Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt 7 (161)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (152.92 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3. Tính
f (2) + f (4)?
A. 11.
B. 10.
C. 4.
D. 12.
Câu 2. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = (0; +∞).
B. D = R \ {0}.

C. D = R.

D. D = R \ {1}.
 π π
3
Câu 3. Cho hàm số y = 3 sin x − 4 sin x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. 7.
B. 1.
C. 3.
D. −1.
Câu 4. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích hình


hộp đã √cho là√1728. Khi đó, các kích thước của hình hộp là
A. 2 3, 4 3, 38.
B. 6, 12, 24.
C. 2, 4, 8.
D. 8, 16, 32.
Câu 5. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. Cả ba mệnh đề.

B. (II) và (III).

Câu 6. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối tứ diện đều.

C. (I) và (II).

D. (I) và (III).

C. Khối 12 mặt đều.

D. Khối lập phương.

Câu 7. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 21.

B. 22.
C. 23.
D. 24.
Câu 8. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 4 mặt.
C. 3 mặt.

D. 9 mặt.

Câu 9. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu không rút
tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp theo.
Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi ban
đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó khơng rút tiền ra?
A. 14 năm.
B. 10 năm.
C. 11 năm.
D. 12 năm.
Câu 10. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
1
.
C. f 0 (0) = 1.
A. f 0 (0) = ln 10.
B. f 0 (0) =
ln 10
Câu 11. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 1.
B. 6.
C. 2.


D. f 0 (0) = 10.
D. −1.

d = 30◦ , biết S BC là tam giác đều
Câu 12. [3] Cho hình chóp S .ABC có đáy là tam giác vng tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
A.
.
B.
.
C.
.
D.
.
9
26
13
16
Trang 1/10 Mã đề 1


Câu 13. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|





12 17
.
C. 5.
A. 34.
B.
D. 68.
17
[ = 60◦ , S O
Câu 14. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ Khoảng cách từ O đến (S√BC) bằng
√ với mặt đáy và S O = a.

a 57
2a 57
a 57
.
B.
.
C.
.
D. a 57.
A.
19
17
19

Câu 15. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. e2016 .
B. 1.
C. 0.
D. 22016 .
Câu 16. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 6 mặt.
C. 9 mặt.
D. 4 mặt.
Câu 17. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Một mặt.
B. Hai mặt.
C. Bốn mặt.

D. Ba mặt.

Câu 18. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. (1; 2).
B. [1; 2].
C. [−1; 2).

D. (−∞; +∞).

Câu 19. Cho hình chóp S .ABCD có đáy ABCD là hình thang vuông tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt phẳng vng góc với (ABCD).
Thể tích khối chóp

√ S .ABCD là

3
3

a
2
a
3
a3 3
.
B. a3 3.
C.
.
D.
.
A.
2
2
4
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
Câu 20. [3-12217d] Cho hàm số y = ln
x
+
1
A. xy0 = −ey + 1.
B. xy0 = −ey − 1.
C. xy0 = ey − 1.
D. xy0 = ey + 1.
Câu 21. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)

cùng vng


√ góc với đáy, S C = a3 3. Thể tích khối chóp S 3.ABCD
3
a
a 3
a 3
.
B.
.
C.
.
D. a3 .
A.
3
3
9
!
3n + 2
2
Câu 22. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 5.
B. 4.
C. 2.
D. 3.
Câu 23. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một

nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
B. F(x) = G(x) trên khoảng (a; b).
C. Cả ba câu trên đều sai.
D. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.


Câu 24. Tìm
giá
trị
lớn
nhất
của
hàm
số
y
=
x
+
3
+
6√− x


A. 2 + 3.
B. 3.
C. 2 3.
D. 3 2.
Câu 25. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?

A. Khơng có.
B. Có hai.
C. Có một hoặc hai.
D. Có một.
Câu 26. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. −4.
B. 4.
C. −2.

