TỐN PDF LATEX
TRẮC NGHIỆM ƠN THI MƠN TỐN THPT
(Đề thi có 11 trang)
Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
Câu 1. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 9 mặt.
C. 3 mặt.
D. 6 mặt.
Câu 2. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).
√ là
√ Thể tích khối chóp S 3.ABC
√
√
a3 3
a 2
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
6
12
12
4
√
Câu 3. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể tích
khối nón đã cho
√
√ là
√
√
3
πa 3
πa3 3
πa3 3
πa3 6
A. V =
.
B. V =
.
C. V =
.
D. V =
.
2
3
6
6
Câu 4. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ nhất
của |z + 2 + i|
√
√
√
√
12 17
B. 5.
C.
.
D. 68.
A. 34.
17
1
Câu 5. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 luôn đồng biến trên
3
√
một đoạn có độ dài bằng 24.
A. m = −3.
B. m = 4.
C. −3 ≤ m ≤ 4.
D. m = −3, m = 4.
Câu 6. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
A. log2 a =
.
B. log2 a = − loga 2.
C. log2 a =
.
D. log2 a = loga 2.
loga 2
log2 a
Câu 7. Khối đa diện đều loại {3; 5} có số đỉnh
A. 12.
B. 20.
Câu 8. [1] Đạo hàm của làm số y = log x là
1
ln 10
A.
.
B. y0 =
.
10 ln x
x
C. 30.
C. y0 =
D. 8.
1
.
x ln 10
1
D. y0 = .
x
Câu 9. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD. Cho
hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 32π.
B. 8π.
C. 16π.
D. V = 4π.
√
Câu 10. [2] Phương trình log4 (x + 1)2 + 2 = log √2 4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
A. 2 nghiệm.
B. 1 nghiệm.
C. 3 nghiệm.
D. Vô nghiệm.
Câu 11. Tính lim
A. 3.
n−1
n2 + 2
B. 1.
C. 2.
D. 0.
Câu 12. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 3.
B. 2.
C. 1.
D. 5.
1
Câu 13. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. (−∞; −2] ∪ [−1; +∞). B. −2 ≤ m ≤ −1.
C. −2 < m < −1.
D. (−∞; −2) ∪ (−1; +∞).
Trang 1/11 Mã đề 1
Câu 14. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
B. m > − .
C. m ≥ 0.
D. m ≤ 0.
A. − < m < 0.
4
4
cos n + sin n
Câu 15. Tính lim
n2 + 1
A. −∞.
B. +∞.
C. 1.
D. 0.
Câu 16. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số đỉnh của khối chóp bằng 2n + 1.
B. Số mặt của khối chóp bằng số cạnh của khối chóp.
C. Số mặt của khối chóp bằng 2n+1.
D. Số cạnh của khối chóp bằng 2n.
Z 3
a
a
x
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá
Câu 17. Cho I =
√
d
d
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = 28.
B. P = 4.
C. P = 16.
D. P = −2.
Câu 18. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 20 mặt.
B. 12 đỉnh, 30 cạnh, 12 mặt.
C. 12 đỉnh, 30 cạnh, 20 mặt.
D. 20 đỉnh, 30 cạnh, 12 mặt.
Câu 19. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
B. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
C. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
D. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
Câu 20. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng
thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay
đổi trong thời gian gửi.
A. 0, 8%.
B. 0, 6%.
C. 0, 5%.
D. 0, 7%.
Câu 21. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (−1; 1).
B. (−∞; −1).
C. (−∞; 1).
D. (1; +∞).
Câu 22. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 3.
B. 1.
C. Vô nghiệm.
D. 2.
Câu 23. [1] Đạo hàm của hàm số y = 2 x là
1
1
A. y0 =
.
B. y0 = x
.
C. y0 = 2 x . ln 2.
D. y0 = 2 x . ln x.
ln 2
2 . ln x
Câu 24. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
1637
1079
23
1728
A.
.
B.
.
C.
.
D.
.
