TỐN PDF LATEX
TRẮC NGHIỆM ƠN THI MƠN TỐN THPT
(Đề thi có 10 trang)
Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
Câu 1. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. −2e2 .
B. 2e4 .
C. 2e2 .
D. −e2 .
Câu 2. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 − 2; m = 1.
B. M = e−2 + 1; m = 1.
C. M = e−2 + 2; m = 1.
D. M = e2 − 2; m = e−2 + 2.
Câu 3. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
9
3
A. 3.
B. .
C. 1.
D. .
2
2
Câu 4. [1] Cho a > 0, a , 1. Giá trị của biểu thức log 1a a2 bằng
1
1
B. 2.
C. .
A. − .
2
2
Câu 5. Hàm số nào sau đây khơng có cực trị
1
x−2
A. y = x + .
B. y =
.
C. y = x4 − 2x + 1.
x
2x + 1
√
√
4n2 + 1 − n + 2
Câu 6. Tính lim
bằng
2n − 3
A. 1.
B. +∞.
C. 2.
Câu 7. Khối chóp ngũ giác có số cạnh là
A. 11 cạnh.
B. 10 cạnh.
C. 12 cạnh.
Câu 8. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = −1.
B. m = −3.
C. m = 0.
D. −2.
D. y = x3 − 3x.
D.
3
.
2
D. 9 cạnh.
D. m = −2.
Câu 9.
Z [1233d-2] Mệnh đề
Z nào sau đâyZsai?
[ f (x) + g(x)]dx =
A.
f (x)dx +
g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
Z
C.
[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
Z
D.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
B.
x−1
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác
B thuộc (C), đoạn thẳng AB
√ đều ABI có hai đỉnh A, √
√ có độ dài bằng
A. 6.
B. 2 3.
C. 2 2.
D. 2.
Câu 10. [3-1214d] Cho hàm số y =
Câu 11. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. e2016 .
B. 0.
C. 22016 .
D. 1.
√3
Câu 12. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga a bằng
1
1
A. −3.
B. 3.
C. .
D. − .
3
3
Trang 1/10 Mã đề 1
Câu 13. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
67
.
C. −2.
D. −7.
A. −4.
B.
27
Câu 14. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ơng ta muốn
hồn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 3, 03 triệu đồng.
B. 2, 20 triệu đồng.
C. 2, 25 triệu đồng.
D. 2, 22 triệu đồng.
!
3n + 2
2
Câu 15. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 2.
B. 5.
C. 4.
D. 3.
Câu 16. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (2; 2).
B. (−1; −7).
C. (0; −2).
D. (1; −3).
3a
, hình chiếu vng
Câu 17. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng
√
a
a 2
2a
a
A. .
B.
.
C.
.
D. .
3
3
3
4
Câu 18. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Hai mặt.
B. Một mặt.
C. Bốn mặt.
D. Ba mặt.
Câu 19. Dãy số nào sau đây có giới hạn khác 0?
sin n
1
A.
.
B. √ .
n
n
C.
1
.
n
D.
n+1
.
n
Câu 20. Cho z là nghiệm của phương trình√ x2 + x + 1 = 0. Tính P = z4 + 2z3 − z
√
−1 − i 3
−1 + i 3
A. P = 2.
B. P =
.
C. P = 2i.
D. P =
.
2
2
Câu 21. Cho hình chóp S .ABCD có √
đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết S H ⊥ (ABCD), S A =√a 5. Thể tích khối chóp √
S .ABCD là
3
3
3
4a 3
2a 3
2a3
4a
A.
.
B.
.
C.
.
D.
.
3
3
3
3
Câu 22. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {3}.
B. {5}.
C. {2}.
D. {5; 2}.
Câu 23. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Chỉ có (II) đúng.
B. Cả hai đều sai.
C. Cả hai đều đúng.
D. Chỉ có (I) đúng.
π π
3
Câu 24. Cho hàm số y = 3 sin x − 4 sin x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. 1.
B. −1.
C. 3.
D. 7.
Câu 25. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 14.
