Tải bản đầy đủ (.doc) (1 trang)

Đề ôn thi THPT - Đê 2

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (50.84 KB, 1 trang )

s 2
Bài 1. ( 2 điểm) cho biểu thức: P(x) =
143
12
2
2
+

xx
xx
1) Tìm tất cả các giá trị của x để P(x) xác định. Rút gọn P(x)
2) Chứng minh rằng nếu x > 1 thì P(x).P(-x) < 0
Bài 2. ( 2 điểm)
1) cho phơng trình:
0
2
63)12(2
22
=

+++
x
mmxmx
(1)
a) Giải phơng trình trên khi m =
3
2
b) Tìm tất cả các giá trị của m để phơng trình (1) có hai nghiệm x
1
và x
2


thoả mãn x
1
+2 x
2
=16
2) Giải phơng trình:
2
2
1
2
1
1
2
=++
+
xx
x
Bài 3 (2 điểm)
1) Cho x,y là hai số thực thoả mãn x
2
+4y
2
= 1
Chứng minh rằng: |x-y|
2
5

2) Cho phân số : A=
5
4

2
+
+
n
n
Hỏi có bao nhiêu số tự nhiên thoả mãn 1
2004

n
sao cho A là phân số cha tối giản
Bài 4( 3 điểm) Cho hai đờng tròn (0
1
) và (0
2
) cắt nhau tại P và Q. Tiếp tuyến chung gần P
hơn của hai đờng tròn tiếp xúc với (0
1
) tại A, tiếp xúc với (0
2
) tại B. Tiếp tuyến của (0
1
) tại P
cắt (0
2
) tại điểm thứ hai D khác P, đờng thẳng AP cắt đờng thẳng BD tại R. Hãy chứng minh
rằng:
1)Bốn điểm A, B, Q,R cùng thuộc một đờng tròn
2)Tam giác BPR cân
3)Đờng tròn ngoại tiếp tam giác PQR tiếp xúc với PB và RB.
Bài 5. (1 điểm)Cho tam giác ABC có BC < CA< AB. Trên AB lấy D, Trên AC lấy điểm E sao

cho DB = BC = CE. Chứng minh rằng khoảng cách giữa tâm đờng tròn nội tiếp và tâm đờng tròn
ngoại tiếp tam giác ABC bằng bán kính đờng tròn ngoại tiếp tam giác ADE

Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×