Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt 6 (646)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (151.94 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Tứ diện đều thuộc loại
A. {3; 3}.
B. {5; 3}.

C. {4; 3}.

D. {3; 4}.

Câu 2. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {3; 5}.
B. {4; 3}.

C. {3; 4}.

D. {5; 3}.

Câu 3. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ơng ta muốn
hồn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hồn nợ ở mỗi tháng là như nhau và ơng A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 2, 25 triệu đồng.


B. 2, 20 triệu đồng.
C. 2, 22 triệu đồng.
D. 3, 03 triệu đồng.
Câu 4. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 5.
B. 2.
C. 3.

D. 1.
x+2
đồng biến trên khoảng
Câu 5. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
x + 5m
(−∞; −10)?
A. Vô số.
B. 2.
C. 3.
D. 1.
Câu 6. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1
1
A. .
B. .
C. 4.
D. .
8
2
4
Câu 7. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =

log4 (x2 + y2 )?
A. 1.
B. 2.
C. 3.
D. Vô số.
2
2
2
1 + 2 + ··· + n
Câu 8. [3-1133d] Tính lim
n3
2
1
A. .
B. .
C. +∞.
D. 0.
3
3
Câu 9. Khối đa diện đều loại {3; 5} có số mặt
A. 12.
B. 30.
C. 20.
D. 8.
Câu 10. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 120 cm2 .
B. 160 cm2 .
C. 160 cm2 .
D. 1200 cm2 .

0 0 0 0
0
Câu 11.√ [2] Cho hình lâp phương
√ bằng
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
a 6
a 3
a 6
a 6
.
B.
.
C.
.
D.
.
A.
2
2
3
7
Câu 12. [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc là mơn Tốn. Mơn thi này dưới hình thức
trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng. Mỗi câu trả lời đúng
được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm. Bạn An học kém mơn Tốn nên quyết định chọn
ngẫu nhiên hết 50 câu trả lời. Xác suất để bạn An đạt 4 điểm mơn Tốn là
C 20 .(3)20
C 40 .(3)10
C 20 .(3)30
C 10 .(3)40
A. 50 50 .

B. 50 50 .
C. 50 50 .
D. 50 50 .
4
4
4
4
Câu 13.! Dãy số nào sau đây có giới! hạn là 0?
!n
!n
n
n
4
5
1
5
A.
.
B. − .
C.
.
D.
.
e
3
3
3

Trang 1/10 Mã đề 1



Câu 14.
các khẳng định sau, khẳng định nào sai?
Z Trong
u0 (x)
dx = log |u(x)| + C.
A.
u(x)
B. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
C. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
D. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
Câu 15. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
BC là
. Khi đó thể tích khối lăng trụ là
4




a3 3
a3 3
a3 3
a3 3
.
B.

.
C.
.
D.
.
A.
24
6
12
36
x−2 x−1
x
x+1
Câu 16. [4-1212d] Cho hai hàm số y =
+
+
+
và y = |x + 1| − x − m (m là tham
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. [−3; +∞).
B. (−∞; −3].
C. (−3; +∞).
D. (−∞; −3).
Câu 17.
đề nào sau đây
Z [1233d-2] Mệnh Z

Z sai?
[ f (x) − g(x)]dx =

A.

f (x)dx −

g(x)dx, với mọi f (x), g(x) liên tục trên R.

Z

f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
C.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
Z
Z
Z
D.
[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
B.

1 − 2n
Câu 18. [1] Tính lim
bằng?
3n + 1
2

1
B. 1.
C. .
A. .
3
3
x
Câu 19. [12211d] Số nghiệm của phương trình 12.3 + 3.15 x − 5 x = 20 là
A. 1.
B. 2.
C. 3.

2
D. − .
3
D. Vô nghiệm.

Câu 20. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng
√ góc với đáy, S C = a3 3. Thể tích khối chóp S .ABCD là

a
a3 3
a3 3
3
.
B.
.
C. a .

