Tải bản đầy đủ (.pdf) (13 trang)

Đề ôn toán thpt 6 (1)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (153.56 KB, 13 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích hình
hộp đã cho là 1728. Khi đó, các kích
√ của hình hộp là
√ thước
C. 6, 12, 24.
D. 8, 16, 32.
A. 2, 4, 8.
B. 2 3, 4 3, 38.
Z 3
x
a
a
Câu 2. Cho I =
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá trị

d
d
0 4+2 x+1
P = a + b + c + d bằng?
A. P = 16.
B. P = 4.
C. P = 28.


D. P = −2.
d = 300 .
Câu 3. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vng tại A. BC = 2a, ABC
0
Độ dài cạnh bên
√ CC = 3a. Thể tích V 3của
√ khối lăng trụ đã cho.

a3 3
3a 3
A. V =
.
B. V =
.
C. V = 6a3 .
D. V = 3a3 3.
2
2
Câu 4. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 + 2; m = 1.
B. M = e2 − 2; m = e−2 + 2.
C. M = e−2 + 1; m = 1.
D. M = e−2 − 2; m = 1.
Câu 5. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
7
5
A. 6.
B. 9.
C. .

D. .
2
2
0 0 0
Câu 6. Cho lăng trụ đều ABC.A B C có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
ABC.A0 B0C 0 là


a3 3
a3
a3 3
3
A. a .
B.
.
C.
.
D.
.
2
3
6
 π π
Câu 7. Cho hàm số y = 3 sin x − 4 sin3 x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. 3.
B. −1.
C. 1.
D. 7.
Câu 8. Khối đa diện loại {3; 3} có tên gọi là gì?

A. Khối 12 mặt đều.
B. Khối lập phương.

C. Khối tứ diện đều.

D. Khối bát diện đều.

Câu 9. Khẳng định nào sau đây đúng?
A. Hình lăng trụ tứ giác đều là hình lập phương.
B. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
C. Hình lăng trụ đứng là hình lăng trụ đều.
D. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
Câu 10. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 4.

B. 1.

C. 3.

1
3|x−1|

= 3m − 2 có nghiệm duy

D. 2.

Câu 11. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là 4, phần ảo là 1.
B. Phần thực là 4, phần ảo là −1.

C. Phần thực là −1, phần ảo là 4.
D. Phần thực là −1, phần ảo là −4.
x2
Câu 12. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
A. M = e, m = 1.
B. M = e, m = .
C. M = , m = 0.
D. M = e, m = 0.
e
e
Trang 1/10 Mã đề 1


Câu 13. Mệnh đề nào sau đây sai?
A. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
Z
B. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì

f (x)dx = F(x) + C.

C. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
!0
Z
D.
f (x)dx = f (x).
Câu 14. Phát biểu nào sau đây là sai?
1

= 0 với k > 1.
nk
D. lim qn = 1 với |q| > 1.

A. lim un = c (Với un = c là hằng số).
1
C. lim √ = 0.
n

B. lim





Câu 15. [12215d] Tìm m để phương trình 4 x+ 1−x − 4.2 x+ 1−x − 3m + 4 = 0 có nghiệm
9
3
3
B. 0 ≤ m ≤ .
C. m ≥ 0.
D. 0 < m ≤ .
A. 0 ≤ m ≤ .
4
4
4
Câu 16. Cho hình chóp S .ABCD có đáy ABCD là hình vuông cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, biết S H ⊥ (ABCD). Thể √
tích khối chóp S .ABCD là√
3

3
a
4a 3
2a3 3
a3
A.
.
B.
.
C.
.
D.
.
6
3
3
3
2

2

Câu 17. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (II) và (III).

B. (I) và (III).


Câu 18. Khối đa diện đều loại {3; 3} có số đỉnh
A. 2.
B. 5.

C. Cả ba mệnh đề.

D. (I) và (II).

C. 3.

D. 4.

C. 3.

D. 2.

Câu 19. Giá trị của lim (3x2 − 2x + 1)
x→1

A. 1.

B. +∞.

Câu 20.√Biểu thức nào sau đây khơng có nghĩa
A. (− 2)0 .
B. (−1)−1 .

C.



−1.