4913
4913
68
4913
Câu 25. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = −2.
B. m = 0.
C. m = −3.
D. m = −1.
Z 1
Câu 26. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
0
1
.
4
Câu 27. Xét hai khẳng đinh sau
A. 0.
B.
C. 1.
D.
1
.
2
Trang 2/11 Mã đề 1
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Chỉ có (II) đúng.
B. Chỉ có (I) đúng.
C. Cả hai đều sai.
D. Cả hai đều đúng.
!
!
!
1
2
2016
4x
. Tính tổng T = f
+f
+ ··· + f
Câu 28. [3] Cho hàm số f (x) = x
4 +2
2017
2017
2017
2016
A. T = 2017.
B. T = 1008.
C. T = 2016.
D. T =
.
2017
Câu 29. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối bát diện đều. C. Khối 12 mặt đều.
D. Khối lập phương.
2
Câu 30. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 1 − log3 2.
B. 2 − log2 3.
C. 3 − log2 3.
D. 1 − log2 3.
Câu 31. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
Thể tích khối chóp S .ABC√là
vng góc√với đáy và S C = a 3. √
√
2a3 6
a3 3
a3 3
a3 6
A.
.
B.
.
C.
.
D.
.
9
2
4
12
Câu 32. Cho z là nghiệm của phương trình x2 + x + 1 = 0. Tính P =√z4 + 2z3 − z
√
−1 + i 3
−1 − i 3
A. P = 2i.
B. P = 2.
C. P =
.
D. P =
.
2
2
Câu 33. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó khơng rút tiền ra?
A. 10 năm.
B. 14 năm.
C. 11 năm.
D. 12 năm.
Câu 34. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Cả hai câu trên đúng. B. Cả hai câu trên sai.
!
1
1
1
Câu 35. Tính lim
+
+ ··· +
1.2 2.3
n(n + 1)
A. 1.
B. 2.
Câu 36. [2] Tổng các nghiệm của phương trình 3
A. − log2 3.
B. 1 − log2 3.
C. Chỉ có (II) đúng.
C.
1−x
3
.
2
!x
1
=2+
là
9
C. − log3 2.
log2 240 log2 15
−
+ log2 1 bằng
log3,75 2 log60 2
B. 1.
C. −8.
D. Chỉ có (I) đúng.
D. 0.
D. log2 3.
Câu 37. [1-c] Giá trị biểu thức
A. 3.
Câu 38. [2] Tổng các nghiệm của phương trình 3
A. 2.
B. 5.
D. 4.
x2 −4x+5
= 9 là
C. 4.
D. 3.
Trang 3/11 Mã đề 1
Câu 39. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (0; 1).
B. Hàm số nghịch biến trên khoảng (−∞; 0).
C. Hàm số nghịch biến trên khoảng (1; +∞).
D. Hàm số đồng biến trên khoảng (1; 2).
Câu 40. Tính lim
x→3
A. −3.
x2 − 9
x−3
C. +∞.
B. 3.
D. 6.
Câu 41. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 2ac
3b + 3ac
3b + 3ac
A.
.
B.
.
C.
.
c+2
c+1
c+2
Câu 42. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R.
B. D = R \ {0}.
C. D = R \ {1}.
D.
3b + 2ac
.
c+3
D. D = (0; +∞).
Câu 43. Cho hình chóp S .ABC có đáy ABC là tam giác vng cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √
√
3
3
a 6
a 3
a3 6
a3 6
A.
.
B.
.
C.
.
D.
.
48
24
8
24
Câu 44. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = (−2; 1).
B. D = R.
C. D = R \ {1; 2}.
D. D = [2; 1].
Câu 45. Tứ diện đều thuộc loại
A. {3; 4}.
B. {4; 3}.
D. {3; 3}.
2
C. {5; 3}.
Câu 46. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
2
A. 4.
B. 2.
C. 6.
Câu 47. [1] !Tập xác định của hàm số y != log3 (2x + 1) là
!
1
1
1
; +∞ .