B. ln 12.
C. ln 4.
D. ln 10.
Trang 2/10 Mã đề 1
1
1
1
Câu 26. Tính lim
+
+ ··· +
1.2 2.3
n(n + 1)
A. 2.
!
B. 0.
Câu 27. Khối đa diện đều loại {3; 4} có số cạnh
A. 6.
B. 8.
C.
3
.
2
C. 10.
D. 1.
D. 12.
Câu 28. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai đường thẳng S B và AD bằng
√
√
√
√
a 2
a 2
A. a 2.
B. a 3.
C.
.
D.
.
2
3
5
Câu 29. Tính lim
n+3
A. 1.
B. 0.
C. 2.
D. 3.
Câu 30. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Khơng có.
B. Có một.
C. Có hai.
D. Có một hoặc hai.
Câu 31. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
1
.
D. f 0 (0) = ln 10.
ln 10
Câu 32. [4-1245d] Trong tất cả√các số phức z thỏa mãn hệ thức |z − 1 + 3i| = 3. Tìm
√ min |z − 1 − i|.
A. 1.
B. 2.
C. 2.
D. 10.
! x3 −3mx2 +m
1
nghịch biến trên
Câu 33. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
π
khoảng (−∞; +∞)
A. m = 0.
B. m , 0.
C. m ∈ R.
D. m ∈ (0; +∞).
A. f 0 (0) = 1.
B. f 0 (0) = 10.
C. f 0 (0) =
Câu 34. Phát biểu nào sau đây là sai?
A. lim un = c (Với un = c là hằng số).
1
B. lim √ = 0.
n
1
= 0 với k > 1.
D. lim qn = 1 với |q| > 1.
nk
Câu 35. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. m ≤ 3.
B. −3 ≤ m ≤ 3.
C. m ≥ 3.
D. −2 ≤ m ≤ 2.
C. lim
Câu 36. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng
√
a
a 3
a
A. .
B. .
C.
.
D. a.
2
3
2
Câu 37. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 220 triệu.
B. 210 triệu.
C. 216 triệu.
D. 212 triệu.
Câu 38. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. −1.
B. 2.
C. 6.
D. 1.
Câu 39.! Dãy số nào sau đây có giới! hạn là 0?
n
n
4
5
A.
.
B. − .
e
3
!n
1
D.
.
3
!n
5
C.
.
3
Trang 3/10 Mã đề 1
Z
2
Câu 40. Cho
A. 0.
1
ln(x + 1)
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
x2
B. −3.
C. 1.
D. 3.
Câu 41. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|
√
√
√
√
12 17
A. 68.
B. 34.
C.
.
D. 5.
17
√
Câu 42. Thể tích của khối lập phương có cạnh bằng a 2
√
√
√
2a3 2
3
3
3
A. V = 2a .
B. V = a 2.
.
C. 2a 2.
D.
3
log(mx)
Câu 43. [1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m ≤ 0.
B. m < 0.
C. m < 0 ∨ m = 4.
D. m < 0 ∨ m > 4.
Câu 44. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 1587 m.
B. 25 m.
C. 387 m.
D. 27 m.
Câu 45. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 7 mặt.
B. 6 mặt.
C. 8 mặt.
D. 9 mặt.
Câu 46. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).
√
√ Thể tích khối chóp S 3.ABC
√ là
√
3
a 3
a 3
a3 2
a3 3
A.
.
B.
.
C.
.
D.
.
6
4
12
12
Câu 47. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 6.
B. 4.
C. 3.
D. 8.
2
x − 3x + 3
Câu 48. Hàm số y =
đạt cực đại tại
x−2
A. x = 0.
B. x = 2.
C. x = 1.
D. x = 3.
Câu 49. [3] Cho khối chóp S .ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
8a
a
5a
2a
A.
.
B. .
C.
.
D.
.
9
9
9
9
√
√
Câu 50. Tìm
giá
trị
lớn
nhất
của
hàm
số
y
=
x
+
3
+
6−x
√
√
√
A. 2 + 3.
B. 3 2.
C. 3.
D. 2 3.
2
2
sin x
Câu 51.
