và (2; +∞). B. (0; 2).

C. (0; +∞).

D. (−∞; 2).

x2
Câu 84. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e

1
1
A. M = e, m = 1.
B. M = , m = 0.
C. M = e, m = .
D. M = e, m = 0.
e
e
Câu 85. Khối đa diện đều loại {5; 3} có số mặt
A. 30.
B. 20.
C. 8.
D. 12.
Câu 86. Dãy số nào có giới hạn bằng 0?
!n
6
2
A. un = n − 4n.
B. un =
.
5

!n
−2
C. un =
.
3

D. un =


n3 − 3n
.
n+1
Trang 7/10 Mã đề 1


Câu 87. [1] !Tập xác định của hàm số y != log3 (2x + 1) là
!
1
1
1
A. −∞; .
B. −∞; − .
C. − ; +∞ .
2
2
2

!
1
D.
; +∞ .
2

Câu 88. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của

√ hình chóp S .ABCD với

√mặt phẳng (AIC) có diện tích

2
2
2
2
a 7
a 5
a 2
11a
A.
.
B.
.
C.
.
D.
.
8
16
4
32
Câu 89. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên

hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Cả hai câu trên sai.

B. Chỉ có (II) đúng.

C. Chỉ có (I) đúng.

D. Cả hai câu trên đúng.

Câu 90. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Một hình chóp tứ giác và một hình chóp ngũ giác.
B. Hai hình chóp tam giác.
C. Một hình chóp tam giác và một hình chóp tứ giác.
D. Hai hình chóp tứ giác.
Câu 91. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 64cm3 .
B. 27cm3 .
C. 46cm3 .
D. 72cm3 .
Câu 92. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 4.


B. 2.

C. 3.

D. 1.

Câu 93. [2D1-3] Tìm giá trị của tham số m để hàm số y = x − mx + 3x + 4 đồng biến trên R.
A. −3 ≤ m ≤ 3.
B. −2 ≤ m ≤ 2.
C. m ≤ 3.
D. m ≥ 3.
3

2

Câu 94. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 3).
B. (2; 4; 6).
C. (2; 4; 4).
D. (1; 3; 2).
Câu 95. Trong các mệnh đề dưới đây, mệnh đề nào sai?
A. Nếu lim un
B. Nếu lim un
C. Nếu lim un
D. Nếu lim un

!
un
= −∞.

= a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
vn
= +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
= a > 0 và lim vn = 0 thì lim
= +∞.
vn !
un
= a , 0 và lim vn = ±∞ thì lim
= 0.
vn
Trang 8/10 Mã đề 1


!2x−1
!2−x
3
3
Câu 96. Tập các số x thỏa mãn


5
5
A. (−∞; 1].
B. (+∞; −∞).
C. [1; +∞).

D. [3; +∞).


Câu 97. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 4 mặt.
C. 8 mặt.

D. 10 mặt.

Câu 98. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối √
chóp S .ABMN là



3
4a 3
5a3 3
2a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
3
3
3

2
Câu 99. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối lập phương.
B. Khối 12 mặt đều.
C. Khối tứ diện đều.
D. Khối bát diện đều.
Câu 100.
Z 0 Trong các khẳng định sau, khẳng định nào sai?
u (x)
dx = log |u(x)| + C.
A.
u(x)
B. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
C. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
D. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
Câu 101. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp
√ là 1728. Khi đó, các kích thước của hình hộp là
√ đã cho
B. 2, 4, 8.
C. 6, 12, 24.
D. 8, 16, 32.
A. 2 3, 4 3, 38.
Câu 102. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d ⊥ P.
B. d nằm trên P hoặc d ⊥ P.
C. d nằm trên P.
D. d song song với (P).
Câu 103. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương

ứng sẽ:
A. Tăng gấp 18 lần.
B. Tăng gấp 3 lần.
C. Tăng gấp 9 lần.
D. Tăng gấp 27 lần.
Câu 104. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 6 cạnh, 4 mặt. B. 6 đỉnh, 6 cạnh, 4 mặt. C. 3 đỉnh, 3 cạnh, 3 mặt. D. 4 đỉnh, 8 cạnh, 4 mặt.
Câu 105. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Thập nhị diện đều. B. Bát diện đều.
C. Nhị thập diện đều. D. Tứ diện đều.
8
Câu 106. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 96.
B. 82.
C. 81.
D. 64.
2x + 1
Câu 107. Tính giới hạn lim
x→+∞ x + 1
1
A. 2.
B. 1.
C. .
D. −1.
2
Câu 108. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 3 mặt.
C. 9 mặt.

D. 4 mặt.
!
1
1
1
Câu 109. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
5
3
A. +∞.
B. 2.
C. .
D. .
2
2
Câu 110. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. e.
B. 1.
C. 4 − 2 ln 2.
D. −2 + 2 ln 2.
Trang 9/10 Mã đề 1


!
!
!
4x
1

2
2016
Câu 111. [3] Cho hàm số f (x) = x
. Tính tổng T = f
+f
+ ··· + f
4 +2
2017
2017
2017
2016
.
D. T = 2017.
A. T = 2016.
B. T = 1008.
C. T =
2017
2−n
Câu 112. Giá trị của giới hạn lim
bằng
n+1
A. 0.
B. 2.
C. −1.
D. 1.


