Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt 6 (826)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (146.54 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Giá trị của lim(2x2 − 3x + 1) là
x→1
A. +∞.
B. 1.

C. 2.

Câu 2. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = −5.
B. x = −2.
C. x = −8.

D. 0.
D. x = 0.

Câu 3. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 3ac
3b + 2ac
3b + 2ac
3b + 3ac
.
B.


.
C.
.
D.
.
A.
c+2
c+1
c+2
c+3
Câu 4. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (I) và (II).

B. (I) và (III).

C. (II) và (III).

D. Cả ba mệnh đề.

Câu 5. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Hai hình chóp tứ giác.
B. Hai hình chóp tam giác.
C. Một hình chóp tam giác và một hình chóp tứ giác.
D. Một hình chóp tứ giác và một hình chóp ngũ giác.

Câu 6. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (−∞; 0) và (2; +∞). B. (0; +∞).

C. (−∞; 2).

D. (0; 2).

Câu 7. Khối lập phương thuộc loại
A. {4; 3}.
B. {3; 4}.

C. {5; 3}.

D. {3; 3}.

Câu 8. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai đường thẳng S B và AD bằng




a 2
a 2
A. a 2.
B.
.
C.
.
D. a 3.
2

3
√3
Câu 9. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga a bằng
1
1
A. − .
B. −3.
C. .
D. 3.
3
3
n−1
Câu 10. Tính lim 2
n +2
A. 1.
B. 0.
C. 2.
D. 3.
Câu 11. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 5.
B. 0, 2.
C. 0, 4.
D. 0, 3.
Câu 12. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d nằm trên P hoặc d ⊥ P.
B. d nằm trên P.
C. d song song với (P).
D. d ⊥ P.
Trang 1/10 Mã đề 1



Câu 13. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 8 mặt.
B. 6 mặt.
C. 4 mặt.
D. 10 mặt.
2mx + 1
1
Câu 14. Giá trị lớn nhất của hàm số y =
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
A. 0.
B. −5.
C. −2.
D. 1.
1
Câu 15. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 4.
B. 3.
C. 1.
D. 2.
Câu 16. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (1; +∞).
B. Hàm số nghịch biến trên khoảng (0; 1).
C. Hàm số đồng biến trên khoảng (1; 2).
D. Hàm số nghịch biến trên khoảng (−∞; 0).

Câu 17. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m ≥ .
B. m > .
C. m < .
D. m ≤ .
4
4
4
4
Câu 18. Thể tích của khối lăng√trụ tam giác đều có cạnh √
bằng 1 là:

3
3
3
3
A. .
B.
.
C.
.
D.
.
4
12
4

2
Câu 19. Cho hình chóp S .ABCD có √
đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết S H ⊥ (ABCD), S A =√a 5. Thể tích khối chóp S .ABCD là

4a3
2a3 3
2a3
4a3 3
A.
.
B.
.
C.
.
D.
.
3
3
3
3
1 − n2
Câu 20. [1] Tính lim 2
bằng?
2n + 1
1
1
1
A. .
B. 0.

C. − .
D. .
2
2
3
1
Câu 21. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. (−∞; −2) ∪ (−1; +∞). B. (−∞; −2] ∪ [−1; +∞). C. −2 ≤ m ≤ −1.
D. −2 < m < −1.
Câu 22. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
A. k = .
B. k = .
C. k = .
D. k = .
15
6
9
18
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 23. Cho hình chóp S .ABC có BAC
Thể tích√khối chóp S .ABC là




a3 3
a3 3
a3 2
A.
.
B.
.
C.
.
D. 2a2 2.
12
24
24
 π π
3
Câu 24. Cho hàm số y = 3 sin x − 4 sin x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. 1.
B. 3.
C. −1.
D. 7.
Câu 25. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 3).
B. (2; 4; 6).
C. (2; 4; 4).
D. (1; 3; 2).

Câu 26. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. (−∞; −3].
B. [1; +∞).
C. [−1; 3].
D. [−3; 1].
Trang 2/10 Mã đề 1


Câu 27. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối bát diện đều.

C. Khối 20 mặt đều.

D. Khối 12 mặt đều.

Câu 28. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = 1 − ln x.
B. y0 = ln x − 1.

C. y0 = x + ln x.

D. y0 = 1 + ln x.

Câu 29. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
1637
1079
1728

23
.
B.
.
C.
.
D.
.
A.
68
4913
4913
4913
x2 − 5x + 6
Câu 30. Tính giới hạn lim
x→2
x−2
A. 0.
B. −1.
C. 5.
D. 1.
Câu 31. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất khơng thay đổi?
A. 18 tháng.
B. 16 tháng.
C. 15 tháng.
D. 17 tháng.
Câu 32. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?