D. 2.
Trang 2/10 Mã đề 1


Câu 27. Khẳng định nào sau đây đúng?
A. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
B. Hình lăng trụ đứng là hình lăng trụ đều.
C. Hình lăng trụ tứ giác đều là hình lập phương.
D. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
Câu 28. Phát biểu nào sau đây là sai?
1
1
B. lim k = 0 với k > 1.
A. lim √ = 0.
n
n
n
C. lim q = 1 với |q| > 1.
D. lim un = c (Với un = c là hằng số).
Z 2
ln(x + 1)

dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
Câu 29. Cho
x2
1
A. 3.
B. −3.
C. 1.
D. 0.
Câu 30. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−∞; 0) và (1; +∞). B. (−∞; −1) và (0; +∞). C. (−1; 0).
D. (0; 1).
1
Câu 31. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 1.
B. 4.
C. 2.
D. 3.
x+2
Câu 32. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. 1.
B. 2.
C. Vô số.
D. 3.
Câu 33. Khối đa diện đều loại {3; 3} có số cạnh
A. 6.

B. 4.

C. 5.

D. 8.

Câu 34. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Chỉ có (I) đúng.
B. Cả hai đều sai.

C. Chỉ có (II) đúng.

D. Cả hai đều đúng.

Câu 35.
bằng 1 là:
√ Thể tích của khối lăng trụ tam giác đều có cạnh √

3
3
3
3
A.
.
B. .
C.
.

D.
.
12
4
4
2
Câu 36. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 72cm3 .
B. 27cm3 .
C. 46cm3 .
D. 64cm3 .
Câu 37. Tính diện tích hình phẳng giới hạn bởi các đường y = xe x , y = 0, x = 1. √
3
1
3
A. 1.
B. .
C. .
D.
.
2
2
2
Câu 38. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp đôi.
B. Tăng gấp 6 lần.
C. Tăng gấp 8 lần.
D. Tăng gấp 4 lần.

Câu 39. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
Trang 3/10 Mã đề 1


(III) lim qn = +∞ nếu |q| > 1.
A. 3.

B. 1.
x − 5x + 6
Câu 40. Tính giới hạn lim
x→2
x−2
A. 0.
B. −1.

C. 0.

D. 2.

2

C. 5.

D. 1.
sin2 x

Câu 41. [3-c] Giá trị nhỏ nhất và√giá trị lớn nhất của hàm số f (x)
√ =2

A. 2 và 3.
B. 2 2 và 3.
C. 2 và 2 2.
Câu 42.! Dãy số nào sau đây có giới
!n hạn là 0?
n
5
4
.
B.
.
A.
e
3

!n
1
C.
.
3

cos2 x

+2

lần lượt là

D. 2 và 3.

!n

5
D. − .
3

Câu 43. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
A. T = e + 1.
B. T = e + 3.
C. T = e + .
D. T = 4 + .
e
e
0 0 0
d
Câu 44. Cho lăng trụ đứng ABC.A B C có đáy là tam giác vng tại A, AC = a, ACB = 60◦ . Đường chéo
BC 0 của mặt bên (BCC 0 B0 ) tạo với mặt phẳng (AA0C 0C) một góc 30◦ . Thể tích của khối lăng trụ ABC.A0 B0C 0





4a3 6
a3 6
2a3 6
3
A.
.
B.

.
C. a 6.
.
D.
3
3
3
Câu 45. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [−3; 1].
B. [1; +∞).
C. (−∞; −3].
D. [−1; 3].
Câu 46. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể√tích của khối chóp S .ABC√ theo a

a3 5
a3
a3 15
a3 15
.
B.
.
C.
.
D.
.
A.
5
25

3
25

Câu 47. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 62.
B. 63.
C. Vơ số.
D. 64.
Câu 48. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của

A. Tăng lên (n − 1) lần. B. Không thay đổi.
C. Giảm đi n lần.
D. Tăng lên n lần.
Câu 49. Hàm số f có nguyên hàm trên K nếu
A. f (x) có giá trị nhỏ nhất trên K.
C. f (x) xác định trên K.