B. −∞; − .
C. − ; +∞ .
A.
2
2
2
!2x−1
!2−x
3
3
Câu 48. Tập các số x thỏa mãn
≤
là
5
5
A. [3; +∞).
B. (+∞; −∞).
C. (−∞; 1].
Z
6
3
3x + 1
. Tính
1
f (x)dx.
0
D. −1.
!
1
D. −∞; .
2
D. [1; +∞).
Câu 49. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của
phẳng (AIC) có diện√tích là
√ hình chóp S .ABCD với mặt
√
2
2
2
a 2
11a
a2 5
a 7
.
B.
.
C.
.
D.
.
A.
8
4
32
16
Câu 50. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai đường thẳng BD và S C bằng
√
√
√
√
a 6
a 6
a 6
A. a 6.
B.
.
C.
.
D.
.
6
3
2
Câu 51.
đề nào sau đây
Z [1233d-2] Mệnh Z
Z sai?
A.
Z
B.
[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
Z
f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
Z
D.
[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
C.
Trang 4/11 Mã đề 1
Câu 52. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m < .
B. m ≥ .
C. m ≤ .
D. m > .
4
4
4
4
4x + 1
bằng?
Câu 53. [1] Tính lim
x→−∞ x + 1
A. −4.
B. 4.
C. 2.
D. −1.
Câu 54. Giá trị của lim (3x2 − 2x + 1)
x→1
A. +∞.
B. 1.
C. 3.
D. 2.
t
9
Câu 55. [4] Xét hàm số f (t) = t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
9 + m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. 0.
B. 2.
C. 1.
D. Vô số.
Câu 56. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 6.
B. 2.
C. −1.
D. 1.
Câu 57. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {3}.
B. {2}.
C. {5}.
D. {5; 2}.
Câu 58. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M, N, P bằng
√
√
√
√
14 3
20 3
.
D.
.
B. 6 3.
C.
A. 8 3.
3
3
Câu 59. Bát diện đều thuộc loại
A. {5; 3}.
B. {3; 4}.
C. {4; 3}.
D. {3; 3}.
Câu 60. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
môđun √
z.
√
√
√
5 13
A.
.
B. 2.
C. 2 13.
D. 26.
13
Câu 61. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18. √
A. 9.
B. 8.
C. 27.
D. 3 3.
x+1
bằng
Câu 62. Tính lim
x→−∞ 6x − 2
1
1
1
A. .
B. .
C. .
D. 1.
6
2
3
Câu 63. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(−4; −8)(.
B. A(4; 8).
C. A(4; −8).
D. A(−4; 8).
x3 − 1
Câu 64. Tính lim
x→1 x − 1
A. 0.
B. 3.
C. −∞.
Câu 65. Khối đa diện đều loại {4; 3} có số mặt
A. 8.
B. 10.
C. 6.
D. +∞.
D. 12.
q
2
Câu 66. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 = 0
√ i
h
có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 1].
B. m ∈ [−1; 0].
C. m ∈ [0; 4].
D. m ∈ [0; 2].
1
Câu 67. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 2.
B. 3.
C. 4.
D. 1.
Trang 5/11 Mã đề 1
!4x
!2−x
2
3
Câu 68. Tập các số x thỏa mãn
≤
là
#
" 3
! 2
2
2
A. −∞; .
B. − ; +∞ .
3
3
Câu 69. Dãy số nào sau đây có giới hạn là 0?
n2 + n + 1
1 − 2n
A. un =
.
B. un =
.
2
(n + 1)
5n + n2
#
2
C. −∞; .
5
C. un =
n2 − 2
.
5n − 3n2
"
!
2
D.
; +∞ .
5
D. un =
n2 − 3n
.
n2
!
x+1
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
Câu 70. [3] Cho hàm số f (x) = ln 2017 − ln
x
4035
2017
2016
A.
.
B. 2017.
C.
.
D.
.