+ 2cos x lần
√ [3-c] Giá trị nhỏ nhất và giá trị lớn nhất của hàm số f (x)
√ =2
√ lượt là
B. 2 và 3.
C. 2 và 2 2.
D. 2 2 và 3.
A. 2 và 3.
Câu 52. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim+ f (x) = f (a) và lim− f (x) = f (b).
B. lim+ f (x) = f (a) và lim+ f (x) = f (b).
x→a
x→b
x→a
x→b
C. lim− f (x) = f (a) và lim+ f (x) = f (b).
Câu 53. Tính lim
x→2
A. 2.
x+2
bằng?
x
B. 1.
x→a
x→b
x→a
x→b
D. lim− f (x) = f (a) và lim− f (x) = f (b).
C. 3.
D. 0.
Trang 4/10 Mã đề 1
√
x2 + 3x + 5
Câu 54. Tính giới hạn lim
x→−∞
4x − 1
1
A. − .
B. 0.
4
12 + 22 + · · · + n2
n3
B. 0.
C. 1.
D.
1
.
4
1
.
3
D.
2
.
3
Câu 55. [3-1133d] Tính lim
A. +∞.
C.
Câu 56. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 3.
B. 0, 4.
C. 0, 2.
D. 0, 5.
Câu 57. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
B. m > − .
C. m ≥ 0.
D. m ≤ 0.
A. − < m < 0.
4
4
Câu 58. [2] Tìm m để giá trị lớn nhất√của hàm số y = 2x3 + (m2√+ 1)2 x trên [0; 1] bằng 8
A. m = ±1.
B. m = ± 3.
C. m = ± 2.
D. m = ±3.
Câu 59. Khối đa diện đều loại {3; 3} có số đỉnh
A. 3.
B. 4.
C. 5.
D. 2.
Câu 60. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √
√
3
3
a 6
a3 3
a3 6
a 6
.
B.
.
C.
.
D.
.
A.
48
24
24
8
√
Câu 61. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã
√
√ cho là
√
√
πa3 3
πa3 3
πa3 6
πa3 3
A. V =
.
B. V =
.
C. V =
.
D. V =
.
2
3
6
6
0 0 0 0
0
Câu 62.√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
√ bằng
a 3
a 6
a 6
a 6
A.
.
B.
.
C.
.
D.
.
2
3
7
2
Câu 63. Khối lập phương thuộc loại
A. {5; 3}.
B. {4; 3}.
C. {3; 4}.
Câu 64. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 72.
B. −7, 2.
C. 0, 8.
D. {3; 3}.
D. 7, 2.
Câu 65. Trong các khẳng định sau, khẳng định nào sai?
A. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
B. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
C. Cả ba đáp án trên.
√
D. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
Câu 66. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ
C đến đường thẳng BB0 bằng 2, khoảng
√
cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2 3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng
3
√
√
2 3
A. 2.
B. 1.
C. 3.
D.
.
3
Trang 5/10 Mã đề 1
!4x
!2−x
2
3
Câu 67. Tập các số x thỏa mãn
≤
là
"
!
" 3
! 2
2
2
A.
; +∞ .
B. − ; +∞ .
5
3
#
2
C. −∞; .
5
#
2
D. −∞; .
3
Câu 68. [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc là mơn Tốn. Mơn thi này dưới hình thức
trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng. Mỗi câu trả lời đúng
được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm. Bạn An học kém mơn Tốn nên quyết định chọn
ngẫu nhiên hết 50 câu trả lời. Xác suất để bạn An đạt 4 điểm mơn Tốn là
C 20 .(3)30
C 10 .(3)40
C 20 .(3)20
C 40 .(3)10
B. 50 50 .
C. 50 50 .
D. 50 50 .
A. 50 50 .
4
4
4
4
Câu 69. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
B. T = 4 + .
C. T = e + 1.
D. T = e + 3.
A. T = e + .
e
e
√3
4
Câu 70. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 : a2 bằng
5
2
5
7
A. a 3 .
B. a 8 .
C. a 3 .
D. a 3 .
x−3
bằng?