B. f (x) liên tục trên K.
D. f (x) có giá trị lớn nhất trên K.

Câu 50.
đề nào sau đây sai?
Z [1233d-2] Mệnh
Z
A.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
Z
B.

f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
Z
C.
[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
Z
Z
D.
[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
Câu 51. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, √biết S H ⊥ (ABCD). Thể tích khối chóp S .ABCD là√
a3
2a3 3
a3
4a3 3
.
B.
.
C.
.
D.
.
A.
3
6
3

3
Trang 4/10 Mã đề 1


Câu 52. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
7
5
B. .
C. 6.
D. 9.
A. .
2
2
!4x
!2−x
3
2


Câu 53. Tập các số x thỏa mãn
3
2
#
"
!
#
"
!
2

2
2
2
A. −∞; .
B.
; +∞ .
C. −∞; .
D. − ; +∞ .
3
5
5
3

Câu 54. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 63.
B. 64.
C. Vô số.
D. 62.
2
x − 3x + 3
đạt cực đại tại
Câu 55. Hàm số y =
x−2
A. x = 2.
B. x = 3.
C. x = 0.
D. x = 1.
 π
Câu 56. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là

2


3 π6
1 π
2 π4
e .
e .
B. e 3 .
C.
D. 1.
A.
2
2
2
Câu 57. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
9
11
.
B. 7.
C. 5.
D. .
A.
2
2
Câu 58. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.

A. 216 triệu.
B. 220 triệu.
C. 210 triệu.
D. 212 triệu.
d = 300 .
Câu 59. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vng tại A. BC = 2a, ABC
0
Độ dài cạnh bên

√ CC = 3a. Thể tích V của khối lăng trụ đã cho.

a3 3
3a3 3
3
3
.
B. V = 3a 3.
C. V = 6a .
D. V =
.
A. V =
2
2
1
Câu 60. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
0

y
A. xy = −e − 1.
B. xy = e + 1.
C. xy0 = −ey + 1.
D. xy0 = ey − 1.
Câu 61. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
1
ab
ab
1
A. √
.
B. √
.
C. 2
.
D. √
.
2
a +b
2 a2 + b2
a2 + b2
a2 + b2
Câu 62. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
B. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngồi ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
C. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
D. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
9t

, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
9t + m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. 2.
B. 0.
C. Vô số.
D. 1.

Câu 63. [4] Xét hàm số f (t) =

Trang 5/10 Mã đề 1


Câu 64. [2] Tổng các nghiệm của phương trình 3
A. − log3 2.

B. 1 − log2 3.

1−x

!x
1
=2+

9
C. − log2 3.

D. log2 3.

Câu 65.

Z Cho hàm số f (x),Zg(x) liên tụcZtrên R. Trong cácZmệnh đề sau, mệnh
Z đề nào sai?
( f (x) + g(x))dx =

A.
Z
C.

( f (x) − g(x))dx =

f (x)dx +

Z

g(x)dx.

f (x)dx −

k f (x)dx = f

B.

Z

Z
g(x)dx.

D.

f (x)g(x)dx =


Z

f (x)dx, k ∈ R, k , 0.
Z
f (x)dx g(x)dx.

Câu 66. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 160 cm2 .
B. 120 cm2 .
C. 1200 cm2 .
D. 160 cm2 .
Câu 67. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
1
1
ab
ab
.
C. √
.
D. √
.
A. 2
.
B. √
2
a +b
a2 + b2

a2 + b2
2 a2 + b2
1
Câu 68. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 2 ≤ m ≤ 3.
B. 2 < m ≤ 3.
C. 0 < m ≤ 1.
D. 0 ≤ m ≤ 1.
Câu 69. Khối đa diện đều loại {3; 5} có số cạnh
A. 30.
B. 12.

C. 20.

D. 8.

Câu 70. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2
A. 2e + 1.
B. 3.
C. .
D. 2e.
e
Câu 71. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc
√ tích khối chóp S .ABC

√ với đáy và S C = a 3. 3Thể

√là
3
3
a 3
2a 6
a 3
a3 6
A.
.
B.
.
C.
.
D.
.
4
9
2
12
x−3
bằng?
Câu 72. [1] Tính lim
x→3 x + 3
A. 1.
B. +∞.
C. 0.
D. −∞.
Câu 73. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Đường phân giác góc phần tư thứ nhất.
B. Trục thực.

C. Hai đường phân giác y = x và y = −x của các góc tọa độ.
D. Trục ảo.
Câu 74. Bát diện đều thuộc loại
A. {3; 4}.
B. {5; 3}.

