Free LATEX
ĐỀ LUYỆN THI THPT QG MƠN TỐN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001
Câu 1. Trong không gian với hệ tọa độ Oxyz, cho điểm A(5; 5; 2),mặt phẳng (P):z − 2 = 0, mặt cầu (S )có
tâm I(3; 4; 6) và bán kính R = 5.Viết phương trình đường thẳng đi qua A, nằm trong (P) và cắt (S) theo
dây cung dài nhất?
A. x = 5 + ty = 5 + 2tz = 2.
B. x = 3 + 2ty = 4 + tz = 6.
C. x = 5 + 2ty = 5 + tz = 2 − 4t.
D. x = 5 + 2ty = 5 + tz = 2.
Câu 2. Cho a > 1; 0 < x < y. Bất đẳng thức nào sau đây là đúng?
A. log x > log y.
B. loga x > loga y.
C. ln x > ln y.
D. log 1 x > log 1 y.
a
Câu R3. Công thức nào sai?
A. e x = e x + C.
R
C. a x = a x . ln a + C.
a
R
B. cos x = sin x + C.
R
D. sin x = − cos x + C.
Câu 4. Đồ thị hàm số nào sau đây có vơ số đường tiệm cận đứng?
A. y = x3 − 2x2 + 3x + 2.
B. y = tan x.
3x + 1
C. y = sin x.
D. y =
.
x−1
Câu 5. Cho hìnhqchóp đều S .ABCcó cạnh đáy bằng a và cạnh bên bằng b. Thể tích của khối chóp là:
√
√
a2 b2 − 3a2
a2 3b2 − a2
.
B. VS .ABC =
.
A. VS .ABC =
√ 2 12
√ 12
3a b
3ab2
C. VS .ABC =
.
D. VS .ABC =
.
12
12
Câu 6. Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3). Biết C là một
điểm trên mặt phẳng (P):x + z − 27 = 0 sao cho tồn tại các điểm B, D tương ứng thuộc các tia AM, AN
để tứ giác ABCD là hình thoi. Tọa độ điểm C là:
21
C. C(20; 15; 7).
D. C(6; 21; 21).
A. C(6; −17; 21).
B. C(8; ; 19).
2
Câu 7. Hình nón có bán kính đáy
√ R, đường sinh l thì diện tích xung quanh của nó√bằng
A. 2πRl.
B. 2π l2 − R2 .
C. πRl.
D. π l2 − R2 .
Câu 8. Tính I =
R1 √3
7x + 1dx
0
A. I =
20
.
7
B. I =
21
.
8
C. I =
45
.
28
D. I =
60
.
28
Câu 9. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x = 1 + 2ty = 2 + (m − 1)tz = 3 − t.
Tìm tất cả các giá trị của tham số m để d có thể viết được dưới dạng chính tắc?
A. m , −1.
B. m , 1.
C. m , 0.
D. m = 1.
Câu 10. Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1; 2; 0), B(3; 4; 1), D(−1; 3; 2). Tìm tọa độ
điểm C sao cho ABCD là hình thang có hai cạnh đáy AB, CD và có góc C bằng 450 .
A. C(−3; 1; 1).
B. C(5; 9; 5).
C. C(1; 5; 3).
D. C(3; 7; 4).
√ sin 2x
Câu 11. Giá trị lớn nhất của hàm số y = ( π)
trên R bằng?
√
A. 1.
B. π.
C. π.
D. 0.
Trang 1/5 Mã đề 001
Câu 12. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d :
x−1
y+2
z
=
= . Viết phương
1
−1
2
trình mặt phẳng (P) đi qua điểm M(2; 0; −1)và vng góc với d.
A. (P) : x + y + 2z = 0. B. (P) : x − y − 2z = 0. C. (P) : x − y + 2z = 0. D. (P) : x − 2y − 2 = 0.
2x + 2017
(1). Mệnh đề nào dưới đây là đúng?
x
+ 1
A. Đồ thị hàm số (1) có đúng một tiệm cận ngang là đường thẳng y = 2 và không có tiệm cận đứng.
B. Đồ thị hàm số (1) khơng có tiệm cận ngang và có đúng hai tiệm cận đứng là các đường thẳng
x = −1, x = 1..