D.
.
A.
3
3
9
2

Câu 21. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 6.
B. 5.
C. 8.
2n + 1
Câu 22. Tìm giới hạn lim
n+1
A. 3.
B. 2.
C. 0.

D. 7.
D. 1.

Câu 23. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3. Tính
f (2) + f (4)?
A. 10.
B. 12.
C. 4.
D. 11.
!
3n + 2

2
Câu 24. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 2.
B. 3.
C. 5.
D. 4.
Trang 2/10 Mã đề 1


Câu 25. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 − 2; m = 1.
B. M = e−2 + 2; m = 1.
C. M = e−2 + 1; m = 1.
D. M = e2 − 2; m = e−2 + 2.
Câu 26. Tính thể tích khối lập phương biết tổng diện tích √
tất cả các mặt bằng 18.
A. 8.
B. 27.
C. 3 3.
D. 9.
Câu 27. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. −4.
B. 4.
C. 2.

D. −2.


Câu 28. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có hai.
B. Khơng có.
C. Có một.
D. Có một hoặc hai.
Câu 29. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối √
chóp S .ABMN là



3
5a 3
a3 3
2a3 3
4a3 3
A.
.
B.
.
C.
.
D.
.
3
2
3
3


Câu 30. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã



√ cho là
3
πa3 3
πa3 6
πa3 3
πa 3
.
B. V =
.
C. V =
.
D. V =
.
A. V =
3
6
6
2
Câu 31. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
1
A. − 2 .
C. −e.

D. − .
B. − .
e
2e
e

Câu 32. [1] Biết log6 a = 2 thì log6 a bằng
A. 108.
B. 36.
C. 4.
D. 6.
Câu 33. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 32π.
B. 16π.
C. V = 4π.
D. 8π.
Câu 34. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (−∞; 1).
B. (2; +∞).
C. R.
D. (0; 2).
2mx + 1
1
Câu 35. Giá trị lớn nhất của hàm số y =
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
A. −2.
B. −5.

C. 0.
D. 1.
n−1
Câu 36. Tính lim 2
n +2
A. 0.
B. 3.
C. 2.
D. 1.
Câu 37. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Hai mặt.
B. Ba mặt.
C. Bốn mặt.

D. Năm mặt.

Câu 38. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; 3; 1).
B. A0 (−3; −3; −3).
C. A0 (−3; 3; 3).
D. A0 (−3; −3; 3).
Câu 39. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối lập phương.

C. Khối tứ diện đều.

D. Khối 12 mặt đều.

Câu 40. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành

d0 ?
A. Có vơ số.
B. Khơng có.
C. Có một.
D. Có hai.
Trang 3/10 Mã đề 1


1
Câu 41. [3-12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 2 ≤ m ≤ 3.
B. 2 < m ≤ 3.
C. 0 < m ≤ 1.
D. 0 ≤ m ≤ 1.
!
5 − 12x
Câu 42. [2] Phương trình log x 4 log2
= 2 có bao nhiêu nghiệm thực?
12x − 8
A. 2.
B. 1.
C. 3.
D. Vô nghiệm.
Z 1
Câu 43. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
0

1

1
.
C. 1.
D. .
4
2
Câu 44. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α

B. aα bα = (ab)α .
C. aα+β = aα .aβ .
D. aαβ = (aα )β .
A. β = a β .
a
Câu 45. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (0; +∞).
B. (−∞; 0) và (2; +∞). C. (0; 2).
D. (−∞; 2).
A. 0.

B.

Câu 46. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
9
3
A. .
B. 1.
C. .
D. 3.

2
2
Câu 47. Trong các khẳng định sau, khẳng định nào sai?
A. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.

B. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
C. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
D. Cả ba đáp án trên.
Câu 48. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
ab
1
ab
1
A. 2
.
C. √
.
D. √
.
.
B. √
2
a +b
2 a2 + b2
a2 + b2
a2 + b2
Câu 49. Phát biểu nào sau đây là sai?
1
= 0.

nk
D. lim un = c (un = c là hằng số).