C. {3; 3}.

D. {4; 3}.

C. 6.

D. +∞.

2

Câu 75. Tính lim
x→3

A. 3.

x −9
x−3

B. −3.

Câu 76. Phát biểu nào sau đây là sai?
1
A. lim qn = 0 (|q| > 1).
B. lim = 0.

n
1
C. lim k = 0.
D. lim un = c (un = c là hằng số).
n
Câu 77. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α

A. aα+β = aα .aβ .
B. β = a β .
C. aα bα = (ab)α .
D. aαβ = (aα )β .
a
Trang 6/10 Mã đề 1


12 + 22 + · · · + n2
Câu 78. [3-1133d] Tính lim
n3
2
1
A. .
B. .
C. 0.
D. +∞.
3
3
Câu 79. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC)
một góc bằng 60◦ . Thể√tích khối chóp S .ABC là



a3 3
a3
a3 3
a3 3
.
B.
.
C.
.
D.
.
A.
4
8
4
12
log(mx)
= 2 có nghiệm thực duy nhất
Câu 80. [3-1226d] Tìm tham số thực m để phương trình
log(x + 1)
A. m < 0 ∨ m = 4.
B. m ≤ 0.
C. m < 0.
D. m < 0 ∨ m > 4.
3

Câu 81. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e2 .

B. e3 .
C. e.
D. e5 .
log 2x
Câu 82. [1229d] Đạo hàm của hàm số y =

x2
1
1 − 2 ln 2x
1 − 4 ln 2x
1 − 2 log 2x
A. y0 = 3
.
B. y0 = 3
.
C. y0 =
.
D. y0 =
.
3
2x ln 10
x ln 10
2x ln 10
x3
Câu 83. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Bát diện đều.
B. Nhị thập diện đều. C. Thập nhị diện đều. D. Tứ diện đều.
1
Câu 84. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3

biến trên R.
A. −2 < m < −1.
B. (−∞; −2] ∪ [−1; +∞). C. −2 ≤ m ≤ −1.
D. (−∞; −2) ∪ (−1; +∞).

Câu 85. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của √
khối chóp S .ABCD là √
3

a 3
a3 3
a3
A.
.
B.
.
C.
.
D. a3 3.
12
3
4
Câu 86. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với √
đáy một góc 60◦ . Thể tích√khối chóp S .ABCD là


a3 3
2a3 3

a3 3
A.
.
B.
.
C.
.
D. a3 3.
3
6
3
Câu 87. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối chóp S .ABCD là



a3 6
a3 5
a3 15
3
A.
.
B. a 6.
C.
.
D.
.
3
3
3

Câu 88. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số đỉnh của khối chóp bằng số mặt của khối chóp.
B. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
C. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
D. Số cạnh của khối chóp bằng số mặt của khối chóp.
Câu 89. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 4 đỉnh, 12 cạnh, 4 mặt.
x−3 x−2 x−1
x
Câu 90. [4-1213d] Cho hai hàm số y =
+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; 2).
B. (2; +∞).
C. (−∞; 2].
D. [2; +∞).
Trang 7/10 Mã đề 1


Câu 91. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là

sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (I) sai.

B. Không có câu nào C. Câu (II) sai.
D. Câu (III) sai.
sai.
Câu 92. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {3; 5}.
B. {5; 3}.
C. {3; 4}.
D. {4; 3}.


4n2 + 1 − n + 2
bằng
Câu 93. Tính lim
2n − 3
3
A. +∞.
B. .
C. 2.
D. 1.
2
Câu 94. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 12 mặt.
B. 20 đỉnh, 30 cạnh, 20 mặt.
C. 12 đỉnh, 30 cạnh, 12 mặt.

D. 12 đỉnh, 30 cạnh, 20 mặt.
Câu 95. Khối đa diện đều loại {3; 4} có số cạnh
A. 12.
B. 8.

C. 10.

D. 6.

Câu 96. Nếu không sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Năm tứ diện đều.
B. Năm hình chóp tam giác đều, khơng có tứ diện đều.
C. Bốn tứ diện đều và một hình chóp tam giác đều.
D. Một tứ diện đều và bốn hình chóp tam giác đều.
Câu 97. [1] Tập
! xác định của hàm số y != log3 (2x + 1) là
!
1
1
1
A. − ; +∞ .
B. −∞; − .
C.
; +∞ .
2
2
2
Câu 98.
Z Các khẳng định nào sau

Z đây là sai?
f (x)dx = F(x) + C ⇒
!0
Z
f (x)dx = f (x).
C.

