Tải bản đầy đủ (.pdf) (13 trang)

Đề ôn toán thpt cao1 (646)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (150.77 KB, 13 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Biểu thức nào sau đây khơng
có nghĩa

−3
−1
A. 0 .
B.
−1.

C. (−1)−1 .


D. (− 2)0 .

Câu 2. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −9.
B. −12.
C. −15.
D. −5.
Câu 3. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành


A. Hai hình chóp tứ giác.
B. Một hình chóp tam giác và một hình chóp tứ giác.
C. Một hình chóp tứ giác và một hình chóp ngũ giác.
D. Hai hình chóp tam giác.
Câu 4. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3. Tính
f (2) + f (4)?
A. 11.
B. 10.
C. 4.
D. 12.
Câu 5. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính qng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 16 m.
B. 24 m.
C. 8 m.
D. 12 m.
Câu 6. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, biết S H ⊥ (ABCD). Thể √
tích khối chóp S .ABCD là√
3
3
4a 3
2a3 3
a3
a
.
B.
.
C.
.

D.
.
A.
6
3
3
3
Câu 7. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 20 mặt.
B. 12 đỉnh, 30 cạnh, 20 mặt.
C. 12 đỉnh, 30 cạnh, 12 mặt.
D. 20 đỉnh, 30 cạnh, 12 mặt.
2

Câu 8. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 1 − log3 2.
B. 1 − log2 3.
C. 3 − log2 3.

D. 2 − log2 3.

1
Câu 9. Hàm số y = x + có giá trị cực đại là
x
A. 2.
B. −1.
C. 1.
D. −2.
x−3 x−2 x−1
x

Câu 10. [4-1213d] Cho hai hàm số y =
+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; 2).
B. [2; +∞).
C. (−∞; 2].
D. (2; +∞).
Câu 11. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. (−∞; +∞).
B. [1; 2].
C. [−1; 2).
Câu 12. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
1
ln 2
A. .
B.
.
C. 1.
2
2
Câu 13. Xét hai khẳng đinh sau

D. (1; 2).

D. 2.

(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
Trang 1/10 Mã đề 1


(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Cả hai đều sai.
B. Cả hai đều đúng.

C. Chỉ có (I) đúng.

D. Chỉ có (II) đúng.

Câu 14. Khẳng định nào sau đây đúng?
A. Hình lăng trụ đứng là hình lăng trụ đều.
B. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
C. Hình lăng trụ tứ giác đều là hình lập phương.
D. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
Câu 15. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng

a
a 3
a
A. a.
B. .
C.
.

D. .
2
2
3
0 0 0 0
Câu 16. [2] Cho hình hộp chữ nhật ABCD.A B C D có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
1
1
ab
ab
.
C. √
.
D. √
.
A. 2
.
B. √
2
a +b
a2 + b2
2 a2 + b2
a2 + b2
Câu 17. Bát diện đều thuộc loại
A. {3; 4}.
B. {4; 3}.

C. {3; 3}.


Câu 18. Khối đa diện đều loại {3; 5} có số mặt
A. 8.
B. 30.

C. 20.

D. {5; 3}.

D. 12.



x=t




Câu 19. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : 
y = −1 và hai mặt phẳng (P), (Q)




z = −t
lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I
thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).
9
9
A. (x − 3)2 + (y − 1)2 + (z − 3)2 = .
B. (x − 3)2 + (y + 1)2 + (z + 3)2 = .

4
4
9
9
2
2
2
2
2
2
C. (x + 3) + (y + 1) + (z − 3) = .
D. (x + 3) + (y + 1) + (z + 3) = .
4
4
Câu 20. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 1.

B. 4.
Z

Câu 21. Cho

D. 3.

xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b


0

A. 0.
Câu 22. Tính lim
A. +∞.

C. 2.

1

B.

1
.
2

cos n + sin n
n2 + 1
B. 0.

C.

1
.
4

C. 1.

D. 1.


D. −∞.
Trang 2/10 Mã đề 1


Câu 23. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
A.
.
B. 12.
C. 27.
D. 18.
2
d = 300 .
Câu 24. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vng tại A. BC = 2a, ABC
Độ dài cạnh bên CC 0 = 3a. Thể tích V √của khối lăng trụ đã cho.

