Tải bản đầy đủ (.pdf) (5 trang)

Đề luyện thi thpt môn toán (713)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (122.58 KB, 5 trang )

Free LATEX

ĐỀ LUYỆN THI THPT QG MƠN TỐN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001

Câu 1. Trong không gian với hệ tọa độ Oxyz, cho điểm A(5; 5; 2),mặt phẳng (P):z − 2 = 0, mặt cầu (S )có
tâm I(3; 4; 6) và bán kính R = 5.Viết phương trình đường thẳng đi qua A, nằm trong (P) và cắt (S) theo
dây cung dài nhất?
A. x = 5 + ty = 5 + 2tz = 2.
B. x = 3 + 2ty = 4 + tz = 6.
C. x = 5 + 2ty = 5 + tz = 2 − 4t.
D. x = 5 + 2ty = 5 + tz = 2.
Câu 2. Cho a > 1; 0 < x < y. Bất đẳng thức nào sau đây là đúng?
A. log x > log y.
B. loga x > loga y.
C. ln x > ln y.

D. log 1 x > log 1 y.
a

Câu R3. Công thức nào sai?
A. e x = e x + C.
R
C. a x = a x . ln a + C.

a

R


B. cos x = sin x + C.
R
D. sin x = − cos x + C.

Câu 4. Đồ thị hàm số nào sau đây có vơ số đường tiệm cận đứng?
A. y = x3 − 2x2 + 3x + 2.
B. y = tan x.
3x + 1
C. y = sin x.
D. y =
.
x−1
Câu 5. Cho hìnhqchóp đều S .ABCcó cạnh đáy bằng a và cạnh bên bằng b. Thể tích của khối chóp là:


a2 b2 − 3a2
a2 3b2 − a2
.
B. VS .ABC =
.
A. VS .ABC =
√ 2 12
√ 12
3a b
3ab2
C. VS .ABC =
.
D. VS .ABC =
.
12

12
Câu 6. Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3). Biết C là một
điểm trên mặt phẳng (P):x + z − 27 = 0 sao cho tồn tại các điểm B, D tương ứng thuộc các tia AM, AN
để tứ giác ABCD là hình thoi. Tọa độ điểm C là:
21
C. C(20; 15; 7).
D. C(6; 21; 21).
A. C(6; −17; 21).
B. C(8; ; 19).
2
Câu 7. Hình nón có bán kính đáy
√ R, đường sinh l thì diện tích xung quanh của nó√bằng
A. 2πRl.
B. 2π l2 − R2 .
C. πRl.
D. π l2 − R2 .
Câu 8. Tính I =

R1 √3

7x + 1dx

0

A. I =

20
.
7


B. I =

21
.
8

C. I =

45
.
28

D. I =

60
.
28

Câu 9. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x = 1 + 2ty = 2 + (m − 1)tz = 3 − t.
Tìm tất cả các giá trị của tham số m để d có thể viết được dưới dạng chính tắc?
A. m , −1.
B. m , 1.
C. m , 0.
D. m = 1.
Câu 10. Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1; 2; 0), B(3; 4; 1), D(−1; 3; 2). Tìm tọa độ
điểm C sao cho ABCD là hình thang có hai cạnh đáy AB, CD và có góc C bằng 450 .
A. C(−3; 1; 1).
B. C(5; 9; 5).
C. C(1; 5; 3).
D. C(3; 7; 4).

√ sin 2x
Câu 11. Giá trị lớn nhất của hàm số y = ( π)
trên R bằng?

A. 1.
B. π.
C. π.
D. 0.
Trang 1/5 Mã đề 001


Câu 12. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d :

x−1
y+2
z
=
= . Viết phương
1
−1
2

trình mặt phẳng (P) đi qua điểm M(2; 0; −1)và vng góc với d.
A. (P) : x + y + 2z = 0. B. (P) : x − y − 2z = 0. C. (P) : x − y + 2z = 0. D. (P) : x − 2y − 2 = 0.
2x + 2017






(1). Mệnh đề nào dưới đây là đúng?


x

+ 1



A. Đồ thị hàm số (1) có đúng một tiệm cận ngang là đường thẳng y = 2 và không có tiệm cận đứng.
B. Đồ thị hàm số (1) khơng có tiệm cận ngang và có đúng hai tiệm cận đứng là các đường thẳng
x = −1, x = 1..
C. Đồ thị hàm số (1) có hai tiệm cận ngang là các đường thẳng y = −2, y = 2 và khơng có tiệm cận
đứng.
D. Đồ thị hàm số (1) khơng có tiệm cận ngang và có đúng một tiệm cận đứng là đường thẳng x = −1..