A. 12 đỉnh, 30 cạnh, 12 mặt.
B. 12 đỉnh, 30 cạnh, 20 mặt.
C. 20 đỉnh, 30 cạnh, 20 mặt.
D. 20 đỉnh, 30 cạnh, 12 mặt.
Câu 33. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. 4.
B. 2.
C. −2.

D. −4.

bằng
Câu 34. [1] Cho a > 0, a , 1 .Giá trị của biểu thức a

1
A. 5.
C. 25.
D. 5.
B. .
5
Câu 35. Cho hai hàm y = f (x), y = g(x)
Z có đạo hàm
Z trên R. Phát biểu nào sau đây đúng?
log √a 5

A. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f 0 (x)dx =
g0 (x)dx.
Z
Z

B. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
C. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
Z
Z
D. Nếu
f 0 (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.

d = 120◦ .
Câu 36. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
A. 4a.
B.
.
C. 2a.
D. 3a.
2
Câu 37. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 4.
B. ln 14.
C. ln 10.
D. ln 12.
Câu 38. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?

A. Vô nghiệm.
B. 1 nghiệm.
C. 3 nghiệm.

D. 2 nghiệm.

Câu 39. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 2.
B. −1.
C. 6.

D. 1.

Câu 40. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
B. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
C. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
D. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
Trang 3/10 Mã đề 1


Câu 41. Cho z là√nghiệm của phương trình x2 + x + 1 = 0. Tính P = z4 + 2z3 − z

−1 + i 3
−1 − i 3
A. P =
.
B. P = 2i.
C. P = 2.
D. P =

.
2
2
1 − 2n
Câu 42. [1] Tính lim
bằng?
3n + 1
2
1
2
A. .
B. .
C. − .
D. 1.
3
3
3
Câu 43. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 3.
B. 1.
C. Vô nghiệm.
D. 2.
7n2 − 2n3 + 1
Câu 44. Tính lim 3
3n + 2n2 + 1
7
2
A. .
B. 1.
C. 0.

D. - .
3
3
2
Câu 45. Vận tốc chuyển động của máy bay là v(t) = 6t + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 1134 m.
B. 1202 m.
C. 6510 m.
D. 2400 m.
Câu 46. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim+ f (x) = f (a) và lim+ f (x) = f (b).
B. lim− f (x) = f (a) và lim+ f (x) = f (b).
x→a
x→a
x→b
x→b
C. lim− f (x) = f (a) và lim− f (x) = f (b).
D. lim+ f (x) = f (a) và lim− f (x) = f (b).
x→a

x→a

x→b

x→b

Câu 47. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17

A. −12.
B. −5.
C. −9.
D. −15.
2

Câu 48. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
ln 2
1
B.
.
C. 1.
D. 2.
A. .
2
2
Câu 49. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. e2016 .
B. 22016 .
C. 1.
D. 0.
x−3 x−2 x−1
x
+
+
+
và y = |x + 2| − x − m (m là tham
Câu 50. [4-1213d] Cho hai hàm số y =
x−2 x−1

x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (2; +∞).
B. [2; +∞).
C. (−∞; 2).
D. (−∞; 2].
Câu 51. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
A. − .
B. − .
C. −e.
2e
e
2
Câu 52. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 7.
B. 8.
C. 5.

D. −

1
.
e2

D. 6.


0 0 0 0
0
Câu 53.√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
√ bằng
a 6
a 6
a 6
a 3
A.
.
B.
.
C.
.
D.
.
3
2
7
2
Câu 54. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 7 mặt.
B. 6 mặt.
C. 8 mặt.
D. 9 mặt.
!2x−1
!2−x
3
3

Câu 55. Tập các số x thỏa mãn


5
5
A. (−∞; 1].
B. [1; +∞).
C. (+∞; −∞).
D. [3; +∞).

Trang 4/10 Mã đề 1


Câu 56. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai
quyển sách cùng một môn nằm cạnh nhau là
1
1
2
9
A.
.
B. .
C. .
D.
.
10
5
5
10
Câu 57. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của


A. Tăng lên (n − 1) lần. B. Tăng lên n lần.
C. Không thay đổi.
D. Giảm đi n lần.
tan x + m
Câu 58. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1
 π
0; .
4
A. (−∞; 0] ∪ (1; +∞). B. (1; +∞).
C. [0; +∞).
D. (−∞; −1) ∪ (1; +∞).
Câu 59. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 0.
B. 13.
C. Không tồn tại.