−3

D. 0−1 .

1 − xy
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
x + 2y


9 11 + 19
2 11 − 3
C. Pmin =
. D. Pmin =
.
9
3

Câu 21. [12210d] Xét các số thực dương x, y thỏa mãn log3
Pmin của P = x +
√ y.

18 11 − 29
9 11 − 19
A. Pmin =
. B. Pmin =
.
21

9

Câu 22.
√ min |z − 1 − i|.
√ [4-1245d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = 3. Tìm
A. 10.
B. 1.
C. 2.
D. 2.
1
Câu 23. [1] Giá trị của biểu thức log √3
bằng
10
1
1
A. −3.
B. .
C. − .
D. 3.
3
3
Trang 2/10 Mã đề 1


!
1
1
1
Câu 24. [3-1131d] Tính lim +
+ ··· +

1 1+2
1 + 2 + ··· + n
5
3
A. .
B. 2.
C. +∞.
D. .
2
2
Câu 25. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
.
B.
.
C.
.
D. a3 .
A.
12
6
24

Câu 26. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã
√ cho là




πa3 6
πa3 3
πa3 3
πa3 3
A. V =
.
B. V =
.
C. V =
.
D. V =
.
6
3
6
2
Câu 27. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. log2 13.
B. 2020.
C. 13.
D. log2 2020.
Câu 28. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
môđun √
z.




5 13
.
B. 26.
A.
C. 2.
D. 2 13.
13
Z 2
ln(x + 1)
Câu 29. Cho
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
x2
1
A. 3.
B. 1.
C. −3.
D. 0.
Câu 30. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ơng muốn hồn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng không đổi trong thời gian ông A hoàn nợ.
(1, 01)3
100.1, 03
A. m =
triệu.
B. m =
triệu.
3
(1, 01) − 1

3
120.(1, 12)3
100.(1, 01)3
triệu.
D. m =
triệu.
C. m =
3
(1, 12)3 − 1
1
Câu 31. Hàm số y = x + có giá trị cực đại là
x
A. −1.
B. 1.
C. 2.
D. −2.
Câu 32. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
ln 2
1
A.
.
B. 2.
C. 1.
D. .
2
2
Câu 33.
Z Trong các khẳng định sau, khẳng định nào sai? Z
1
xα+1

α
A.
dx = ln |x| + C, C là hằng số.
B.
x dx =
+ C, C là hằng số.
α+1
Z x
Z
C.

dx = x + C, C là hằng số.

D.

0dx = C, C là hằng số.

Câu 34. [1] Đạo hàm của hàm số y = 2 x là
1
1
A. y0 = 2 x . ln 2.
B. y0 =
.
C. y0 = 2 x . ln x.
D. y0 = x
.
ln 2
2 . ln x
Câu 35. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim+ f (x) = lim− f (x) = +∞.

B. lim+ f (x) = lim− f (x) = a.
x→a
x→a
x→a
x→a
C. f (x) có giới hạn hữu hạn khi x → a.
D. lim f (x) = f (a).
x→a

Trang 3/10 Mã đề 1


Câu 36. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m > .
B. m < .
C. m ≤ .
D. m ≥ .
4
4
4
4

3
2

Câu 37. [2] Phương trình log4 (x + 1) + 2 = log 2 4 − x + log8 (4 + x) có tất cả bao nhiêu nghiệm?

A. 2 nghiệm.
B. 1 nghiệm.
C. Vô nghiệm.
D. 3 nghiệm.
Câu 38. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. Không tồn tại.
B. −5.
C. −7.

D. −3.

Câu 39. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1
A. 9.
B. 5.
C. 0.

x2 + 3x + 5
Câu 40. Tính giới hạn lim
x→−∞
4x − 1
1
1
A. − .
B. 1.
C. .
4
4
x
Câu 41. [2] Tổng các nghiệm của phương trình log4 (3.2 − 1) = x − 1 là

A. 2.
B. 5.
C. 1.

D. 3.

Câu 42. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. Không tồn tại.
B. 0.
C. 13.

D. 9.

D. 7.

D. 0.

Câu 43. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 216 triệu.
B. 212 triệu.
C. 220 triệu.
D. 210 triệu.
Câu 44. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối√chóp S .ABMN là




4a3 3
2a3 3
5a3 3
a3 3
.
B.
.
C.
.
D.
.
A.
2
3
3
3
!4x
!2−x
2
3
Câu 45. Tập các số x thỏa mãn


#
" 3
! 2
"
!

#
2
2
2
2
A. −∞; .
B. − ; +∞ .
C.
; +∞ .
D. −∞; .
5
3
5
3
Câu 46. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất khơng thay đổi và người đó không rút tiền ra?
A. 10 năm.
B. 11 năm.
C. 12 năm.
D. 14 năm.
Câu 47. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 2.
B. 3.
C. 1.