Câu 13. Cho hàm số y =

Câu 14. Cắt một hình nón bởi một mặt phẳng đi qua trục của nó, ta được thiết diện là tam giác vng
với cạnh√huyền bằng 2a. Tính thể tích của khối nón.

π.a3
2π.a3
π 2.a3
4π 2.a3
.
B.
.
C.
.

D.
.
A.
3
3
3
3
Câu 15. Trong khơng gian với hệ tọa độ Oxyz, cho hai điểm A(1; 2; 0) và B(1; 0; 4). Tìm tọa độ trung
điểm I của đoạn thẳng AB.
A. I(0; −1; 2).
B. I(0; 1; 2).
C. I(1; 1; 2).
D. I(0; 1; −2).
Câu 16. Cho hàm số f (x) thỏa mãn f ′′ (x) = 12x2 + 6x − 4 và f (0) = 1, f (1) = 3. Tính f (−1).
A. f (−1) = 3.
B. f (−1) = −5.
C. f (−1) = −1.
D. f (−1) = −3.
Câu 17. Tìm tất cả các giá trị của tham số m để giá trị lớn nhất của hàm số y = −x2 + 2mx − 1 − 2m trên
đoạn [−1; 2] nhỏ hơn 2.
7
D. m ∈ (0; 2).
A. m ≥ 0.
B. m ∈ (−1; 2).
C. −1 < m < .
2

x
Câu 18. Đồ thị hàm số y = ( 3 − 1) có dạng nào trong các hình H1, H2, H3, H4 sau đây?
A. (H3).

B. (H4).
C. (H1).
D. (H2).
Câu 19. Cho 0 < a , 1; 0 < x , 2. Đẳng thức nào sau đây là sai?
A. loga (x − 2)2 = 2loga (x − 2).
B. aloga x = x.
1
C. loga2 x = loga x .
D. loga x2 = 2loga x.
2
Câu 20. Trong không gian với hệ tọa độ Oxyz, cho M(2; 3; −1). Tìm tọa độ điểm M ′ đối xứng với M qua
mặt phẳng Oxz?
A. M ′ (−2; 3; 1).
B. M ′ (2; −3; −1).
C. M ′ (2; 3; 1).
D. M ′ (−2; −3; −1).
Câu 21. Cho hình lập phương ABCD.A′ B′C ′ D′ . Tính góc giữa hai đường thẳng AC và BC ′ .
A. 300 .
B. 450 .
C. 600 .
D. 360 .
Câu 22. Tính tổng tất cả các nghiệm của phương trình 6.22x − 13.6 x + 6.32x = 0
13
A. 1.
B. 0.
C. −6.
D. .
6
Câu 23. Tìm tất cả các giá trị của tham số m để đường thẳng y = x + m cắt đồ thị hàm số y =
hai điểm phân biệt thuộc hai nửa mặt phẳng khác nhau bờ là trục hoành?

3
A. 1 < m , 4.
B. −4 < m < 1.
C. m < .
D. ∀m ∈ R.
2
ax + b
Câu 24. Cho hàm số y =
có đồ thị như hình vẽ bên. Kết luận nào sau đây là sai?
cx + d
A. bc > 0 .
B. ab < 0 .
C. ad > 0 .
D. ac < 0.