2018
2018
2017
log 2x
Câu 71. [1229d] Đạo hàm của hàm số y =
là
x2
1 − 2 log 2x
1 − 4 ln 2x
1
1 − 2 ln 2x
A. y0 =
.
B. y0 =
.
C. y0 = 3
.
D. y0 = 3
.
3
3
x
2x ln 10
2x ln 10
x ln 10
Câu 72. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai
quyển sách cùng một mơn nằm cạnh nhau là
9
1
1
2
B.
.
C. .
D.
.
A. .
5
10
5
10
Câu 73. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (1; 3; 2).
B. (2; 4; 3).
C. (2; 4; 6).
D. (2; 4; 4).
Câu 74. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Hai hình chóp tứ giác.
B. Hai hình chóp tam giác.
C. Một hình chóp tứ giác và một hình chóp ngũ giác.
D. Một hình chóp tam giác và một hình chóp tứ giác.
log(mx)
= 2 có nghiệm thực duy nhất
log(x + 1)
C. m < 0 ∨ m = 4.
D. m < 0 ∨ m > 4.
Câu 75. [3-1226d] Tìm tham số thực m để phương trình
A. m < 0.
B. m ≤ 0.
Câu 76. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
5
7
A. .
B. .
C. 9.
D. 6.
2
2
x
Câu 77. Tính diện tích hình phẳng
√ giới hạn bởi các đường y = xe , y = 0, x = 1.
1
3
3
A. .
B.
.
C. .
D. 1.
2
2
2
Câu 78. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e2 − 2; m = e−2 + 2.
B. M = e−2 + 2; m = 1.
C. M = e−2 − 2; m = 1.
D. M = e−2 + 1; m = 1.
√
Câu 79. [1] Biết log6 a = 2 thì log6 a bằng
A. 108.
B. 4.
C. 6.
D. 36.
Câu 80. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1
A. V = S h.
B. V = S h.
C. V = S h.
2
3
D. V = 3S h.
Trang 6/11 Mã đề 1
Câu 81. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {3; 3}.
B. {4; 3}.
C. {3; 4}.
D. {5; 3}.
x−1 y z+1
= =
và
Câu 82. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình
2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. 10x − 7y + 13z + 3 = 0.
B. 2x + y − z = 0.
C. −x + 6y + 4z + 5 = 0.
D. 2x − y + 2z − 1 = 0.
Câu 83. Khối đa diện đều loại {3; 5} có số mặt
A. 8.
B. 30.
C. 12.
D. 20.
Câu 84. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối bát diện đều.
C. Khối tứ diện đều.
D. Khối lập phương.
Câu 85. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
C. T = e + 1.
D. T = 4 + .
A. T = e + 3.
B. T = e + .
e
e
x
x+1
x−2 x−1
+
+
+
và y = |x + 1| − x − m (m là tham
Câu 86. [4-1212d] Cho hai hàm số y =
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. [−3; +∞).
B. (−∞; −3].
C. (−3; +∞).
D. (−∞; −3).
Câu 87. Nếu không sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Năm tứ diện đều.
B. Một tứ diện đều và bốn hình chóp tam giác đều.
C. Bốn tứ diện đều và một hình chóp tam giác đều.
D. Năm hình chóp tam giác đều, khơng có tứ diện đều.
Câu 88. Biểu thức nào sau đây không có nghĩa
A. (−1)−1 .
B. 0−1 .
√
√
−3
−1.
D. (− 2)0 .
C.
1
a
Câu 89. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
A. 1.
B. 2.
C. 7.
D. 4.
√
√
Câu 90.
√ Tìm giá trị lớn nhất của√hàm số y = x + 3 + 6 −√x
A. 2 3.
B. 3 2.
C. 2 + 3.
D. 3.
Câu 91. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 6 cạnh, 4 mặt. B. 4 đỉnh, 8 cạnh, 4 mặt. C. 3 đỉnh, 3 cạnh, 3 mặt. D. 4 đỉnh, 6 cạnh, 4 mặt.