D. Vơ nghiệm.

Câu 48. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.

A. −3 ≤ m ≤ 3.
B. −2 ≤ m ≤ 2.
C. m ≤ 3.
D. m ≥ 3.
2
x − 5x + 6
Câu 49. Tính giới hạn lim
x→2
x−2
A. 5.
B. −1.
C. 1.
D. 0.
Câu 50. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. 4.
B. −4.
C. 2.

D. −2.
Trang 4/10 Mã đề 1


x2 − 12x + 35
Câu 51. Tính lim
x→5
25 − 5x
2
2
A. − .
B. −∞.

C. .
D. +∞.
5
5
Câu 52. Trong không gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0) lần
lượt là hình chiếu
của B, C lên các cạnh AC, AB. Tọa độ hình chiếu
!
! của A lên BC là
!
7
8
5
A.
; 0; 0 .
B. (2; 0; 0).
C.
; 0; 0 .
D.
; 0; 0 .
3
3
3
Câu 53. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 4 đỉnh, 12 cạnh, 4 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 6 mặt.
Câu 54. Khối đa diện đều loại {4; 3} có số mặt
A. 12.

B. 6.

C. 8.

D. 10.

Câu 55. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−1; 0).
B. (0; 1).
C. (−∞; 0) và (1; +∞). D. (−∞; −1) và (0; +∞).
Câu 56. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể tích của khối chóp S .ABC√ theo a


a3 15
a3 15
a3 5
a3
A.
.
B.
.
C.
.
D.
.
3
5
25
25

Câu 57. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {5; 3}.
B. {3; 5}.
C. {4; 3}.
D. {3; 4}.
Câu 58. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
B. m ≥ 0.
C. m ≤ 0.
D. − < m < 0.
A. m > − .
4
4
!2x−1
!2−x
3
3
Câu 59. Tập các số x thỏa mãn


5
5
A. (−∞; 1].
B. (+∞; −∞).
C. [1; +∞).
D. [3; +∞).
Câu 60. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 6 cạnh, 4 mặt. B. 4 đỉnh, 6 cạnh, 4 mặt. C. 4 đỉnh, 8 cạnh, 4 mặt. D. 3 đỉnh, 3 cạnh, 3 mặt.

Câu 61.√Thể tích của tứ diện đều √
cạnh bằng a
3
3
a 2
a 2
A.
.
B.
.
6
4



a3 2
a3 2
C.
.
D.
.
2
12



x = 1 + 3t





Câu 62. [1232h] Trong không gian Oxyz, cho đường thẳng d : 
y = 1 + 4t . Gọi ∆ là đường thẳng đi qua




z = 1
điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương
 trình là











x
=
1
+
7t
x
=
1

+
3t
x
=
−1
+
2t
x = −1 + 2t
















A. 
.
B. 
C. 
y=1+t
y = 1 + 4t .

y = −10 + 11t . D. 
y = −10 + 11t .
















z = 1 + 5t
z = 1 − 5t
z = 6 − 5t
z = −6 − 5t
x−1 y z+1
= =

2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.


Câu 63. Trong khơng gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình

Trang 5/10 Mã đề 1


A. 10x − 7y + 13z + 3 = 0.
C. 2x + y − z = 0.

B. 2x − y + 2z − 1 = 0.
D. −x + 6y + 4z + 5 = 0.

Câu 64. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 2.

B. 3.

C. 4.

Câu 65. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. 1 nghiệm.
B. 3 nghiệm.
C. 2 nghiệm.