3 + 2x
tại
x+1

Trang 2/5 Mã đề 001


p
Câu 25. Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3 + 4x = (3 − y) 1 − y. Kết luận
nào sau đây là sai?
A. Nếu 0 < x < π thì y > 1 − 4π2 .
B. Nếux = 1 thì y = −3.
C. Nếu 0 < x < 1 thì y < −3.
D. Nếux > 2 thìy < −15.
Câu 26. Trong không gian với hệ tọa độ Oxyz, cho mặt cầu(S): x2 + y2 + z2 − 4x − 2y + 10z + 14 = 0 và

mặt phẳng (P) có phương trình x + y + z − 4 = 0. Mặt phẳng (P) cắt mặt cầu (S) theo một đường trịn có
chu vi √
là:
A. 4 3π.
B. 2π.
C. 4π.
D. 8π.
Câu 27. Tìm tập hợp tất cả các giá trị của tham số m để hàm số y = x3 + (m − 2)x2 − 3mx + m có điểm
cực đại có hồnh độ nhỏ hơn 1.
A. S = (−4; −1).
B. S = (−∞; −4) ∪ (−1; +∞) .
C. S = [−1; +∞) .
D. S = (−1; +∞) .
2x − 3
Câu 28. Với giá trị nào của tham số m thì hàm số y =
đạt giá trị lớn nhất trên đoạn [1; 3] bằng
x + m2
1
:
4

A. m = ±3.
B. m = ±2.
C. m = ±1.
D. m = ± 3.
x−3
y−6
z−1
Câu 29. Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1 :
=

=

−2
2
1
d2 : x = ty = −tz = 2 (t ∈ R). Đường thẳng đi qua điểm A(0; 1; 1), vng góc với d1 và cắt d2 có phương
trình là:
x y−1 z−1
x
y−1 z−1
=
.
B.
=
=
.
A. =
1
−3
4
−1
3
4
x−1
y
z−1
x
y−1 z−1
C.
=

=
.
D.
=
=
.
−1
−3
4
−1
−3
4
R4
R4
R1
Câu 30. Cho f (x)dx = 10 và f (x)dx = 8. Tính f (x)dx
−1

A. 0.

1

B. −2.

−1

C. 2.

D. 18.


Câu 31. Trong hệ tọa độ Oxyz, cho A(1;
kính AB có phương trình
√ 2; 3), B(−3; 0; 1). Mặt2 cầu đường
2
2
2
2
B. (x + 1) + (y − 1) + (z − 2)2 = 6.
A. (x + 1) + (y − 1) + (z − 2) = 6.
2
2
2
C. (x + 1) + (y − 1) + (z − 2) = 24.
D. (x − 1)2 + (y + 1)2 + (z + 2)2 = 6.
Câu 32. Cho hình chóp đều S .ABCD có cạnh đáy bằng a Gọi M, N lần lượt là trung điểm của SA và BC
o
Biết góc
√ giữa MN và mặt phẳng (ABCD) bằng 60 . Tính
√ sin của góc giữa MN và√mặt phẳng (S BD)
10
2
3
5
.
B. .
C.
.
D.
.
A.

5
5
4
5
Câu 33. Tập xác định của hàm số y = logπ (3 x − 3) là:
A. (1; +∞).
B. (3; +∞).
C. Đáp án khác.

D. [1; +∞).

Câu 34. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a; cạnh S A vng góc với mặt phẳng
(ABC),
√ S A = 2a. Gọi α là số đo góc giữa đường thẳng S√B và mp(S AC). Tính giá√trị sin α.
5
1
15
15
A.
.
B. .
C.
.
D.
.
3
2
10
5
Câu 35. Cho m = log2 3; n = log5 2. Tính log2 2250 theo m, n.

2mn + 2n + 3
2mn + n + 3
.
B. log2 2250 =
.
A. log2 2250 =
m
n
2mn + n + 2
3mn + n + 4
C. log2 2250 =
.
D. log2 2250 =
.
n
n
Câu 36. Hàm số nào trong các hàm số sau có đồ thị như hình vẽ bên.
A. y = x3 − 3x2
B. y = −x4 + 2x2 + 8. C. y = −2x4 + 4x2 .
.

D. y = −x4 + 2x2 .
Trang 3/5 Mã đề 001


Câu 37. Biết

π
R2


sin 2xdx = ea . Khi đó giá trị a là:

0

A. ln 2.

B. 1.

C. − ln 2.
D. 0.
2
x + mx + 1
Câu 38. Tìm tất cả các giá trị của tham số m để hàm số y =
đạt cực tiểu tại điểm x = 0.
x+1
A. Khơng có m.
B. m = 1.
C. m = −1.
D. m = 0.
Câu 39. Tính đạo hàm của hàm số y = 5 x+cos3x
A. y′ = (1 − 3 sin 3x)5 x+cos3x ln 5.
C. y′ = 5 x+cos3x ln 5 .