A.

f (t)dt = F(t) + C. B.

Z

!
1
D. −∞; .
2
Z

f (x)dx = F(x) +C ⇒
f (u)dx = F(u) +C.
Z
Z
D.
k f (x)dx = k
f (x)dx, k là hằng số.

Câu 99. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. m ≤ 3.
B. −2 ≤ m ≤ 2.

C. m ≥ 3.
D. −3 ≤ m ≤ 3.
2

Câu 100. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 1 − log3 2.
B. 2 − log2 3.
C. 3 − log2 3.

D. 1 − log2 3.
q
2
Câu 101. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 =
√ i
h
0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 1].
B. m ∈ [−1; 0].
C. m ∈ [0; 4].
D. m ∈ [0; 2].
2
4
3
Câu 102. Cho z là nghiệm của phương trình
√ x + x + 1 = 0. Tính P = z + 2z − z

−1 − i 3
−1 + i 3
A. P = 2i.
B. P =

.
C. P = 2.
D. P =
.
2
2

Trang 8/10 Mã đề 1


Câu 103. [12210d] Xét các số thực dương x, y thỏa mãn log3
nhất Pmin của P√ = x + y.

9 11 − 19
2 11 − 3
A. Pmin =
. B. Pmin =
.
9
3
x+2
Câu 104. Tính lim
bằng?
x→2
x
A. 2.
B. 3.
Câu 105. Khối lập phương thuộc loại
A. {3; 4}.
B. {4; 3}.


C. Pmin

1 − xy
= 3xy + x + 2y − 4. Tìm giá trị nhỏ
x + 2y


9 11 + 19
=
.
9

D. Pmin


18 11 − 29
=
.
21

C. 1.

D. 0.

C. {5; 3}.

D. {3; 3}.

Câu 106. Hình nào trong các hình sau đây khơng là khối đa diện?

A. Hình lập phương.
B. Hình tam giác.
C. Hình lăng trụ.

D. Hình chóp.

Câu 107. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối bát diện đều.
B. Khối lập phương.
C. Khối lăng trụ tam giác.
D. Khối tứ diện.
Câu 108. [3-1132d] Cho dãy số (un ) với un =
A. lim un = 1.
1
C. lim un = .
2
Câu 109. [1] Đạo hàm của hàm số y = 2 x là
1
A. y0 = x
.
B. y0 = 2 x . ln x.
2 . ln x

1 + 2 + ··· + n
. Mệnh đề nào sau đây đúng?
n2 + 1
B. Dãy số un khơng có giới hạn khi n → +∞.
D. lim un = 0.

C. y0 =


1
.
ln 2

D. y0 = 2 x . ln 2.

Câu 110. Giá trị của lim(2x2 − 3x + 1) là
x→1

A. 0.

B. 2.

C. 1.

Câu 111. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 8 mặt.
B. 10 mặt.
C. 6 mặt.

D. +∞.
D. 4 mặt.

Câu 112. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi
M, N và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M, N, P bằng





14 3
20 3
.
C.
.
D. 8 3.
A. 6 3.
B.
3
3
x+1
Câu 113. Tính lim
bằng
x→−∞ 6x − 2
1
1
1
A. .
B. 1.
C. .
D. .
3
6
2
Câu 114. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. 2n3 lần.
B. n3 lần.
C. 2n2 lần.