D. 9.

Câu 60. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. 13.
B. log2 13.
C. log2 2020.
D. 2020.
Câu 61. Tính lim
A. −∞.

2n − 3

bằng
+ 3n + 1
B. 0.

2n2

Câu 62. [1] Giá trị của biểu thức 9log3 12 bằng
A. 24.
B. 2.

C. +∞.

D. 1.

C. 144.

D. 4.

Câu 63. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (2; +∞).
B. (−∞; 1).
C. (0; 2).

D. R.

Câu 64. Khối đa diện đều loại {3; 4} có số đỉnh
A. 6.
B. 4.

D. 10.


C. 8.

Câu 65. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Bốn mặt.
B. Hai mặt.
C. Năm mặt.
D. Ba mặt.
!
!
!
x
4
1
2
2016
Câu 66. [3] Cho hàm số f (x) = x
. Tính tổng T = f
+f
+ ··· + f
4 +2
2017
2017
2017
2016
.
D. T = 2016.
A. T = 1008.
B. T = 2017.
C. T =

2017
Câu 67. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vng
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√

a3 5
a3 5
a3 3
a3 5
A.
.
B.
.
C.
.
D.
.
6
4
12
12
Câu 68. Khối đa diện đều loại {4; 3} có số mặt
A. 10.
B. 6.
C. 12.
D. 8.
Z 1
Câu 69. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
1
A. .

4

0

B. 1.

C.

1
.
2

D. 0.

Câu 70. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 9 năm.
B. 8 năm.
C. 7 năm.
D. 10 năm.
Trang 5/10 Mã đề 1


Câu 71. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C)√và (A0C 0 D) bằng



a 3

2a 3
a 3
A.
.
B.
.
C.
.
D. a 3.
2
2
3
Câu 72. Khối đa diện đều loại {3; 5} có số cạnh
A. 20.
B. 12.
1
Câu 73. [1] Giá trị của biểu thức log √3
bằng
10
A. 3.

B. −3.

C. 8.

D. 30.

1
C. − .
3


D.

1
.
3

Câu 74. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n3 lần.
B. 3n3 lần.
C. n lần.
D. n2 lần.
Câu 75. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞

x→+∞

f (x) a
A. lim
= .
x→+∞ g(x)
b
C. lim [ f (x)g(x)] = ab.

B. lim [ f (x) − g(x)] = a − b.
x→+∞

D. lim [ f (x) + g(x)] = a + b.

x→+∞


x→+∞

π
Câu 76. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3

trị của biểu thức T = a + b 3.


A. T = 4.
B. T = 3 3 + 1.
C. T = 2.
D. T = 2 3.
log(mx)
Câu 77. [1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0.
B. m < 0 ∨ m > 4.
C. m ≤ 0.
D. m < 0 ∨ m = 4.
Câu 78. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 0, 8.
B. −7, 2.
C. 7, 2.
D. 72.
!
1
1

1
Câu 79. Tính lim
+
+ ··· +
1.2 2.3
n(n + 1)
3
B. 2.
C. 0.
D. 1.
A. .
2
Câu 80. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối
√ chóp S .ABCD là

3
3

a 5
a 6
a3 15
.
B.
.
C.
.
D. a3 6.
A.
3

3
3
2

Câu 81. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 1 − log2 3.
B. 2 − log2 3.
C. 3 − log2 3.
Câu 82. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 4.

B. 3.

C. 2.

D. 1 − log3 2.
1
3|x−1|

= 3m − 2 có nghiệm duy

D. 1.

Câu 83. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 1.
B. 3.
C. 0.
D. 2.
!

x+1
Câu 84. [3] Cho hàm số f (x) = ln 2017 − ln
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
4035
2017
2016
A.
.
B.
.
C. 2017.
D.
.
2018
2018
2017
Trang 6/10 Mã đề 1






Câu 85. [12215d] Tìm m để phương trình 4 x+ 1−x − 4.2 x+ 1−x − 3m + 4 = 0 có nghiệm
3
9
3
A. 0 ≤ m ≤ .
B. 0 ≤ m ≤ .