B. y′ = (1 − sin 3x)5 x+cos3x ln 5 .
D. y′ = (1 + 3 sin 3x)5 x+cos3x ln 5 .

Câu 40. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng
x = −1; x = 2.
25
23

29
27
A. .
B.
.
C. .
D. .
4
4
4
4




Câu 41. Trong không gian với hệ trục tọa độ Oxyz cho u = (2; 1; 3), v = (−1; 4; 3). Tìm tọa độ của véc
−u + 3→
−v .
tơ 2→


−v = (1; 13; 16).
−u + 3→
−v = (2; 14; 14).
A. 2 u + 3→
B. 2→
−u + 3→
−v = (3; 14; 16).
−u + 3→
−v = (1; 14; 15).

C. 2→
D. 2→
cos x
π
Câu 42. Biết hàm F(x) là một nguyên hàm của hàm f (x) =
và F(− ) = π. Khi đó giá trị
sin x + 2 cos x
2
F(0) bằng:



1

1
A. ln 2 + .
B. ln 2 + .
C. .
D. ln 2 + .
4
2
5
5
5
5
0
d
Câu 43. Cho hình chóp S .ABC có đáy ABC
√ là tam giác vuông tại A; BC = 2a; ABC = 60 . Gọi Mlà
trung điểm cạnh BC, S A = S C √

= S M = a 5. Tính khoảng cách từ S đến mặt phẳng
√ (ABC).
C. 2a.
D. a 3.
A. a.
B. a 2.
Câu 44. Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) và tiếp
xúc với mặt phẳng (P) : 2x + y − 2z + 1 = 0.
A. (x − 1)2 + (y − 2)2 + (z − 4)2 = 1.
B. (x − 1)2 + (y + 2)2 + (z − 4)2 = 1.
2
2
2
C. (x − 1) + (y − 2) + (z − 4) = 3.
D. (x − 1)2 + (y − 2)2 + (z − 4)2 = 2.
Câu 45. Tìm tất cả các giá trị của tham số m để hàm số y = mx3 + mx2 − x + 2 nghịch biến trên R.
A. −3 ≤ m ≤ 0.
B. m > −2.
C. m < 0.
D. −4 ≤ m ≤ −1.
Câu 46. Tính đạo hàm của hàm số y = 5 x+cos3x
A. y′ = (1 + 3 sin 3x)5 x+cos3x ln 5.
C. y′ = (1 − sin 3x)5 x+cos3x ln 5.


B. y′ = 5 x+cos3x ln 5.
D. y′ = (1 − 3 sin 3x)5 x+cos3x ln 5.

Câu 47. Cho bất phương trình 3 2(x−1)+1 − 3 x ≤ x2 − 4x + 3. Tìm mệnh đề đúng.
A. Bất phương trình đúng với mọi x ∈ (4; +∞).

B. Bất phương trình có nghiệm thuộc khoảng (−∞; 1).
C. Bất phương trình đúng với mọi x ∈ [ 1; 3].
D. Bất phương trình vơ nghiệm.
Câu 48. Cho P = 2a 4b 8c , chọn mệnh đề đúng trong các mệnh đề sau.
A. P = 2a+2b+3c .
B. P = 2a+b+c .
C. P = 26abc .

D. P = 2abc .

Câu 49. Cho m = log2 3; n = log5 2. Tính log2 2250 theo m, n.
2mn + n + 2
2mn + n + 3
A. log2 2250 =
.
B. log2 2250 =
.
n
n
2mn + 2n + 3
3mn + n + 4
C. log2 2250 =
.
D. log2 2250 =
.
m
n
Câu 50. Cho hàm số y = x2 − x + m có đồ thị là (C). Tìm tất cả các giá trị của tham số m để tiếp tuyến
của đồ thị (C) tại giao điểm của (C) với trục Oy đi qua điểm B(1; 2).
A. m = 2.

B. m = 3.
C. m = 4.
D. m = 1.
Trang 4/5 Mã đề 001


- - - - - - - - - - HẾT- - - - - - - - - -

Trang 5/5 Mã đề 001



×