1
3|x−1|

= 3m − 2 có nghiệm duy


D. 1.
D. Vơ nghiệm.

Câu 66. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √

3
3
a 3
a3 6
a3 6
a 6
.
B.
.
C.
.
D.
.
A.
48
24
8
24
Câu 67. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và

a 3
. Khi đó thể tích khối lăng trụ là
BC là
4




a3 3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
36
12
24
6
Câu 68. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất

√ của hàm số. Khi đó tổng M + m

A. 8 3.

B. 16.
C. 8 2.
D. 7 3.
Câu 69. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
B. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
C. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
D. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
x+2
đồng biến trên khoảng
Câu 70. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
x + 5m
(−∞; −10)?
A. Vô số.
B. 1.
C. 2.
D. 3.
Câu 71. Khối đa diện đều loại {5; 3} có số mặt
A. 8.
B. 30.

C. 12.
D. 20.
a
1
Câu 72. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
A. 2.
B. 1.

C. 4.
D. 7.
Câu 73. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính quãng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 12 m.
B. 8 m.
C. 24 m.
D. 16 m.
Câu 74. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45√◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD là
10a3 3
A.
.
B. 40a3 .
C. 10a3 .
D. 20a3 .
3
9t
Câu 75. [4] Xét hàm số f (t) = t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
9 + m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. 0.
B. Vơ số.
C. 1.
D. 2.
Trang 6/10 Mã đề 1


Câu 76. [1] Cho a > 0, a , 1. Giá trị của biểu thức log a1 a2 bằng

1
A. − .
B. −2.
C. 2.
2

D.

1
.
2

[ = 60◦ , S A ⊥ (ABCD).
Câu 77. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng√ khoảng cách từ A đến cạnh

√ S C là a. Thể tích khối chóp S .ABCD là
3
3
3

a 2
a 3
a
2
A.
.
B.
.
C. a3 3.

D.
.
4
6
12
Câu 78.
√ [4-1246d] Trong tất cả các số phức z thỏa mãn |z√− i| = 1. Tìm giá trị lớn nhất của |z|
A. 3.
B. 1.
C. 5.
D. 2.
8
Câu 79. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 81.
B. 96.
C. 64.
D. 82.
Câu 80. [2]√Tìm m để giá trị lớn nhất của hàm số y = 2x3 + (m2√+ 1)2 x trên [0; 1] bằng 8
A. m = ± 3.
B. m = ±3.
C. m = ± 2.
D. m = ±1.
Câu 81. Hàm số f có nguyên hàm trên K nếu
A. f (x) có giá trị nhỏ nhất trên K.
C. f (x) xác định trên K.

B. f (x) liên tục trên K.
D. f (x) có giá trị lớn nhất trên K.


Câu 82. [2] Tổng các nghiệm của phương trình 2 x +2x = 82−x là
A. −5.
B. −6.
C. 5.
2

D. 6.


Câu 83. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by = ab.
Giá trị nhỏ nhất của biểu thức P" = x!+ 2y thuộc tập nào dưới
" đây?
!
5
5
;3 .
C. 2; .
D. [3; 4).
A. (1; 2).
B.
2
2

Câu 84. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.


√ tích khối chóp S .ABC3 √
3

a 6
a3 6
a3 6
a 2
.
B.
.
C.
.
D.
.
A.
6
36
18
6
2n − 3
Câu 85. Tính lim 2
bằng
2n + 3n + 1
A. 0.
B. +∞.
C. 1.
D. −∞.
Câu 86. Cho
Z hai hàm yZ = f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
A. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
Z

Z
B. Nếu
f 0 (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
0
C. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f (x)dx =
g0 (x)dx.
Z
Z
D. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Câu 87. [1-c] Giá trị của biểu thức
A. 2.

B. −2.

log7 16
log7 15 − log7

15
30

bằng
C. 4.

D. −4.


Câu 88. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 8 đỉnh, 10 cạnh, 6 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
Trang 7/10 Mã đề 1


Câu 89. [2] Tổng các nghiệm của phương trình 3
A. log2 3.

B. − log3 2.

1−x

!x
1
=2+

9
C. 1 − log2 3.

Câu 90. [12214d] Với giá trị nào của m thì phương trình
A. 2 < m ≤ 3.

B. 0 ≤ m ≤ 1.
x−3
bằng?
Câu 91. [1] Tính lim

x→3 x + 3
A. +∞.
B. −∞.
1 − n2
Câu 92. [1] Tính lim 2
bằng?
2n + 1
1
A. .
B. 0.
3

1
3|x−2|

D. − log2 3.

= m − 2 có nghiệm

C. 0 < m ≤ 1.

D. 2 ≤ m ≤ 3.

C. 0.

D. 1.

1
.
2


C.