C. Đồ thị hàm số (1) có hai tiệm cận ngang là các đường thẳng y = −2, y = 2 và khơng có tiệm cận
đứng.
D. Đồ thị hàm số (1) khơng có tiệm cận ngang và có đúng một tiệm cận đứng là đường thẳng x = −1..
Câu 13. Cho hàm số y =
Câu 14. Cắt một hình nón bởi một mặt phẳng đi qua trục của nó, ta được thiết diện là tam giác vng
với cạnh√huyền bằng 2a. Tính thể tích của khối nón.
√
π.a3
2π.a3
π 2.a3
4π 2.a3
.
B.
.
C.
.
D.
.
A.
3
3
3
3
Câu 15. Trong khơng gian với hệ tọa độ Oxyz, cho hai điểm A(1; 2; 0) và B(1; 0; 4). Tìm tọa độ trung
điểm I của đoạn thẳng AB.
A. I(0; −1; 2).
B. I(0; 1; 2).
C. I(1; 1; 2).
D. I(0; 1; −2).
Câu 16. Cho hàm số f (x) thỏa mãn f ′′ (x) = 12x2 + 6x − 4 và f (0) = 1, f (1) = 3. Tính f (−1).
A. f (−1) = 3.
B. f (−1) = −5.
C. f (−1) = −1.
D. f (−1) = −3.
Câu 17. Tìm tất cả các giá trị của tham số m để giá trị lớn nhất của hàm số y = −x2 + 2mx − 1 − 2m trên
đoạn [−1; 2] nhỏ hơn 2.
7
D. m ∈ (0; 2).
A. m ≥ 0.
B. m ∈ (−1; 2).
C. −1 < m < .
2
√
x
Câu 18. Đồ thị hàm số y = ( 3 − 1) có dạng nào trong các hình H1, H2, H3, H4 sau đây?
A. (H3).
B. (H4).
C. (H1).
D. (H2).
Câu 19. Cho 0 < a , 1; 0 < x , 2. Đẳng thức nào sau đây là sai?
A. loga (x − 2)2 = 2loga (x − 2).
B. aloga x = x.
1
C. loga2 x = loga x .
D. loga x2 = 2loga x.
2
Câu 20. Trong không gian với hệ tọa độ Oxyz, cho M(2; 3; −1). Tìm tọa độ điểm M ′ đối xứng với M qua
mặt phẳng Oxz?
A. M ′ (−2; 3; 1).
B. M ′ (2; −3; −1).
C. M ′ (2; 3; 1).
D. M ′ (−2; −3; −1).
Câu 21. Cho hình lập phương ABCD.A′ B′C ′ D′ . Tính góc giữa hai đường thẳng AC và BC ′ .
A. 300 .
B. 450 .
C. 600 .
D. 360 .
Câu 22. Tính tổng tất cả các nghiệm của phương trình 6.22x − 13.6 x + 6.32x = 0
13
A. 1.
B. 0.
C. −6.
D. .
6
Câu 23. Tìm tất cả các giá trị của tham số m để đường thẳng y = x + m cắt đồ thị hàm số y =
hai điểm phân biệt thuộc hai nửa mặt phẳng khác nhau bờ là trục hoành?
3
A. 1 < m , 4.
B. −4 < m < 1.
C. m < .
D. ∀m ∈ R.
2
ax + b
Câu 24. Cho hàm số y =
có đồ thị như hình vẽ bên. Kết luận nào sau đây là sai?
cx + d
A. bc > 0 .
B. ab < 0 .
C. ad > 0 .
D. ac < 0.
3 + 2x
tại
x+1
Trang 2/5 Mã đề 001
p
Câu 25. Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3 + 4x = (3 − y) 1 − y. Kết luận
nào sau đây là sai?