D. n3 lần.
Câu 115. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d song song với (P).
B. d ⊥ P.
C. d nằm trên P hoặc d ⊥ P.
D. d nằm trên P.
x−1
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác
AB có độ dài bằng
√ đều ABI có hai đỉnh A, B thuộc (C), đoạn thẳng √

A. 2 2.
B. 2.
C. 6.
D. 2 3.
Câu 116. [3-1214d] Cho hàm số y =

Trang 9/10 Mã đề 1


Câu 117. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số đồng biến trên khoảng (0; 2).
B. Hàm số đồng biến trên khoảng (0; +∞).
C. Hàm số nghịch biến trên khoảng (−∞; 2).
D. Hàm số nghịch biến trên khoảng (0; 2).
x2
Câu 118. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e

1
1
A. M = , m = 0.
B. M = e, m = 1.
C. M = e, m = 0.
D. M = e, m = .
e
e

Câu 119. Xác định phần ảo của số√phức z = ( 2 + 3i)2

A. −7.
B. −6 2.
C. 7.
D. 6 2.
6
. Tính
Câu 120. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x2 f (x3 ) − √
3x + 1
Z 1
f (x)dx.
0

A. −1.

B. 2.

C. 6.

D. 4.


Câu 121. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
A. −4.

B. −2.

C. −7.

D.

Câu 122. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m ≥ 0.
B. m > 1.
C. m > 0.
0

0

0

0

67
.
27

D. m > −1.

0


Câu 123. Mặt phẳng (AB C ) chia khối lăng trụ ABC.A B C thành các khối đa diện nào?
A. Một khối chóp tam giác, một khối chóp ngữ giác.
B. Hai khối chóp tứ giác.
C. Một khối chóp tam giác, một khối chóp tứ giác.
D. Hai khối chóp tam giác.
log 2x

Câu 124. [3-1229d] Đạo hàm của hàm số y =
x2
1 − 2 log 2x
1
1 − 4 ln 2x
.
B. y0 =
.
A. y0 = 3
.
C. y0 =
3
2x ln 10
x
2x3 ln 10

Câu 125. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga 3 a bằng
1
A. −3.
B. − .
C. 3.
3
log7 16

Câu 126. [1-c] Giá trị của biểu thức
bằng
15
log7 15 − log7 30
A. 4.
B. 2.
C. −4.

D. y0 =

D.

1 − 2 ln 2x
.
x3 ln 10

1
.
3

D. −2.

8
Câu 127. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 81.
B. 64.
C. 82.
D. 96.
Câu 128. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?

A. 6 đỉnh, 9 cạnh, 6 mặt. B. 5 đỉnh, 9 cạnh, 6 mặt. C. 6 đỉnh, 6 cạnh, 6 mặt. D. 6 đỉnh, 9 cạnh, 5 mặt.
Câu 129. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Hai mặt.
B. Năm mặt.
C. Ba mặt.
2n + 1
Câu 130. Tìm giới hạn lim
n+1
A. 1.
B. 0.
C. 3.

D. Bốn mặt.

D. 2.

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
3.

D
B


5.
7.

C

4.

B

6.

B

9.

B

10. A
12.

C

2.

C

C

11.


B

13.

B

14. A

15.

C

16. A

17.

C

D

18.
20.
22.

19. A

C

21.


B

23. A

24.

D

25.

26.

C

27. A

28.

C

29.

30.

C

31. A

32.


B

36.
40.

39.

B

B
B

C

43.

44.

C

45. A

46.

D

47. A
49.

C


50. A
B
D

56.

C

53.

D

55.

D

57.

D

58.

D

59. A

60.

D


61.

B

63. A

B

64.

65.

C

66. A
68.

B

51. A

54.

62.

D

41.


42.

52.

C

37. A
C

48.

B

35.

B

38.

C

33. A
C

34.

B

67.
B


69. A
1

D
B


70.

71.

B

72.

73.

C

74. A

75.

C

76. A

77.


B

79.

B

78.

C

D

B

81.

80. A
82.

83.

B
C

84.

D

85.


86. A

87. A

88. A

89. A
D

90.

91.

C
B

B

93.

92. A
94.

D

95. A

96.

D


97. A

D

98.

B

99.

100.

B

101.

B

103.

B

105.

B

102.

C


104. A
106.

B

108.

C

D

107.

D

109.

D

110. A

111.

C

112. A

113.


C

115.

C

114.

B
D

116.
118.

117. A

120.

D

121.

122.

D

123.

124.


D

125.

126.

D

119.

C

B
C
D

127. A

C

128.

D

130.

D

129.


2

C



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×