3
3

a
3
3a
3
A. V = 3a3 3.
B. V =
.
C. V = 6a3 .
D. V =
.

2
2
Câu 25. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 3 mặt.
C. 5 mặt.
Câu 26. Tính lim
x→5

x2 − 12x + 35
25 − 5x
B. +∞.

A. −∞.

2
C. − .
5

Câu 27. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. Không tồn tại.
B. −5.
C. −3.

D. 4 mặt.

D.

2
.

5

D. −7.

1 − xy
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
x + 2y
Pmin của P = x√+ y.



18 11 − 29
9 11 − 19
2 11 − 3
9 11 + 19
. B. Pmin =
. C. Pmin =
. D. Pmin =
.
A. Pmin =
9
21
9
3

Câu 29. Thể tích của khối lập phương có cạnh bằng a 2 √


2a3 2
A. V = 2a3 .

B. V = a3 2.
C.
.
D. 2a3 2.
3

Câu 30. [2] Phương trình log4 (x + 1)2 + 2 = log √2 4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
A. 3 nghiệm.
B. 1 nghiệm.
C. Vô nghiệm.
D. 2 nghiệm.

Câu 28. [12210d] Xét các số thực dương x, y thỏa mãn log3

4x + 1
bằng?
x+1
A. −4.
B. 2.

x2 + 3x + 5
Câu 32. Tính giới hạn lim
x→−∞
4x − 1
1
B. 0.
A. − .
4
Câu 31. [1] Tính lim


x→−∞

C. 4.

D. −1.

C. 1.

D.

1
.
4

x−1 y z+1
= =

2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. −x + 6y + 4z + 5 = 0.
B. 2x + y − z = 0.
C. 10x − 7y + 13z + 3 = 0.
D. 2x − y + 2z − 1 = 0.

Câu 33. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình

Câu 34. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là

A. e.
B. 1.
C. 4 − 2 ln 2.

D. −2 + 2 ln 2.

Câu 35. Cho hàm số y = x3 − 2x2 + x + 1. !Mệnh đề nào dưới đây đúng?
!
1
1
A. Hàm số nghịch biến trên khoảng ; 1 .
B. Hàm số nghịch biến trên khoảng −∞; .
3!
3
1
C. Hàm số đồng biến trên khoảng ; 1 .
D. Hàm số nghịch biến trên khoảng (1; +∞).
3
Trang 3/10 Mã đề 1


Câu 36. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 1.
B. 3.
C. 2.
D. Vơ nghiệm.
2n + 1
Câu 37. Tính giới hạn lim
3n + 2
2

3
1
A. 0.
B. .
C. .
D. .
3
2
2
Câu 38. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ơng muốn hồn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ơng A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng không đổi trong thời gian ông A hoàn nợ.
100.(1, 01)3
(1, 01)3
triệu.
B.
m
=
triệu.
A. m =
(1, 01)3 − 1
3
120.(1, 12)3
100.1, 03
C. m =
triệu.
D. m =
triệu.

3
(1, 12) − 1
3
Câu 39. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng

√ góc với đáy, S C = a3 3. Thể tích khối chóp S .ABCD là
a
a3 3
a3 3
3
.
B.
.
C. a .
D.
.
A.
9
3
3
Câu 40. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 14.
B. ln 12.
C. ln 4.
D. ln 10.
mx − 4
Câu 41. Tìm m để hàm số y =
đạt giá trị lớn nhất bằng 5 trên [−2; 6]

x+m
A. 45.
B. 67.
C. 26.
D. 34.
Câu 42.
√ min |z − 1 − i|.
√ [4-1245d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = 3. Tìm
A. 10.
B. 1.
C. 2.
D. 2.
Câu 43. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
. Khi đó thể tích khối lăng trụ là
BC là
4




a3 3
a3 3
a3 3
a3 3
A.
.

B.
.
C.
.
D.
.
12
24
36
6
x2 − 9
Câu 44. Tính lim
x→3 x − 3
A. +∞.
B. 6.
C. 3.
D. −3.
Câu 45. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
D. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
Câu 46. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m > .
B. m ≥ .
C. m ≤ .