1
D. − .
2

Câu 93. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số đồng biến trên khoảng (0; 2).
B. Hàm số nghịch biến trên khoảng (0; 2).
C. Hàm số nghịch biến trên khoảng (−∞; 2).
D. Hàm số đồng biến trên khoảng (0; +∞).
Câu 94. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; −3; 3).
B. A0 (−3; 3; 1).
C. A0 (−3; −3; −3).
D. A0 (−3; 3; 3).
Câu 95. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng

1
A. 5.
B. 5.
C. 25.
D. .
5
!
x+1
Câu 96. [3] Cho hàm số f (x) = ln 2017 − ln
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)

x
2016
4035
2017
A.
.
B.
.
C.
.
D. 2017.
2017
2018
2018


Câu 97. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ
C đến đường thẳng BB0 bằng 2, khoảng

cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2 3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng
3


2 3
A. 1.
B. 2.

C. 3.
D.
.
3
q
Câu 98. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23 x+ log23 x + 1+4m−1 =
√ i
h
0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [−1; 0].
B. m ∈ [0; 1].
C. m ∈ [0; 4].
D. m ∈ [0; 2].
Câu 99. Cho

√ số phức z thỏa mãn |z + 3| = 5 và |z − 2i| = |z − 2 − 2i|. Tính |z|.
A. |z| = 10.
B. |z| = 17.
C. |z| = 10.
D. |z| = 17.
Câu 100. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
B. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
C. Cả ba câu trên đều sai.
D. F(x) = G(x) trên khoảng (a; b).
Câu 101. Tính lim
A. 0.

cos n + sin n

n2 + 1
B. −∞.

C. +∞.

D. 1.
Trang 8/10 Mã đề 1


Câu 102. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m < .
B. m ≥ .
C. m > .
D. m ≤ .
4
4
4
4
3
2
Câu 103. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax + bx + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 22.
B. y(−2) = 2.
C. y(−2) = 6.
D. y(−2) = −18.

Câu 104. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 6510 m.
B. 1202 m.
C. 2400 m.
D. 1134 m.
Câu 105. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 0.
B. 1.
C. 3.

D. 2.

Câu 106. Khối đa diện đều loại {5; 3} có số cạnh
A. 30.
B. 8.
C. 20.
D. 12.
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
Câu 107. [3-12217d] Cho hàm số y = ln
x
+
1
A. xy0 = ey − 1.
B. xy0 = −ey + 1.
C. xy0 = −ey − 1.
D. xy0 = ey + 1.
Câu 108. Giá trị của lim(2x2 − 3x + 1) là
x→1

A. 2.
B. +∞.

C. 0.

D. 1.

Câu 109. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 1.

B. 4.

C. 3.

D. 2.

x3 −3x+3

Câu 110. [2-c] Giá trị lớn nhất của hàm số f (x) = e
trên đoạn [0; 2] là
A. e.
B. e5 .
C. e3 .
D. e2 .
2x + 1
Câu 111. Tính giới hạn lim

x→+∞ x + 1
1
A. −1.
B. 1.
C. 2.
D. .
2

Câu 112. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh
bên S A vuông góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng



3a 58
3a
a 38
3a 38
A.
.
B.
.
C.
.
D.
.
29
29
29
29

Câu 113. [1] Giá trị của biểu thức 9log3 12 bằng
A. 2.
B. 24.
C. 144.
D. 4.
x
9
Câu 114. [2-c] Cho hàm số f (x) = x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9 +3
1
A. 2.
B. −1.
C. .
D. 1.
2
x−2
Câu 115. Tính lim
x→+∞ x + 3
2
A. − .
B. 1.
C. −3.
D. 2.
3
Trang 9/10 Mã đề 1


Câu 116. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.

(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Cả hai đều sai.
B. Cả hai đều đúng.

C. Chỉ có (I) đúng.

D. Chỉ có (II) đúng.

x2 −4x+5

Câu 117. [2] Tổng các nghiệm của phương trình 3
= 9 là
A. 4.
B. 3.
C. 5.
x3 − 1
Câu 118. Tính lim
x→1 x − 1
A. 3.
B. −∞.
C. +∞.

D. 0.

Câu 119. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 1.
B. 3.
C. 0.