C. m ≥ 0.
D. 0 < m ≤ .
4
4
4
x
Câu 86. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 ) = 2 − x bằng
A. 1.
B. 7.
C. 3.
D. 2.
2x + 1
Câu 87. Tính giới hạn lim
x→+∞ x + 1
1
A. 1.
B. 2.
C. .
D. −1.
2
Câu 88. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 6 mặt.
C. 9 mặt.
D. 3 mặt.
x−2
Câu 89. Tính lim
x→+∞ x + 3
2
A. 2.

B. − .
C. −3.
D. 1.
3
Câu 90. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(4; 8).
B. A(−4; −8)(.
C. A(4; −8).
D. A(−4; 8).
x+2
bằng?
Câu 91. Tính lim
x→2
x
A. 2.
B. 1.
C. 3.
D. 0.
2

2

Câu 92. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
x+1 y−5
z
d:
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vuông góc với đường thẳng
2

2
−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (3; 4; −4).
B. ~u = (1; 0; 2).
C. ~u = (2; 1; 6).
D. ~u = (2; 2; −1).
1
Câu 93. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
0
y
A. xy = −e + 1.
B. xy = −e − 1.
C. xy0 = ey + 1.
D. xy0 = ey − 1.
Câu 94. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 84cm3 .
B. 91cm3 .
C. 64cm3 .
D. 48cm3 .
ln x p 2
1
ln x + 1 mà F(1) = . Giá trị của F 2 (e) là:
Câu 95. Gọi F(x) là một nguyên hàm của hàm y =
x

3
8
8
1
1
A. .
B. .
C. .
D. .
9
3
3
9
Câu 96. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối tứ diện đều.
C. Khối 20 mặt đều.
D. Khối 12 mặt đều.
q
2
Câu 97. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 =
√ i
h
0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [−1; 0].
B. m ∈ [0; 4].
C. m ∈ [0; 1].
D. m ∈ [0; 2].
Câu 98. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh của khối chóp bằng số mặt của khối chóp.
B. Số đỉnh của khối chóp bằng số mặt của khối chóp.

C. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
D. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
8
Câu 99. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 82.
B. 96.
C. 64.
D. 81.
Trang 7/10 Mã đề 1


Câu 100. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. n3 lần.
B. 2n2 lần.
C. n3 lần.
D. 2n3 lần.
Câu 101. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc
45◦ . Tính thể tích của khối chóp S√
.ABC theo a


3
3
a 5
a3 15
a3 15
a
A.

.
B.
.
C.
.
D.
.
3
25
25
5
12 + 22 + · · · + n2
Câu 102. [3-1133d] Tính lim
n3
2
1
A. .
B. 0.
C. .
D. +∞.
3
3
Câu 103. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên

hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Chỉ có (II) đúng.

B. Cả hai câu trên sai.

C. Cả hai câu trên đúng. D. Chỉ có (I) đúng.

Câu 104. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 1.
B. 2.
C. 3.
D. Vô số.
Câu 105. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (1; −3).
B. (2; 2).
C. (0; −2).
Câu 106. [2] Cho hàm số f (x) = 2 .5 . Giá trị của f (0) bằng
x

A. f 0 (0) = ln 10.

x

B. f 0 (0) = 1.

Câu 107. Giá trị của lim (3x2 − 2x + 1)
x→1

A. 3.
B. 1.

D. (−1; −7).

0

C. f 0 (0) =

C. 2.

1
.
ln 10

D. f 0 (0) = 10.
D. +∞.

Câu 108. Nếu không sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Năm tứ diện đều.
B. Năm hình chóp tam giác đều, khơng có tứ diện đều.
C. Bốn tứ diện đều và một hình chóp tam giác đều.
D. Một tứ diện đều và bốn hình chóp tam giác đều.
Câu 109. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
23
5
13
9

A. −
.
B. − .
C.
.
D.
.
100
16
100
25
Câu 110. Cho số phức z thỏa mãn |z√+ 3| = 5 và |z − 2i| = |z −√2 − 2i|. Tính |z|.
A. |z| = 10.
B. |z| = 17.
C. |z| = 10.
D. |z| = 17.
3
x −1
Câu 111. Tính lim
x→1 x − 1
A. 3.
B. +∞.
C. 0.
D. −∞.
Câu 112. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 64cm3 .
B. 46cm3 .
C. 27cm3 .
D. 72cm3 .

Trang 8/10 Mã đề 1


a
1
+
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
C. 4.
D. 2.

Câu 113. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) =
A. 7.

B. 1.
4x + 1
Câu 114. [1] Tính lim
bằng?
x→−∞ x + 1
A. −1.
B. 2.

C. −4.

D. 4.

Câu 115. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
.