A. lim qn = 0 (|q| > 1).
1
C. lim = 0.
n

B. lim

1
Câu 50. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. −2 < m < −1.
B. (−∞; −2) ∪ (−1; +∞). C. −2 ≤ m ≤ −1.
D. (−∞; −2] ∪ [−1; +∞).
Câu 51. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (4; 6, 5].
B. [6, 5; +∞).
C. (4; +∞).

D. (−∞; 6, 5).

Câu 52. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 3.


B. 2.

Câu 53. Khối đa diện đều loại {3; 4} có số đỉnh
A. 6.
B. 4.

C. 0.
C. 10.

D. 1.
D. 8.
Trang 4/10 Mã đề 1


Câu 54. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
2

A. 6.

B. 2.

C. 4.

3

Z

6
3x + 1


. Tính

1

f (x)dx.
0

D. −1.

Câu 55. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số đỉnh của khối chóp bằng số mặt của khối chóp.
B. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
C. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
D. Số cạnh của khối chóp bằng số mặt của khối chóp.
Câu 56. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim+ f (x) = lim− f (x) = a.
B. f (x) có giới hạn hữu hạn khi x → a.
x→a

x→a

C. lim f (x) = f (a).

D. lim+ f (x) = lim− f (x) = +∞.

x→a

x→a

x→a


Câu 57. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với đáy một góc 60◦ . Thể tích√khối chóp S .ABCD là √


a3 3
a3 3
2a3 3
3
A. a 3.
B.
.
C.
.
D.
.
3
6
3
x+3
nghịch biến trên khoảng
Câu 58. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
x−m
(0; +∞)?
A. 1.
B. 3.
C. 2.
D. Vô số.
Câu 59. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. −e2 .

B. 2e2 .
C. 2e4 .
D. −2e2 .
7n2 − 2n3 + 1
Câu 60. Tính lim 3
3n + 2n2 + 1
7
2
B. .
C. 0.
D. 1.
A. - .
3
3
Câu 61. [1] Cho a > 0, a , 1. Giá trị của biểu thức log 1a a2 bằng
1
1
A. − .
B. .
C. 2.
2
2

D. −2.

Câu 62. Khẳng định nào sau đây đúng?
A. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
B. Hình lăng trụ tứ giác đều là hình lập phương.
C. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
D. Hình lăng trụ đứng là hình lăng trụ đều.

Câu 63. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1

A. 5.

B. 7.

C. 0.

D. 9.

Câu 64. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
ln 2
1
A.
.
B. 2.
C. 1.
D. .
2
2
x
x
Câu 65. [1225d] Tìm tham số thực m để phương trình log2 (5 − 1) log4 (2.5 − 2) = m có nghiệm thực
x≥1
A. m ≤ 3.
B. m < 3.
C. m > 3.
D. m ≥ 3.
Câu 66. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?

A. Khối lập phương.
B. Khối bát diện đều.
C. Khối tứ diện.
D. Khối lăng trụ tam giác.
Trang 5/10 Mã đề 1


Câu 67. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối tứ diện đều.

C. Khối bát diện đều.

D. Khối lập phương.

Câu 68. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
B. m ≥ .
C. m < .
D. m > .
A. m ≤ .
4
4
4
4
log √a 5
Câu 69. [1] Cho a > 0, a , 1 .Giá trị của biểu thức a

bằng

1
A. 5.
B. .
C. 5.
D. 25.
5
x+2
bằng?
Câu 70. Tính lim
x→2
x
A. 0.
B. 1.
C. 2.
D. 3.
Câu 71. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Hai hình chóp tứ giác.
B. Một hình chóp tam giác và một hình chóp tứ giác.
C. Một hình chóp tứ giác và một hình chóp ngũ giác.
D. Hai hình chóp tam giác.
Câu 72. Cho z là nghiệm của phương trình x2 + x + 1 = 0. Tính P =√z4 + 2z3 − z

−1 − i 3
−1 + i 3
.
D. P =
.