D. m < .
4
4
4
4
2
Câu 47. Cho z1 , z2 là hai nghiệm của phương trình z + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = 21.
B. P = 10.
C. P = −21.
D. P = −10.

2
Câu 48. [4-1228d] Cho phương trình (2 log3 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 63.
B. 62.
C. Vơ số.
D. 64.
Trang 4/10 Mã đề 1


log(mx)
= 2 có nghiệm thực duy nhất
log(x + 1)
C. m ≤ 0.
D. m < 0 ∨ m = 4.

Câu 49. [1226d] Tìm tham số thực m để phương trình
A. m < 0.


B. m < 0 ∨ m > 4.




Câu 50. [12215d] Tìm m để phương trình 4 x+ 1−x − 4.2 x+ 1−x − 3m + 4 = 0 có nghiệm
9
3
3
A. 0 ≤ m ≤ .
B. m ≥ 0.
C. 0 ≤ m ≤ .
D. 0 < m ≤ .
4
4
4
Câu 51. [2] Cho chóp đều S .ABCD có đáy là hình vuông tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng




a 6
B. a 3.
C.
.
D. 2a 6.
A. a 6.
2

Câu 52. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
23
5
13
9
A. −
.
B. − .
C.
.
D.
.
100
16
100
25
Câu 53. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
0
đến đường



√ thẳng BD bằng
b a2 + c2
abc b2 + c2
a b2 + c2
c a2 + b2
.
B. √

.
C. √
.
D. √
.
A. √
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
2

2

Câu 54. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
1
A. −e.
B. − .
C. − 2 .
D. − .
e
e
2e
Câu 55. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Trục ảo.
B. Đường phân giác góc phần tư thứ nhất.
C. Trục thực.
D. Hai đường phân giác y = x và y = −x của các góc tọa độ.

1 − 2n
Câu 56. [1] Tính lim
bằng?
3n + 1
1
A. .
B. 1.
3
Câu 57. Tứ diện đều thuộc loại
A. {3; 3}.
B. {3; 4}.

C. {5; 3}.

D. {4; 3}.

Câu 58. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối bát diện đều. B. Khối tứ diện đều.

C. Khối 12 mặt đều.

D. Khối lập phương.

Câu 59. Khối đa diện đều loại {3; 3} có số đỉnh
A. 4.
B. 5.

C. 3.

D. 2.


C.

2
.
3

2
D. − .
3

Câu 60. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng
thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay
đổi trong thời gian gửi.
A. 0, 7%.
B. 0, 5%.
C. 0, 6%.
D. 0, 8%.
Câu 61. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là 3, phần ảo là −4.
B. Phần thực là −3, phần ảo là 4.
C. Phần thực là 3, phần ảo là 4.
D. Phần thực là −3, phần ảo là −4.
q
Câu 62. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23 x+ log23 x + 1+4m−1 = 0
√ i
h
có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 1].
B. m ∈ [0; 4].

C. m ∈ [−1; 0].
D. m ∈ [0; 2].
Trang 5/10 Mã đề 1


Câu 63. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của√|z + 2 + i|



12 17
.
B. 68.
C. 34.
D. 5.
A.
17


Câu 64. Phần thực√và phần ảo của số √
phức z = 2 − 1 − 3i lần lượt √l

3.
B. Phần thực là √2 − 1, phần ảo là −√ 3.
A. Phần thực là 2 −√1, phần ảo là √
C. Phần thực là 1 − 2, phần ảo là − 3.
D. Phần thực là 2, phần ảo là 1 − 3.
Câu 65. Cho hình chóp S .ABCD có √
đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết

√a 5. Thể tích khối chóp3 S .ABCD là
√ S H ⊥ (ABCD), S A =
3
3
2a 3
4a
2a3
4a 3
.
B.
.
C.
.
D.
.
A.
3
3
3
3
Câu 66. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 0, 8.
B. −7, 2.
C. 7, 2.