Câu 92. [1] Giá trị của biểu thức 9log3 12 bằng
A. 4.
B. 144.
C. 24.
D. 2.
Câu 93.
các khẳng định sau, khẳng định nào sai?
Z Trong
u0 (x)
A.
dx = log |u(x)| + C.
u(x)
B. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
C. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
D. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
Câu 94. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 9 cạnh, 5 mặt. B. 5 đỉnh, 9 cạnh, 6 mặt. C. 6 đỉnh, 6 cạnh, 6 mặt. D. 6 đỉnh, 9 cạnh, 6 mặt.
Trang 7/11 Mã đề 1
Câu 95. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
A. k = .
B. k = .
C. k = .
D. k = .
9
6
15
18
p
ln x
1
Câu 96. Gọi F(x) là một nguyên hàm của hàm y =
ln2 x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
1
8
1
8
B. .
C. .
D. .
A. .
3
3
9
9
√
Câu 97. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của khối chóp S .ABCD là
√
√
√
a3
a3 3
a3 3
3
A.
.
B. a 3.
C.
.
D.
.
4
3
12
Câu 98. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối bát diện đều. C. Khối lập phương.
D. Khối tứ diện đều.
Câu 99. Khối đa diện đều loại {4; 3} có số cạnh
A. 12.
B. 30.
C. 20.
D. 10.
2
2
2
1 + 2 + ··· + n
Câu 100. [3-1133d] Tính lim
n3
1
2
A. .
B. 0.
C. .
D. +∞.
3
3
1 + 2 + ··· + n
Câu 101. [3-1132d] Cho dãy số (un ) với un =
. Mệnh đề nào sau đây đúng?
n2 + 1
A. lim un = 1.
B. lim un = 0.
1
C. lim un = .
D. Dãy số un khơng có giới hạn khi n → +∞.
2
1
Câu 102. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 ≤ m ≤ 1.
B. 2 ≤ m ≤ 3.
C. 0 < m ≤ 1.
D. 2 < m ≤ 3.
Câu 103. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp đơi.
B. Tăng gấp 6 lần.
C. Tăng gấp 4 lần.
D. Tăng gấp 8 lần.
Câu 104. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng
(cả vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó không rút tiền và lãi suất không thay đổi?
A. 17 tháng.
B. 16 tháng.
C. 18 tháng.
D. 15 tháng.
Câu 105. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của
nó
A. Khơng thay đổi.
B. Tăng lên n lần.
C. Tăng lên (n − 1) lần. D. Giảm đi n lần.
2
Câu 106. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 5.
B. 6.
C. 7.
D. 8.
Câu 107. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 1.
B. 3.
C. 2.
D. 0.
Câu 108. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim− f (x) = f (a) và lim+ f (x) = f (b).
B. lim+ f (x) = f (a) và lim− f (x) = f (b).
x→a
x→a
x→b
x→b
C. lim+ f (x) = f (a) và lim+ f (x) = f (b).
D. lim− f (x) = f (a) và lim− f (x) = f (b).
x→a
x→b
x→a
x→b
Trang 8/11 Mã đề 1
√
Câu 109. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga 3 a bằng
1
1
B. 3.
C. − .
D. −3.
A. .
3
3
Câu 110. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng
cách giữa hai đường thẳng S B và√AD bằng
√
√
√
a 2
a 2
.
C.
.
D. a 3.
A. a 2.
B.
2
3
0
Câu 111. Cho hai đường thẳng phân biệt d và d đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có một hoặc hai.
B. Khơng có.
C. Có hai.
D. Có một.
√
Câu 112. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by = ab.
Giá trị nhỏ nhất của biểu thức P" = x!+ 2y thuộc tập nào dưới
" đây?
!
5
5
;3 .
C. 2; .
D. (1; 2).
A. [3; 4).
B.
2
2
Câu 113. Khối đa diện đều loại {5; 3} có số cạnh
A. 30.
B. 20.
C. 12.
D. 8.
[ = 60◦ , S O
Câu 114. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc với mặt đáy và S O = a.√Khoảng cách từ A đến (S
√ BC) bằng
√
√
2a 57
a 57
a 57
A. a 57.
B.