Câu 71. [1] Tính lim
x→3 x + 3
A. +∞.
B. 0.
C. 1.
D. −∞.
Câu 72. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất khơng thay đổi?
A. 18 tháng.
B. 15 tháng.
C. 16 tháng.
D. 17 tháng.
Câu 73. [1] Tính lim
1 − n2
bằng?
2n2 + 1
1
B. .
2
1
D. − .
2
x+2
Câu 74. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. 1.
B. 2.
C. 3.
D. Vô số.
A. 0.
C.
1
.
3
log2 240 log2 15
−
+ log2 1 bằng
log3,75 2 log60 2
B. 1.
C. 4.
Câu 75. [1-c] Giá trị biểu thức
A. −8.
D. 3.
Câu 76. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng
√ góc với đáy, S C = a3 3. Thể tích khối chóp S .ABCD là
√
3
3
a 3
a
a
3
A.
.
B.
.
C. a3 .
D.
.
9
3
3
Câu 77. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp đã cho là 1728. Khi đó, các kích thước của hình hộp
√ là√
A. 8, 16, 32.
B. 6, 12, 24.
C. 2 3, 4 3, 38.
D. 2, 4, 8.
Câu 78. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−1; 0).
B. (0; 1).
C. (−∞; 0) và (1; +∞). D. (−∞; −1) và (0; +∞).
Trang 6/10 Mã đề 1
x=t
Câu 79. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d :
y = −1 và hai mặt phẳng (P), (Q)
z = −t
lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I
thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).
9
9
B. (x + 3)2 + (y + 1)2 + (z + 3)2 = .
A. (x + 3)2 + (y + 1)2 + (z − 3)2 = .
4
4
9
9
2
2
2
2
2
2
C. (x − 3) + (y − 1) + (z − 3) = .
D. (x − 3) + (y + 1) + (z + 3) = .
4
4
log 2x
Câu 80. [3-1229d] Đạo hàm của hàm số y =
là
x2
1 − 2 ln 2x
1 − 4 ln 2x
1
1 − 2 log 2x
0
0
A. y0 = 3
.
B. y0 =
.
C.
y
=
.
D.
y
=
.
x ln 10
2x3 ln 10
2x3 ln 10
x3
Câu 81. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
1
ab
ab
1
.
B. √
.
C. √
.
D. 2
.
A. √
a + b2
2 a2 + b2
a2 + b2
a2 + b2
Câu 82. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Năm mặt.
B. Hai mặt.
C. Ba mặt.
D. Bốn mặt.
Câu 83. Giá√trị cực đại của hàm số y√= x − 3x − 3x + 2
√
A. −3 − 4 2.
B. 3 + 4 2.
C. −3 + 4 2.
√
D. 3 − 4 2.
3
2
Câu 84. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18. √
A. 9.
B. 27.
C. 8.
D. 3 3.
π
Câu 85. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3
√
trị của biểu √
thức T = a + b 3.
√
A. T = 2 3.
B. T = 2.
C. T = 4.
D. T = 3 3 + 1.
Câu 86. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng BD và S C bằng
√
√
√
a 6
a 6
a 6
A.
.
B.
.
C.
.
D. a 6.
3
6
2
Câu 87. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1
A. 7.
B. 9.
C. 5.
D. 0.
d = 30◦ , biết S BC là tam giác đều
Câu 88. [3] Cho hình chóp S .ABC có đáy là tam giác vng tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
A.
.
B.
.
C.
.
D.
.
26
16
13
9
Câu 89. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối
√
√ chóp S .ABCD là
√
3
3
a 6
a 3
a3 3
a3 2
.
B.
.
C.
.
D.
.
A.
48
48
24
16
3
Câu 90. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e.
B. e2 .
C. e3 .
D. e5 .
Câu 91. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc√với đáy và S C = a 3. √
Thể tích khối chóp S .ABC√là
√
3
3
2a 6
a 3
a3 3
a3 6
A.
.
B.
.
C.
.
D.
.
9
4
2
12
Trang 7/10 Mã đề 1
Câu 92. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2
A. 2e.
B. .
C. 2e + 1.
e
Câu 93. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối 20 mặt đều.