A. Nếu 0 < x < π thì y > 1 − 4π2 .
B. Nếux = 1 thì y = −3.
C. Nếu 0 < x < 1 thì y < −3.
D. Nếux > 2 thìy < −15.
Câu 26. Trong không gian với hệ tọa độ Oxyz, cho mặt cầu(S): x2 + y2 + z2 − 4x − 2y + 10z + 14 = 0 và
mặt phẳng (P) có phương trình x + y + z − 4 = 0. Mặt phẳng (P) cắt mặt cầu (S) theo một đường trịn có
chu vi √
là:
A. 4 3π.
B. 2π.
C. 4π.
D. 8π.
Câu 27. Tìm tập hợp tất cả các giá trị của tham số m để hàm số y = x3 + (m − 2)x2 − 3mx + m có điểm
cực đại có hồnh độ nhỏ hơn 1.
A. S = (−4; −1).
B. S = (−∞; −4) ∪ (−1; +∞) .
C. S = [−1; +∞) .
D. S = (−1; +∞) .
2x − 3
Câu 28. Với giá trị nào của tham số m thì hàm số y =
đạt giá trị lớn nhất trên đoạn [1; 3] bằng
x + m2
1
:
4
√
A. m = ±3.
B. m = ±2.
C. m = ±1.
D. m = ± 3.
x−3
y−6
z−1
Câu 29. Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1 :
=
=
và
−2
2
1
d2 : x = ty = −tz = 2 (t ∈ R). Đường thẳng đi qua điểm A(0; 1; 1), vng góc với d1 và cắt d2 có phương
trình là:
x y−1 z−1
x
y−1 z−1
=
.
B.
=
=
.
A. =
1
−3
4
−1
3
4
x−1
y
z−1
x
y−1 z−1
C.
=
=
.
D.
=
=
.
−1
−3
4
−1
−3
4
R4
R4
R1
Câu 30. Cho f (x)dx = 10 và f (x)dx = 8. Tính f (x)dx
−1
A. 0.
1
B. −2.
−1
C. 2.
D. 18.
Câu 31. Trong hệ tọa độ Oxyz, cho A(1;
kính AB có phương trình
√ 2; 3), B(−3; 0; 1). Mặt2 cầu đường
2
2
2
2
B. (x + 1) + (y − 1) + (z − 2)2 = 6.
A. (x + 1) + (y − 1) + (z − 2) = 6.
2
2
2
C. (x + 1) + (y − 1) + (z − 2) = 24.
D. (x − 1)2 + (y + 1)2 + (z + 2)2 = 6.
Câu 32. Cho hình chóp đều S .ABCD có cạnh đáy bằng a Gọi M, N lần lượt là trung điểm của SA và BC
o
Biết góc
√ giữa MN và mặt phẳng (ABCD) bằng 60 . Tính
√ sin của góc giữa MN và√mặt phẳng (S BD)
10
2
3
5
.
B. .
C.
.
D.
.
A.
5
5
4
5
Câu 33. Tập xác định của hàm số y = logπ (3 x − 3) là:
A. (1; +∞).
B. (3; +∞).
C. Đáp án khác.
D. [1; +∞).
Câu 34. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a; cạnh S A vng góc với mặt phẳng
(ABC),
√ S A = 2a. Gọi α là số đo góc giữa đường thẳng S√B và mp(S AC). Tính giá√trị sin α.
5
1
15
15
A.
.
B. .
C.
.
D.
.
3
2
10
5
Câu 35. Cho m = log2 3; n = log5 2. Tính log2 2250 theo m, n.
2mn + 2n + 3
2mn + n + 3
.
B. log2 2250 =
.
A. log2 2250 =
m
n
2mn + n + 2
3mn + n + 4
C. log2 2250 =
.
D. log2 2250 =
.
n
n
Câu 36. Hàm số nào trong các hàm số sau có đồ thị như hình vẽ bên.
A. y = x3 − 3x2
B. y = −x4 + 2x2 + 8. C. y = −2x4 + 4x2 .
.
D. y = −x4 + 2x2 .
Trang 3/5 Mã đề 001
Câu 37. Biết
π
R2
sin 2xdx = ea . Khi đó giá trị a là:
0
A. ln 2.
B. 1.
C. − ln 2.
D. 0.
2
x + mx + 1
Câu 38. Tìm tất cả các giá trị của tham số m để hàm số y =
đạt cực tiểu tại điểm x = 0.
x+1
A. Khơng có m.
B. m = 1.
C. m = −1.
D. m = 0.
Câu 39. Tính đạo hàm của hàm số y = 5 x+cos3x
A. y′ = (1 − 3 sin 3x)5 x+cos3x ln 5.
C. y′ = 5 x+cos3x ln 5 .
B. y′ = (1 − sin 3x)5 x+cos3x ln 5 .
D. y′ = (1 + 3 sin 3x)5 x+cos3x ln 5 .
Câu 40. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng
x = −1; x = 2.