D. 72.

Câu 67.
các khẳng định sau, khẳng định nào sai?
Z Trong

u0 (x)
A.
dx = log |u(x)| + C.
u(x)
B. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
C. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
D. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
1 + 2 + ··· + n
. Mệnh đề nào sau đây đúng?
n2 + 1
B. lim un = 0.
1
C. Dãy số un khơng có giới hạn khi n → +∞.
D. lim un = .
2
Câu 69. Nếu không sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Năm tứ diện đều.
B. Năm hình chóp tam giác đều, khơng có tứ diện đều.
C. Bốn tứ diện đều và một hình chóp tam giác đều.
D. Một tứ diện đều và bốn hình chóp tam giác đều.
Câu 68. [3-1132d] Cho dãy số (un ) với un =
A. lim un = 1.

Câu 70. [1-c] Giá trị của biểu thức
A. −4.

log7 16
log7 15 − log7


B. 2.

15
30

bằng

C. −2.
D. 4.

Câu 71. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 62.
B. 64.
C. 63.
D. Vô số.
Câu 72. Khối đa diện đều loại {4; 3} có số đỉnh
A. 6.
B. 4.

C. 8.

D. 10.

Câu 73. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối tứ diện.
B. Khối lăng trụ tam giác.
C. Khối lập phương.
D. Khối bát diện đều.

9t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
9t + m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. 2.
B. Vô số.
C. 1.
D. 0.

Câu 74. [4] Xét hàm số f (t) =

Trang 6/10 Mã đề 1


Câu 75. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; 3; 3).
B. A0 (−3; 3; 1).
C. A0 (−3; −3; −3).
D. A0 (−3; −3; 3).
Câu 76. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (1; +∞).
B. (−∞; −1).
C. (−∞; 1).

D. (−1; 1).

x2 − 3x + 3
Câu 77. Hàm số y =
đạt cực đại tại

x−2
A. x = 2.
B. x = 0.

D. x = 1.

C. x = 3.

Câu 78. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh của khối chóp bằng 2n.
B. Số đỉnh của khối chóp bằng 2n + 1.
C. Số mặt của khối chóp bằng 2n+1.
D. Số mặt của khối chóp bằng số cạnh của khối chóp.
Câu 79. Tính lim
A.

2
.
3

2n2 − 1
3n6 + n4
B. 1.

C. 0.

D. 2.

Câu 80. Phát biểu nào sau đây là sai?
1

= 0.
n
D. lim qn = 0 (|q| > 1).

A. lim un = c (un = c là hằng số).
1
C. lim k = 0.
n

B. lim

Câu 81. Dãy số nào có giới hạn bằng 0?!
n
−2
2
.
A. un = n − 4n.
B. un =
3

!n
6
C. un =
.
5

D. un =

n3 − 3n
.

n+1

2

Câu 82. [2] Tổng các nghiệm của phương trình 3 x −4x+5 = 9 là
A. 5.
B. 3.
C. 4.
7n − 2n + 1
3n3 + 2n2 + 1
B. 0.
2

Câu 83. Tính lim
A.

7
.
3

D. 2.

3

Câu 84. [1] Giá trị của biểu thức 9log3 12 bằng
A. 4.
B. 24.

2
C. - .

3

D. 1.

C. 2.

D. 144.

Câu 85. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
A. 2e + 1.

B. 2e.

C. 3.

D.

2
.
e

Câu 86. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối
√ chóp S .ABCD là


3
3
a 3
a 6

a3 3
a3 2
A.
.
B.
.
C.
.
D.
.
48
48
24
16
Câu 87. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất không thay đổi?
A. 16 tháng.
B. 18 tháng.
C. 15 tháng.
D. 17 tháng.
Trang 7/10 Mã đề 1


Câu 88.
A. 2.
Câu 89.
A. 2.


1
1
1
[3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
3
B. .
C. +∞.
2
n−1
Tính lim 2
n +2
B. 1.
C. 3.

!

D.

5
.
2

D. 0.

Câu 90. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 12 mặt.
B. 20 đỉnh, 30 cạnh, 12 mặt.