B. Khối bát diện đều. C. Khối tứ diện đều.
Câu 94. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Thập nhị diện đều. B. Bát diện đều.
C. Tứ diện đều.
D. 3.
D. Khối 12 mặt đều.
D. Nhị thập diện đều.
x2
Câu 95. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
A. M = e, m = 1.
B. M = , m = 0.
C. M = e, m = 0.
D. M = e, m = .
e
e
√
√
Câu 96. [12215d] Tìm m để phương trình 4 x+ 1−x − 4.2 x+ 1−x − 3m + 4 = 0 có nghiệm
3
3
9
A. 0 < m ≤ .
B. m ≥ 0.
C. 0 ≤ m ≤ .
D. 0 ≤ m ≤ .
4
4
4
Câu 97. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
B. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
2
2
Câu 98. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Hai khối chóp tam giác.
B. Một khối chóp tam giác, một khối chóp tứ giác.
C. Hai khối chóp tứ giác.
D. Một khối chóp tam giác, một khối chóp ngữ giác.
Câu 99. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 64cm3 .
B. 27cm3 .
C. 72cm3 .
D. 46cm3 .
Câu 100. Khối đa diện đều loại {3; 4} có số đỉnh
A. 4.
B. 6.
C. 10.
D. 8.
Câu 101. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [−1; 3].
B. [1; +∞).
C. [−3; 1].
D. (−∞; −3].
Câu 102. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 6 lần.
B. Tăng gấp 8 lần.
C. Tăng gấp đôi.
D. Tăng gấp 4 lần.
Câu 103. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 2.
B. 3.
C. 0.
D. 1.
Câu 104. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất khơng thay đổi và người đó khơng rút tiền ra?
A. 10 năm.
B. 12 năm.
C. 14 năm.
D. 11 năm.
x−1 y z+1
= =
và
Câu 105. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình
2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
Trang 8/10 Mã đề 1
A. −x + 6y + 4z + 5 = 0.
C. 10x − 7y + 13z + 3 = 0.
B. 2x − y + 2z − 1 = 0.
D. 2x + y − z = 0.
Câu 106. Khối đa diện đều loại {3; 3} có số cạnh
A. 4.
B. 8.
C. 6.
D. 5.
Câu 107. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim f (x) = f (a).
B. lim+ f (x) = lim− f (x) = +∞.
x→a
x→a
x→a
C. lim+ f (x) = lim− f (x) = a.
D. f (x) có giới hạn hữu hạn khi x → a.
x→a
x→a
Câu 108. Trong không gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0)
lần lượt là hình
! chiếu của B, C lên các !cạnh AC, AB. Tọa độ hình chiếu của A lên BC là !
7
8
5
; 0; 0 .
B.
; 0; 0 .
C. (2; 0; 0).
D.
; 0; 0 .
A.
3
3
3
Câu 109.
√ Thể tích của tứ diện đều
√cạnh bằng a
√
√
3
3
a 2
a 2
a3 2
a3 2
A.
.
B.
.
C.
.
D.
.
2
6
12
4
Câu 110. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là 4, phần ảo là −1.
B. Phần thực là −1, phần ảo là 4.
C. Phần thực là −1, phần ảo là −4.
D. Phần thực là 4, phần ảo là 1.
Câu 111. [2] Tổng các nghiệm của phương trình 2 x +2x = 82−x là
A. −5.
B. 5.
C. 6.
2
D. −6.
Câu 112. [1] Hàm số nào đồng
√ biến trên khoảng (0; +∞)?
A. y = loga x trong đó a = 3 − 2.
B. y = log √2 x.
D. y = log π4 x.
C. y = log 14 x.
Câu 113. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 2.
B. 1.
C. 3.
D. 0.
2
Câu 114. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 8.
B. 6.
C. 7.
D. 5.
!
x+1
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
Câu 115. [3] Cho hàm số f (x) = ln 2017 − ln
x
2017
2016
4035
A.
.
B. 2017.
C.
.
D.
.
2018
2017
2018
Câu 116. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính quãng đường chất
điểm đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 12 m.