A. P = 2.
B. P = 2i.
C. P =
2
2
ln x p 2
1
Câu 73. Gọi F(x) là một nguyên hàm của hàm y =
ln x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
1
1
8
8
A. .
B. .
C. .
D. .
9
3
3
9
tan x + m
Câu 74. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1
 π
0; .
4

A. [0; +∞).
B. (−∞; −1) ∪ (1; +∞). C. (1; +∞).
D. (−∞; 0] ∪ (1; +∞).
Câu 75. [3] Cho khối chóp S .ABC có đáy là tam giác vng tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
8a
5a
a
2a
.
B.
.
C. .
D.
.
A.
9
9
9
9
un
Câu 76. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. 0.
B. +∞.
C. −∞.
D. 1.
Câu 77. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.

(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Chỉ có (I) đúng.
B. Cả hai đều đúng.
Câu 78. Phần thực√và phần ảo của số √
phức z =
A. Phần thực là √2, phần ảo là 1 − √3.
C. Phần thực là 2 − 1, phần ảo là 3.



C. Cả hai đều sai.
D. Chỉ có (II) đúng.

2 − 1 − 3i lần lượt l √

B. Phần thực là 1√− 2, phần ảo là − √3.
D. Phần thực là 2 − 1, phần ảo là − 3.

Câu 79. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 3 mặt.
C. 6 mặt.
D. 9 mặt.
Trang 6/10 Mã đề 1


Câu 80. Khối đa diện đều loại {4; 3} có số cạnh
A. 30.
B. 10.


C. 12.

D. 20.

Câu 81. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính qng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 16 m.
B. 12 m.
C. 24 m.
D. 8 m.
Câu 82. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất khơng thay đổi và người đó khơng rút tiền ra?
A. 11 năm.
B. 12 năm.
C. 10 năm.
D. 14 năm.
!
x+1
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
Câu 83. [3] Cho hàm số f (x) = ln 2017 − ln
x
4035
2016
2017
A. 2017.
B.
.

C.
.
D.
.
2018
2017
2018
Câu 84. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
A. log2 a =
.
B. log2 a =
.
C. log2 a = − loga 2.
D. log2 a = loga 2.
log2 a
loga 2
Câu 85. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số đồng biến trên khoảng (0; +∞).
B. Hàm số nghịch biến trên khoảng (−∞; 2).
C. Hàm số đồng biến trên khoảng (0; 2).
D. Hàm số nghịch biến trên khoảng (0; 2).
Câu 86. [1-c] Giá trị của biểu thức
A. −4.

B. 4.

log7 16
log7 15 − log7


15
30

bằng
C. −2.

D. 2.

Câu 87. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
A.
.
B.
.
C.
.
D. a3 .
24
12
6
Câu 88. Khối đa diện đều loại {3; 4} có số mặt
A. 10.
B. 12.
C. 6.
D. 8.

x−1
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
Câu 89. [3-1214d] Cho hàm số y =
x+2
tam giác
B thuộc (C), đoạn thẳng AB có độ dài bằng
√ đều ABI có hai đỉnh A, √

A. 6.
B. 2 2.
C. 2.
D. 2 3.
Câu 90. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [1; +∞).
B. (−∞; −3].
C. [−3; 1].
D. [−1; 3].
Câu 91. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S√B bằng
a 3
a
a
A.
.
B. a.
C. .
D. .
2
2

3
2x + 1
Câu 92. Tính giới hạn lim
x→+∞ x + 1
1
A. .
B. 2.
C. −1.
D. 1.
2
Trang 7/10 Mã đề 1


x−3 x−2 x−1
x
+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (2; +∞).
B. (−∞; 2].
C. [2; +∞).
D. (−∞; 2).
Câu 93. [4-1213d] Cho hai hàm số y =


Câu 94. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 2.
B. 1.
C. Vô nghiệm.
D. 3.
Câu 95. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Hai khối chóp tứ giác.
B. Một khối chóp tam giác, một khối chóp tứ giác.
C. Một khối chóp tam giác, một khối chóp ngữ giác.
D. Hai khối chóp tam giác.
1
Câu 96. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 < m ≤ 1.
B. 2 ≤ m ≤ 3.
C. 0 ≤ m ≤ 1.
D. 2 < m ≤ 3.
Câu 97. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. 1 nghiệm.
B. 3 nghiệm.
C. Vô nghiệm.
Câu 98. [2] Tổng các nghiệm của phương trình 2
A. −5.
B. −6.