C. 20 đỉnh, 30 cạnh, 20 mặt.
D. 12 đỉnh, 30 cạnh, 20 mặt.
Z 3
a
a
x
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá
Câu 91. Cho I =

d
d
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = 16.
B. P = 4.
C. P = 28.
D. P = −2.
Câu 92. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 2400 m.
B. 6510 m.
C. 1202 m.
D. 1134 m.
Câu 93. Khối đa diện đều loại {3; 5} có số đỉnh
A. 20.
B. 30.

C. 12.

D. 8.


1
Câu 94. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 ln đồng biến trên
3

một đoạn có độ dài bằng 24.
A. m = −3.
B. m = −3, m = 4.
C. m = 4.
D. −3 ≤ m ≤ 4.
Câu 95. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất khơng thay đổi và người đó khơng rút tiền ra?
A. 12 năm.
B. 10 năm.
C. 14 năm.
D. 11 năm.
Câu 96. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {5; 3}.
B. {3; 5}.
C. {4; 3}.

D. {3; 4}.

Câu 97. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. 2n3 lần.
B. n3 lần.
C. 2n2 lần.

D. n3 lần.
Câu 98. Cho
√ số phức z thỏa mãn |z + 3| = 5 và |z − 2i| = |z − 2 − 2i|. Tính |z|.

B. |z| = 17.
C. |z| = 10.
D. |z| = 10.
A. |z| = 17.
Câu 99. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x−2 y−3 z+4
x+1 y−4 z−4
đường thẳng d :
=
=
và d0 :
=
=
2
3
−5
3
−2
−1
x−2 y−2 z−3
x y z−1
A.
=
=
.
B. = =

.
2
3
4
1 1
1
x−2 y+2 z−3
x y−2 z−3
C.
=
=
.
D. =
=
.
2
2
2
2
3
−1
Câu 100. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. 2.
B. 4.
C. −2.
D. −4.
Câu 101. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
1637
23

1728
1079
A.
.
B.
.
C.
.
D.
.
4913
68
4913
4913
Trang 8/10 Mã đề 1


Câu 102. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1
A. V = 3S h.
B. V = S h.
C. V = S h.
3
2
Câu 103. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?

D. V = S h.

(I) lim nk = +∞ với k nguyên dương.

(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 1.

B. 2.

C. 3.

D. 0.

Câu 104. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(4; 8).
B. A(−4; −8)(.
C. A(−4; 8).
D. A(4; −8).
Câu 105. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 16π.
B. V = 4π.
C. 8π.
D. 32π.
Câu 106. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 23.
B. 24.
C. 21.
D. 22.
Câu 107. Khối lập phương thuộc loại
A. {3; 4}.

B. {3; 3}.

C. {5; 3}.

D. {4; 3}.

Câu 108.
Trong các khẳng định sau, khẳng định nào sai?Z
Z
1
dx = ln |x| + C, C là hằng số.
B.
0dx = C, C là hằng số.
A.
Z x
Z
xα+1
+ C, C là hằng số.
C.
dx = x + C, C là hằng số.
D.
xα dx =
α+1
Câu 109. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. 2020.
B. 13.
C. log2 13.
D. log2 2020.
Câu 110. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp

A. 120 cm2 .
B. 1200 cm2 .
C. 160 cm2 .
D. 160 cm2 .
Câu 111. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
f (x) a
A. lim
= .
B. lim [ f (x)g(x)] = ab.
x→+∞ g(x)
x→+∞
b
C. lim [ f (x) − g(x)] = a − b.
D. lim [ f (x) + g(x)] = a + b.
x→+∞

x→+∞

Câu 112. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất không đổi và người đó khơng rút tiền ra?
A. 12 năm.
B. 13 năm.
C. 11 năm.
D. 10 năm.
Câu 113. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau

(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
Trang 9/10 Mã đề 1


(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (I) và (III).

B. (II) và (III).

C. (I) và (II).

D. Cả ba mệnh đề.

Câu 114. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng
cách giữa


√ hai đường thẳng BD và S C bằng

a 6
a 6
a 6
.
B. a 6.
C.
.
D.
.