B. 16 m.
C. 8 m.
D. 24 m.
1
Câu 117. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = (−∞; 1).
B. D = (1; +∞).
C. D = R.
D. D = R \ {1}.
Câu 118. Khối đa diện đều loại {4; 3} có số đỉnh
A. 10.
B. 4.
D. 8.
C. 6.
Câu 119. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. 1 − sin 2x.
B. −1 + sin x cos x.
C. −1 + 2 sin 2x.
D. 1 + 2 sin 2x.
Trang 9/10 Mã đề 1
Câu 120. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất không đổi và người đó khơng rút tiền ra?
A. 12 năm.
B. 11 năm.
C. 10 năm.
D. 13 năm.
Câu 121. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≥ 3.
B. m ≤ 3.
C. m > 3.
D. m < 3.
Câu 122. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = R \ {1; 2}.
B. D = R.
C. D = (−2; 1).
2
D. D = [2; 1].
Câu 123. Cho hàm số y = −x + 3x − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số đồng biến trên khoảng (0; +∞).
B. Hàm số nghịch biến trên khoảng (0; 2).
C. Hàm số nghịch biến trên khoảng (−∞; 2).
D. Hàm số đồng biến trên khoảng (0; 2).
3
2
Câu 124. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Khơng có câu nào B. Câu (III) sai.
sai.
2n2 − 1
Câu 125. Tính lim 6
3n + n4
2
A. .
B. 1.
3
Câu 126. [1] Đạo hàm của hàm số y = 2 x là
1
.
A. y0 = 2 x . ln 2.
B. y0 =
ln 2
Câu 127.
Z Mệnh!đề nào sau đây sai?
C. Câu (I) sai.
D. Câu (II) sai.
C. 2.
D. 0.
C. y0 = 2 x . ln x.
D. y0 =
1
2 x . ln
x
.
0
A.
f (x)dx = f (x).
B. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a;Zb).
C. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
f (x)dx = F(x) + C.
D. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
Câu 128. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3.
Tính f (2) + f (4)?
A. 4.
B. 10.
C. 12.
D. 11.
Câu 129. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 50, 7 triệu đồng.
B. 20, 128 triệu đồng. C. 70, 128 triệu đồng. D. 3, 5 triệu đồng.
Câu 130. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vuông, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của hình chóp S .ABCD với√mặt phẳng (AIC) có diện√tích là
√
2
a 7
11a2
a2 2
a2 5
A.
.
B.
.
C.
.
D.
.
8
32
4
16
Trang 10/10 Mã đề 1
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 11/10 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
D
2. A
3.
D
4.
5.
B
6. A
7.
B
8.
D
9.
11.
10.
B
D
D
B
C
12.
13.
C
14.
15.
C
16.
C
17.
C
18.
C
19.
D
20. A
21. A
22.
23. A
24. A
25. A
26.
27.
29.
D
B
D
28.
C
30.
B
31.
D
D
32. A
33. A
35.
D
B
34.
D
36.
D
37.
D
38.
39.
D
40.
C
B
41.
C
42.
43.
C
44.
D
46.
D
45.
D
47.
C
48.
49. A
50.
51.
C
D
C
B
52. A
53. A
54. A
55.
C
56. A
57.
B
58.
59.
B
60.
B
61.
B
62.
B
63.
B
64.
B
65.
67.
D
C
66. A
68.
B
1
D
69.
71.
D
B
D
73.
75. A
77.
70.
C
72.
C
74.
B
76.
B
78. A
B
79.
D
80. A
81.
C
82.
83.
C
84.
85.
C
86.
C
D
B
87.
B
88.
89.
B
90.
D
92.
D
D
91.
93. A
C
94. A
95.
96.
C
C
97.
B
98.
B
99.
B
100.
B
B
101.
C
102.
103.
C
104.
105.
C
106.
C
108.
107. A
109.
C
112.
113. A
114.
115. A
116.
B
C
B
118.
B
119.
D
110. A
111. A
117.
D
C
D
120. A
121. A
122.
123.
D
124. A
125.
D
126. A
127.
B
128.
129.
B
130. A
2
B
C