D. 2.

Câu 120. Khối đa diện đều loại {3; 3} có số cạnh
A. 5.
B. 4.

D. 8.

D. 2.

C. 6.

Câu 121. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của√|z + 2 + i|



12 17
.
B. 34.
C. 5.
D. 68.
A.
17
x2 − 9
Câu 122. Tính lim
x→3 x − 3
A. 6.
B. +∞.
C. 3.

D. −3.
log 2x
Câu 123. [1229d] Đạo hàm của hàm số y =

x2
1 − 2 log 2x
1 − 2 ln 2x
1
1 − 4 ln 2x
.
B. y0 =
.
D. y0 = 3
.
A. y0 = 3
.
C. y0 =
3
3
2x ln 10
x
2x ln 10
x ln 10
Câu 124. Khối đa diện đều loại {3; 5} có số mặt
A. 20.
B. 8.
C. 30.
D. 12.
Câu 125.
Các khẳngZđịnh nào sau đây là sai?

Z
k f (x)dx = k

A.
Z
C.

Z

!0

f (x)dx, k là hằng số.
B.
f (x)dx = f (x).
Z
Z
Z
f (x)dx = F(x) +C ⇒
f (u)dx = F(u) +C. D.
f (x)dx = F(x) + C ⇒
f (t)dt = F(t) + C.




x=t





Câu 126. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : 
y = −1 và hai mặt phẳng (P), (Q)




z = −t
lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I
thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).
9
9
A. (x − 3)2 + (y + 1)2 + (z + 3)2 = .
B. (x + 3)2 + (y + 1)2 + (z − 3)2 = .
4
4
9
9
2
2
2
2
2
2
D. (x − 3) + (y − 1) + (z − 3) = .
C. (x + 3) + (y + 1) + (z + 3) = .
4
4
Câu 127. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim+ f (x) = f (a) và lim− f (x) = f (b).

B. lim− f (x) = f (a) và lim+ f (x) = f (b).
x→a

x→b

x→a

x→b

C. lim− f (x) = f (a) và lim− f (x) = f (b).

x→a

x→b

x→a

x→b

D. lim+ f (x) = f (a) và lim+ f (x) = f (b).

Trang 10/10 Mã đề 1


Câu 128. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 12 mặt.
B. 20 đỉnh, 30 cạnh, 12 mặt.
C. 20 đỉnh, 30 cạnh, 20 mặt.
D. 12 đỉnh, 30 cạnh, 20 mặt.
Câu 129. Khối đa diện đều loại {3; 3} có số mặt

A. 4.
B. 2.

C. 3.

D. 5.

Câu 130. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt√bên (S BC) và (S AD) cùng√hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD
√ là
3
3
3
3
4a 3
8a 3
8a 3
a 3
.
B.
.
C.
.
D.
.
A.
9
9
9
3

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 11/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
3.

C

2.

B

4.

B

5.

C

6.

7.

C


8.

D
B
C

9.

B

10.

11.

B

12.

D

14.

D

C

13.
15. A


16.

B

B

17.

D

18.

D

19.

D

20.

D

21.

D

22.

B


24.

B

25. A

26.

B

27. A

28. A

C

23.

29.

C

31.
33.

30. A
D

32.


B

34. A

35.

D

36.

37. A

38. A

39. A

40. A

41. A

42.

43.

B

44. A

45.


B

46.

47.
49.

B
D

52.

C
D

54.

55. A

C
B

56.
B

59.

C

60.

D

B

62.

63. A
65.

C

58. A

61.

67.

B

50.

B

53.
57.

C

48. A


C

51.

B

C
B

64.

D

66.

D

68.
1

C

B


69. A

70.

71.


C

72.

D
D

73.

D

74.

75.

D

76.

77. A

78.

79. A

80.

81.


B

82. A

83.

B

84.

B
D
C
C
D

86.

85. A
87.

D

88.

89.

D

90. A


91.

C

93. A
95.
97.

C

C

B

92.

D

94.

D

96.

C

98. A

B


99. A

100.

101. A

102.

103.

D

B
D

104. A

105. A

106. A

107. A

108.

C

109.


C

110.

111.

C

112. A

113.

C

114.

D

116.

D

115.

B

117. A
119.

118. A

C

120.

121. A

C

122. A

123.
125.

B

D

124. A
126. A

C

127. A

128.

129. A

130.


2

B
C



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×