A.
2
6
3
Câu 115. Khối đa diện đều loại {5; 3} có số mặt
A. 30.
B. 12.
C. 20.
D. 8.
1
bằng
Câu 116. [1] Giá trị của biểu thức log √3
10
1
1
A. −3.
B. .
C. 3.
D. − .
3
3
x−3 x−2
x−3
x−2
Câu 117. [12212d] Số nghiệm của phương trình 2 .3 − 2.2 − 3.3 + 6 = 0 là
A. 3.
B. 1.
C. Vô nghiệm.
D. 2.
Câu 118. Phát biểu nào sau đây là sai?

1
A. lim k = 0 với k > 1.
n
1
C. lim √ = 0.
n

B. lim un = c (Với un = c là hằng số).
D. lim qn = 1 với |q| > 1.

x−2
Câu 119. Tính lim
x→+∞ x + 3
2
A. − .
B. 2.
C. −3.
D. 1.
3
Câu 120. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với

đáy (ABC)
tích khối chóp S .ABC là √
√ một góc bằng 60 . Thể

3
3
a 3
a
a3 3

a3 3
A.
.
B.
.
C.
.
D.
.
4
4
8
12
2x + 1
Câu 121. Tính giới hạn lim
x→+∞ x + 1
1
A. 2.
B. −1.
C. .
D. 1.
2
Câu 122. Dãy số nào sau đây có giới hạn khác 0?
1
sin n
1
n+1
A. √ .
B.
.

C. .
D.
.
n
n
n
n
6
. Tính
Câu 123. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x2 f (x3 ) − √
3x
+
1
Z 1
f (x)dx.
0

A. 4.

B. 2.

C. 6.

D. −1.

1
Câu 124. [3-12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 2 < m ≤ 3.
B. 0 ≤ m ≤ 1.

C. 2 ≤ m ≤ 3.
D. 0 < m ≤ 1.
Câu 125. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vng
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√

a3 5
a3 5
a3 3
a3 5
A.
.
B.
.
C.
.
D.
.
4
12
12
6
Trang 10/10 Mã đề 1


Câu 126. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
B. Hàm số nghịch biến trên khoảng (−2; 1).
C. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
D. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
Câu 127. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?

A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 4 đỉnh, 12 cạnh, 4 mặt.
Câu 128. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách √
từ C đến đường thẳng BB0 bằng 2, khoảng
cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2 3
. Thể tích khối lăng trụ đã cho bằng
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
3


2 3
A. 2.
B. 3.
C. 1.
D.
.
3
Câu 129. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. e2016 .
B. 1.
C. 22016 .
D. 0.
Câu 130. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 3.
B. 12.

C. 27.

D. 10.

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 11/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A

2.
D

3.

B
D

4.

5. A

6.

7.


D

8.

9.

D

10.

B
D
B

12.

11. A
D

13.

D

14.

B

15. A

16.


B

17. A

18.

19.

B

20.

21.

B

22.

C
D
B

23.

D

24.

D


25.

D

26.

D

28.

D

30.

D

27. A
D

29.
31.

C

32. A

33.

C


34. A

35. A

36. A

37.

B

38. A

39.

B

40. A
D

41.

42.

B

43. A

44.


B

45. A

46.

47.

C

49.

48.
D

C
B

50.

51. A

C

52. A

53.

D


54.

D

55.

D

56.

D

57. A

58. A

59. A

60. A

61.

B

62.

63. A
65.

C


64.

B

66.

B

68.

67. A
1

C

D


69.

D

70. A

71. A

72.

73. A


74. A

75. A

76.

77.

D

81.

B

84.

85.

C

86. A

87. A

90.

D
B
C


93.

B

94.

B
B

D

96.

97.

D

98.

B

D

92.

95.

D


100.

101. A

102.
B

C
B

104. A

106.

D

107.

108.

D

109.

110.

D

111. A


112. A
114.

D

88. A

89.

103.

C

82.
C

99.

D

80.

83.

91.

D

78. A


C

79.

C

D
C
C

113.
C

115.

B

116.

D

117.

D

118.

D

119.


D

120.
122.

121. A

C
D

123. A

124. A

125.

B

126. A

127.

B

128. A

129.

130. A


2

D



×