25
23
29
27
A. .
B.
.
C. .
D. .
4
4
4
4
→
−
→
−
Câu 41. Trong không gian với hệ trục tọa độ Oxyz cho u = (2; 1; 3), v = (−1; 4; 3). Tìm tọa độ của véc
−u + 3→
−v .
tơ 2→
→
−
−v = (1; 13; 16).
−u + 3→
−v = (2; 14; 14).
A. 2 u + 3→
B. 2→
−u + 3→
−v = (3; 14; 16).
−u + 3→
−v = (1; 14; 15).
C. 2→
D. 2→
cos x
π
Câu 42. Biết hàm F(x) là một nguyên hàm của hàm f (x) =
và F(− ) = π. Khi đó giá trị
sin x + 2 cos x
2
F(0) bằng:
3π
6π
6π
1
6π
1
A. ln 2 + .
B. ln 2 + .
C. .
D. ln 2 + .
4
2
5
5
5
5
0
d
Câu 43. Cho hình chóp S .ABC có đáy ABC
√ là tam giác vuông tại A; BC = 2a; ABC = 60 . Gọi Mlà
trung điểm cạnh BC, S A = S C √
= S M = a 5. Tính khoảng cách từ S đến mặt phẳng
√ (ABC).
C. 2a.
D. a 3.
A. a.
B. a 2.
Câu 44. Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) và tiếp
xúc với mặt phẳng (P) : 2x + y − 2z + 1 = 0.
A. (x − 1)2 + (y − 2)2 + (z − 4)2 = 1.
B. (x − 1)2 + (y + 2)2 + (z − 4)2 = 1.
2
2
2
C. (x − 1) + (y − 2) + (z − 4) = 3.
D. (x − 1)2 + (y − 2)2 + (z − 4)2 = 2.
Câu 45. Tìm tất cả các giá trị của tham số m để hàm số y = mx3 + mx2 − x + 2 nghịch biến trên R.
A. −3 ≤ m ≤ 0.
B. m > −2.
C. m < 0.
D. −4 ≤ m ≤ −1.
Câu 46. Tính đạo hàm của hàm số y = 5 x+cos3x
A. y′ = (1 + 3 sin 3x)5 x+cos3x ln 5.
C. y′ = (1 − sin 3x)5 x+cos3x ln 5.
√
B. y′ = 5 x+cos3x ln 5.
D. y′ = (1 − 3 sin 3x)5 x+cos3x ln 5.
Câu 47. Cho bất phương trình 3 2(x−1)+1 − 3 x ≤ x2 − 4x + 3. Tìm mệnh đề đúng.
A. Bất phương trình đúng với mọi x ∈ (4; +∞).
B. Bất phương trình có nghiệm thuộc khoảng (−∞; 1).
C. Bất phương trình đúng với mọi x ∈ [ 1; 3].
D. Bất phương trình vơ nghiệm.
Câu 48. Cho P = 2a 4b 8c , chọn mệnh đề đúng trong các mệnh đề sau.
A. P = 2a+2b+3c .
B. P = 2a+b+c .
C. P = 26abc .
D. P = 2abc .
Câu 49. Cho m = log2 3; n = log5 2. Tính log2 2250 theo m, n.
2mn + n + 2
2mn + n + 3
A. log2 2250 =
.
B. log2 2250 =
.
n
n
2mn + 2n + 3
3mn + n + 4
C. log2 2250 =
.
D. log2 2250 =
.
m
n
Câu 50. Cho hàm số y = x2 − x + m có đồ thị là (C). Tìm tất cả các giá trị của tham số m để tiếp tuyến
của đồ thị (C) tại giao điểm của (C) với trục Oy đi qua điểm B(1; 2).
A. m = 2.
B. m = 3.
C. m = 4.
D. m = 1.
Trang 4/5 Mã đề 001
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 5/5 Mã đề 001