Câu 113. Phần thực
√ và phần ảo của số√phức z = 2 − 1 − 3i lần lượt√l


3.
B. Phần thực là 2 −√1, phần ảo là √
3.
A. Phần thực là √2, phần ảo là 1 − √
C. Phần thực là 2 − 1, phần ảo là − 3.
D. Phần thực là 1 − 2, phần ảo là − 3.

Câu 114. [1] Biết log6 a = 2 thì log6 a bằng
A. 6.
B. 4.
C. 36.
D. 108.
Câu 115. Khối đa diện đều loại {3; 5} có số mặt
A. 30.
B. 12.

C. 8.

D. 20.

Câu 116. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Đường phân giác góc phần tư thứ nhất.
B. Hai đường phân giác y = x và y = −x của các góc tọa độ.
C. Trục ảo.
D. Trục thực.
Câu 117. Cho hình
√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối
√ chóp S .ABCD là


3
3

a 6
a 5
a3 15
3
.
B.
.
C. a 6.
.
A.
D.
3
3
3
x+1
Câu 118. Tính lim
bằng
x→+∞ 4x + 3
1
1
B. 1.
C. 3.
D. .
A. .
4
3
1 3

Câu 119. Tìm tất cả các khoảng đồng biến của hàm số y = x − 2x2 + 3x − 1.
3
A. (−∞; 1) và (3; +∞). B. (1; +∞).
C. (−∞; 3).
D. (1; 3).


4n2 + 1 − n + 2
bằng
Câu 120. Tính lim
2n − 3
3
A. +∞.
B. 2.
C. .
D. 1.
2
Câu 121. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
A. m ≥ 0.
B. m > − .
C. m ≤ 0.
D. − < m < 0.
4
4
Câu 122.
hạn là 0?
!n Dãy số nào sau đây có !giới

!n
!n
n
4
1
5
5
A.
.
B.
.
C.
.
D. − .
e
3
3
3
Câu 123. Khối chóp ngũ giác có số cạnh là
A. 11 cạnh.
B. 10 cạnh.
C. 12 cạnh.
D. 9 cạnh.
Z 1
Câu 124. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
1
A. .
4


0

B. 1.

C. 0.

D.

1
.
2
Trang 10/10 Mã đề 1


Câu 125. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. 2n3 lần.
B. n3 lần.
C. 2n2 lần.
D. n3 lần.
Câu 126. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 12 mặt.
B. 12 đỉnh, 30 cạnh, 12 mặt.
C. 12 đỉnh, 30 cạnh, 20 mặt.
D. 20 đỉnh, 30 cạnh, 20 mặt.
Câu 127. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [−3; 1].
B. (−∞; −3].
C. [−1; 3].

D. [1; +∞).


Câu 128.
√ Tìm giá trị lớn nhất của hàm số y = x + 3 + √6 − x

A. 2 3.
B. 3.
C. 3 2.
D. 2 + 3.
Câu 129. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m = 0.
B. m > 0.
C. m , 0.

D. m < 0.

Câu 130. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng
(cả vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó không rút tiền và lãi suất không thay đổi?
A. 17 tháng.
B. 15 tháng.
C. 16 tháng.
D. 18 tháng.
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 11/10 Mã đề 1



ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

D
C

3.
5. A

2.

D

4.

D

6.

7.

D

8. A

9.

D


10. A

11. A

12.

13. A

14. A

B

C

15.

B

16.

17.

B

18.

D

20.


D

22.

D

19. A
21.
23.

D
B

25.
27.

D

24.

B

26.

B

28.

B


29. A

D

30. A

31.

C

33.
35.

C

D
B

B

34.

B

36. A
C

37.


32.

C

38.

39.

B

40.

41.

B

42. A

43.

B

44.

45.

B

46.


B

48.

B

47.

D

49.
51.

B

53. A
C

B

54.

B

56.

B

D


58.

59.

D

60.
62.

B

63.

C

64.

65.

C

66. A

67. A

68. A
1

D


52.

57.
61.

C

50.

C

55.

D

D
B
C
D


69.

D

71.

72.

C


73. A

76.

C

B

78. A

B

79. A

80. A
C

81.

82.

B
D

84.

83. A
85.


D

88. A
D

89.

90.

B

B
C

92.

93. A

94.

95.

C

86.

C

87.
91.


B

74. A

75.
77.

C

70.

B

96.

C

C

98.

97. A
99.

C

100. A

101.


C

102.

103.

D

D
B

104. A

105. A

106.

107. A

109.

B

110. A

111.

B


112.

C

113.

114.

B

115.

116.

B

117.

118. A

C
D
B

119. A

120.
122.

C


D
B

124.

D

121.

B

123.

B

125.

126.

C

127. A

128.

C

129.


130.

C

2

D
C



×