D. 27.
A. 18.
B. 12.
C.
2
log7 16
Câu 116. [1-c] Giá trị của biểu thức
bằng
15
log7 15 − log7 30
A. 2.
B. 4.
C. −2.
D. −4.
2n + 1
Câu 117. Tính giới hạn lim
3n + 2
2
1
3
A. .
B. .
C. 0.
D. .
3
2
2
Câu 118. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối lăng trụ tam giác.
B. Khối bát diện đều.

C. Khối lập phương.
D. Khối tứ diện.
Câu 119. Dãy số nào có giới hạn bằng 0?
!n
−2
2
.
A. un = n − 4n.
B. un =
3

!n
6
C. un =
.
5

D. un =

n3 − 3n
.
n+1

Câu 120.
[1233d-2] MệnhZđề nào sau đây
Z
Z sai?

[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.

Z
B.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
Z
Z
Z
C.
[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
D.
f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.

A.

Z

Câu 121. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
9
11
A. .
B. 7.
C.
.
D. 5.
2
2
Câu 122. Phát biểu nào sau đây là sai?
1

A. lim √ = 0.
n
n
C. lim q = 1 với |q| > 1.

1
= 0 với k > 1.
nk
D. lim un = c (Với un = c là hằng số).

B. lim

Câu 123. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 8π.
B. 16π.
C. 32π.
D. V = 4π.
Câu 124. Khẳng định nào sau đây đúng?
A. Hình lăng trụ tứ giác đều là hình lập phương.
B. Hình lăng trụ đứng là hình lăng trụ đều.
C. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
D. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
Trang 9/10 Mã đề 1


Câu 125. Cho hàm số y = x3 − 2x2 + x + 1. Mệnh
đề nào dưới đây đúng?
!
1

B. Hàm số nghịch biến trên khoảng (1; +∞).
A. Hàm số nghịch biến trên khoảng −∞; .
! 3
!
1
1
C. Hàm số đồng biến trên khoảng ; 1 .
D. Hàm số nghịch biến trên khoảng ; 1 .
3
3
Câu 126. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 8 cạnh, 4 mặt. B. 3 đỉnh, 3 cạnh, 3 mặt. C. 4 đỉnh, 6 cạnh, 4 mặt. D. 6 đỉnh, 6 cạnh, 4 mặt.
Câu 127. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 6 mặt.
C. 9 mặt.
D. 4 mặt.
3
2
Câu 128. Giá
√ trị cực đại của hàm số√y = x − 3x − 3x + 2 √
A. −3 − 4 2.
B. 3 + 4 2.
C. 3 − 4 2.

Câu 129. Dãy số nào sau đây có giới hạn là 0?
1 − 2n
n2 + n + 1
.
B. un =

.
A. un =
2
(n + 1)
5n + n2

C. un =

n2 − 3n
.
n2


D. −3 + 4 2.
D. un =

n2 − 2
.
5n − 3n2

Câu 130. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. Vô nghiệm.
B. 2.
C. 3.
D. 1.
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1



ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

D

2.

3. A
5.

4. A
B

6. A

7. A
9.

C
D

11.
13.

C

10.


B

14. A
16.

C
D

17.
19. A
21.

B

12. A

B

15.

8.

C

24. A

B

18.


C

20.

C

23.

C

25.

B

26.

D

27.

28.

D

29.

B
B

30.


B

31.

32.

B

33.

34.
36.

C
B

C

C

35.

B

37.

B

38.


D

39.

C

40.

D

41.

C

42.

43.

C

44.

D

45.

46.

D


47. A

48.

D

49.

50.

D
C
D

51. A

B

52. A

53. A

54.

D

55.

56.


D

57.

58.

B

59. A

60.

B

61.

62.

63.

C

B
D
B
C

64. A


65.

D

66. A

67.

D

68.

B

69.
1

C


70. A
D

72.

71.

C

73.


C

74. A

75. A

76. A

77.

D
D

78.

B

79.

80.

B

81.

82.
84.

D


B

83.

C

85. A

B

86.

D

87.

89.

D

90. A

91. A

92.

93.

D


B

94.

95. A

96.

97. A

98.

99.

B

D

C
D
B

100. A

101.

C

102.


103.

C

104.

105.

C

106. A

107.

C

108.

C
B
D

109. A

110.

C

111. A


112.

C

113. A

114.

D

115. A

116.

D

117. A

118.

D

119.

120.

B

121. A


122.

124.

D

127. A

C

128.

C

125.

D

126.
130.

B

D

129.

B


2

B



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×