.
C.
.
D.
.
19
19
17
x2
Câu 115. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
D. M = e, m = .
A. M = e, m = 0.
B. M = e, m = 1.
C. M = , m = 0.
e
e
2n + 1
Câu 116. Tính giới hạn lim
3n + 2
3
2
1
A. .
B. .
C. 0.
D. .
2
3
2
log √a 5
bằng
Câu 117. [1] Cho a > 0, a , 1 .Giá trị của biểu thức a
√
1
A. 5.
B. .
C. 5.
D. 25.
5
Câu 118. Khối lập phương thuộc loại
A. {3; 3}.
B. {3; 4}.
C. {5; 3}.
D. {4; 3}.
Câu 119. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 2.
B. 1.
C. 3.
3
7n − 2n + 1
Câu 120. Tính lim 3
3n + 2n2 + 1
2
7
A. - .
B. 0.
C. .
3
3
Câu 121. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 8 mặt.
C. 6 mặt.
D. 4.
2
D. 1.
D. 10 mặt.
Trang 9/11 Mã đề 1
Câu 122. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 9.
B. 13.
C. 0.
D. Không tồn tại.
Câu 123. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. −7, 2.
B. 7, 2.
C. 0, 8.
D. 72.
x − 12x + 35
25 − 5x
2
2
C. −∞.
D. .
A. +∞.
B. − .
5
5
Câu 125. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n lần.
B. 3n3 lần.
C. n3 lần.
D. n2 lần.
2
Câu 124. Tính lim
x→5
Câu 126. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có một.
B. Khơng có.
C. Có vơ số.
D. Có hai.
Câu 127. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đơi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất khơng đổi và người đó khơng rút tiền ra?
A. 12 năm.
B. 11 năm.
C. 10 năm.
D. 13 năm.
Câu 128. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
1
1
ab
ab
.
B. √
.
C. 2
.
A. √
.
D.
√
a + b2
a2 + b2
2 a2 + b2
a2 + b2
2x + 1
Câu 129. Tính giới hạn lim
x→+∞ x + 1
1
A. 1.
B. .
C. −1.
D. 2.
2
1
Câu 130. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
0
y
A. xy = e − 1.
B. xy = −e − 1.
C. xy0 = ey + 1.
D. xy0 = −ey + 1.
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 10/11 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
3.
C
B
D
5.
2.
C
4.
C
6. A
7. A
8.
10. A
11.
12.
B
13.
14.
B
15.
16.
D
17.
18.
D
19.
20.
D
21. A
22.
B
D
D
B
C
C
27. A
28.
B
29. A
30.
B
31.
32.
B
33.
34. A
35. A
36. A
37.
38.
C
40.
D
C
C
39. A
D
41.
42. A
B
46. A
C
43.
D
45.
D
47.
48.
D
C
54.
C
49. A
B
52.
D
56. A
58.
B
25. A
26.
50.
D
23.
24. A
44.
C
51.
B
53.
B
55.
B
57.
B
59.
60. A
61.
62. A
63.
64.
B
65.
66.
B
67.
68.
B
69.
1
C
B
D
B
C
D
B
71.
C
70.
D
72.
B
73.
C
74.
B
75.
C
76.
B
77.
D
78.
C
79.
80.
C
81.
D
83.
D
82. A
84.
D
85. A
86.
B
87.
88.
B
89.
90.
B
91.
92.
B
93. A
94. A
97.
B
C
D
C
96.
98.
C
99. A
101.
B
B
100. A
D
102.
C
103.
D
104.
105.
D
106.
107.
D
108.
B
109. A
110.
B
111. A
112.
B
113. A
114.
B
115. A
116.
B
117.
D
C
120. A
121.
C
122.
123. A
C
127. A
129.
C
118.
119.
125.
B
D
C
124.
D
126.
D
128.
D
130. A
2
D