D. 2 nghiệm.

x2 +2x

= 82−x là

C. 6.

D. 5.

Câu 99. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất
√M + m

√ của hàm số. Khi đó tổng
B. 8 2.
C. 16.
D. 7 3.
A. 8 3.
Câu 100. Cho hình
√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối chóp S .ABCD là



a3 5
a3 15
a3 6
3
.
B. a 6.
.
D.
.
A.
C.

3
3
3
3

Câu 101. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e2 .
B. e3 .
C. e5 .
D. e.
1
Câu 102. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 1.
B. 3.
C. 2.
D. 4.
Câu 103. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 2.
B. 1.
C. −1.

D. 6.

Câu 104. Cho hình chóp S .ABCD có√đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết
a 5. Thể tích khối chóp S .ABCD là
√ S H ⊥ (ABCD), S A =


2a3 3
2a3
4a3
4a3 3
A.
.
B.
.
C.
.
D.
.
3
3
3
3
2
Câu 105. Tính
√ mơ đun của số phức√4z biết (1 + 2i)z = 3 + 4i. √
A. |z| = 2 5.
B. |z| = 5.
C. |z| = 5.
D. |z| = 5.
Câu 106. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của

A. Tăng lên (n − 1) lần. B. Giảm đi n lần.
C. Tăng lên n lần.
D. Không thay đổi.
Z 2
ln(x + 1)

Câu 107. Cho
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
x2
1
A. −3.
B. 1.
C. 0.
D. 3.
Trang 8/10 Mã đề 1


Câu 108. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là 4, phần ảo là −1.
B. Phần thực là −1, phần ảo là −4.
C. Phần thực là 4, phần ảo là 1.
D. Phần thực là −1, phần ảo là 4.
Câu 109. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = −5.
B. x = 0.
C. x = −8.

D. x = −2.

Câu 110. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vuông góc
với (S BC). Thể tích khối chóp S .ABC là




a3 3

a3 3
a3 2
a3 3
.
B.
.
C.
.
D.
.
A.
12
6
4
12
Câu 111. [2-c] Cho hàm số f (x) =
A. 1.

B.

1
.
2

9x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9x + 3
C. 2.

D. −1.


Câu 112. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 3.
B. V = 6.
C. V = 4.
D. V = 5.
Câu 113. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh của khối chóp bằng 2n.
B. Số đỉnh của khối chóp bằng 2n + 1.
C. Số mặt của khối chóp bằng 2n+1.
D. Số mặt của khối chóp bằng số cạnh của khối chóp.
2
x
Câu 114. [2] Tìm m để giá trị nhỏ nhất của hàm số y = 2x3 + (m
√ + 1)2 trên [0; 1] bằng 2

A. m = ±3.
B. m = ± 3.
C. m = ± 2.
D. m = ±1.

Câu 115. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 84cm3 .
B. 91cm3 .
C. 64cm3 .
D. 48cm3 .
Câu 116. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.

B. 9 mặt.
C. 3 mặt.

D. 6 mặt.

Câu 117.
Cho hàm số
Z
Z f (x), g(x) liên tục trên R. Trong các
Z mệnh đề sau, mệnh
Z đề nào
Z sai?
k f (x)dx = f

A.
Z
C.

f (x)dx, k ∈ R, k , 0.
Z
Z
( f (x) + g(x))dx =
f (x)dx + g(x)dx.

f (x)g(x)dx =

B.
Z
D.


f (x)dx g(x)dx.
Z
Z
( f (x) − g(x))dx =
f (x)dx − g(x)dx.

Câu 118. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối 20 mặt đều.
B. Khối bát diện đều.

C. Khối tứ diện đều.

Câu 120. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối 12 mặt đều.

C. Khối lập phương.

D. Khối 12 mặt đều.
 π π
3
Câu 119. Cho hàm số y = 3 sin x − 4 sin x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. 3.
B. −1.
C. 7.
D. 1.
D. Khối bát diện đều.

Câu 121. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là

A. {5}.
B. {5; 2}.
C. {2}.
D. {3}.
Trang 9/10 Mã đề 1





x = 1 + 3t




Câu 122. [1232h] Trong không gian Oxyz, cho đường thẳng d : 
y = 1 + 4t . Gọi ∆ là đường thẳng đi




z = 1
qua điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương
 trình là












x
=
1
+
3t
x
=
1
+
7t
x
=
−1
+
2t
x = −1 + 2t

















A. 
B. 
.
C. 
y = 1 + 4t .
y=1+t
y = −10 + 11t . D. 
y = −10 + 11t .

















z = 1 − 5t
z = 1 + 5t
z = 6 − 5t
z = −6 − 5t
Câu 123. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 0.
B. Không tồn tại.
C. 13.

D. 9.

Câu 124. Khối chóp ngũ giác có số cạnh là
A. 12 cạnh.
B. 11 cạnh.

D. 10 cạnh.

C. 9 cạnh.

log 2x

Câu 125. [1229d] Đạo hàm của hàm số y =
x2
1
1 − 2 ln 2x
1 − 4 ln 2x
.
B. y0 = 3

.
C. y0 = 3
.
A. y0 =
3
2x ln 10
2x ln 10
x ln 10
Câu 126. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
D. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.

D. y0 =

1 − 2 log 2x
.
x3

Câu 127. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung
điểm cạnh AB, biết S H ⊥ (ABCD).√Thể tích khối chóp S .ABCD là

a3
4a3 3
a3
2a3 3
A.
.
B.

.
C.
.
D.
.
6
3
3
3
Câu 128. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R \ {1}.
B. D = R \ {0}.
C. D = (0; +∞).
D. D = R.
4x + 1
Câu 129. [1] Tính lim
bằng?
x→−∞ x + 1
A. 4.
B. −4.
C. −1.
D. 2.
Câu 130. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
C. m > − .
D. m ≤ 0.
A. m ≥ 0.
B. − < m < 0.

4
4
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A

2. A

3.

4.

C

5.

B

6.

7.

B


8. A

9.

C

10.

11.

C

12. A

13.

C

14. A

15.

C

16.

17.

C


18.

19. A
21.
23.

D

B
D
B

B
D

20.

B

22.

B

24.

B

25. A

D


26.

27.

D

C

28.

D

29.

B

30. A

31.

B

32.

C

35.

C


34.

D

36. A

37.

38.

C

42.

39.
D

40.

41.

B
D

45.

B
B


46.

C

47.

48.

C

49. A

50.

C

51. A
53. A

B

54.

C

55. A

56.

C


57.

58.

C

43.

B

44. A

52.

B

B

B

59. A

60. A

61.

D

62. A


63.

D

65.

D

67.

D

69.

D

64.
66.

B
C

68. A
1


C

70.

72. A

C

74.

D

73.

D

75. A

78.

D

80.

79.

C
B

87.
D

90.


91.

92.

B

93.

94.

B

95.

96.

B
D

89.

C

B
C
B

97.

D


98. A
C

100.

C

85.

88.

D

99.

C

101.

C

103.

102. A
C

104.

105.


B

109.

110. A

111. A

112.

C

114.

B
C

113. A
D

115.

B

C

118. A

119.


D

120.

121. A

122.

123. A

124.

125.

D

107. A

108. A

127.

D

83.

86. A

117.


B

81. A

82. A

106.

D

77.

76. A

84.

71.

126.

C

D
C
D
B

128.


B

129. A

130.

2

D
C



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×