Free LATEX
ĐỀ LUYỆN THI THPT QG MƠN TỐN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001001
Câu 1. Hàm số nào sau đây đồng biến trên R?
A. y = tan x.
C. y = x4 + 3x2 + 2.
√
√
B. y = x2 + x + 1 − x2 − x + 1.
D. y = x2 .
Câu 2. Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + 5 = 0. Tọa độ của một véc
tơ pháp tuyến của (P) là
A. (−2; 1; 2).
B. (2; −1; −2).
C. (2; −1; 2).
D. (−2; −1; 2).
Câu 3. Đồ thị hàm số nào sau đây có vơ số đường tiệm cận đứng?
A. y = sin x.
B. y = tan x.
3x + 1
.
D. y = x3 − 2x2 + 3x + 2.
C. y =
x−1
Câu 4. Một chất điểm chuyển động có vận tốc phụ thuộc thời gian theo hàm số v(t) = 2t + 10(m/s). Tính
qng đường S mà chất điểm đó đi được sau 2 giây kể từ lúc bắt đầu chuyển động?
A. S = 20 (m).
B. S = 28 (m).
C. S = 12 (m).
D. S = 24 (m).
Câu 5. Tập tất cả các giá trị của tham số m để đồ thị hàm số y = log3 (x2 + x + 1) + 2x3 cắt đồ thị hàm
số y = 3x2 + log3 x + m là:
A. S = (−∞; 2).
B. S = [ -ln3; +∞).
C. S = (−∞; ln3).
D. S = [ 0; +∞).
Câu 6. Trong không gian với hệ tọa độ Oxyz, cho điểm A(5; 5; 2),mặt phẳng (P):z − 2 = 0, mặt cầu (S )có
tâm I(3; 4; 6) và bán kính R = 5.Viết phương trình đường thẳng đi qua A, nằm trong (P) và cắt (S) theo
dây cung dài nhất?
A. x = 5 + 2ty = 5 + tz = 2 − 4t.
B. x = 3 + 2ty = 4 + tz = 6.
C. x = 5 + ty = 5 + 2tz = 2.
D. x = 5 + 2ty = 5 + tz = 2.
Câu 7. Trong không gian với hệ tọa độ Oxyz cho M(2; 3; −1). Tìm tọa độ điểm M ′ đối xứng với M qua
mặt phẳng Oxz?
A. M ′ (2; −3; −1).
B. M ′ (2; 3; 1).
C. M ′ (−2; −3; −1).
D. M ′ (−2; 3; 1).
Câu 8. Hình nón có bán kính đáy
bằng
√ R, đường sinh l thì diện tích xung quanh của nó √
2
2
C. πRl.
D. 2π l2 − R2 .
A. 2πRl.
B. π l − R .
Câu 9. Cho hàm số f (x) thỏa mãn f ′′ (x) = 12x2 + 6x − 4 và f (0) = 1, f (1) = 3. Tính f (−1).
A. f (−1) = −5.
B. f (−1) = −1.
C. f (−1) = 3.
D. f (−1) = −3.
Câu 10. Cho hàm số y = x3 + 3x2 − 9x − 2017. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (1; +∞).
B. Hàm số đồng biến trên khoảng (−3; 1).
C. Hàm số nghịch biến trên khoảng (−3; 1).
D. Hàm số nghịch biến trên khoảng (−∞; −3).
Câu 11. Tìm giá trị cực đại yCD của hàm số y = x3 − 12x + 20.
A. yCD = 52.
B. yCD = 4.
C. yCD = −2.
R
Câu 12. Tính nguyên hàm cos 3xdx.
1
B. 3 sin 3x + C.
C. −3 sin 3x + C.
A. sin 3x + C.
3
D. yCD = 36.
1
D. − sin 3x + C.
3
a3
Câu 13. Cho hình chóp đều S .ABCD có cạnh đáy bằng a và thể tích bằng . Tìm góc giữa mặt bên và
6
mặt đáy của hình chóp đã cho.
A. 600 .
B. 450 .
C. 300 .
D. 1350 .
Trang 1/5 Mã đề 001001
Câu 14. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x = 1 + 2ty = 2 + (m − 1)tz = 3 − t.
Tìm tất cả các giá trị của tham số m để d có thể viết được dưới dạng chính tắc?
A. m , 1.
B. m = 1.
C. m , −1.
D. m , 0.
Câu 15. Tìm tất cả các giá trị của tham số m sao cho đồ thị của hai hàm số y = x3 +x2 và y = x2 +3x+mcắt
nhau tại nhiều điểm nhất.
A. 0 < m < 2.
B. −2 ≤ m ≤ 2.
C. −2 < m < 2.
D. m = 2.
1
Câu 16. Gọi S (t) là diện tích hình phẳng giới hạn bởi các đường y =
; y = 0; x = 0; x =
(x + 1)(x + 2)2
t(t > 0). Tìm lim S (t).
t→+∞
1
1
1
1
B. − ln 2.
C. − ln 2 − .
D. ln 2 + .
A. ln 2 − .
2
2
2
2
Câu R17. Công thức nào sai?
R
A. R cos x = sin x + C.
B. R a x = a x . ln a + C.
C. e x = e x + C.
D. sin x = − cos x + C.
3
, ((ℵ) có đỉnh thuộc (S ) và đáy
2
là đường trịn nằm hồn tồn trên (S )), hãy tìm diện tích xung quanh của (ℵ) khi thể tích của (ℵ)lớn
nhất. √
√
√
4 3π
2π
A.
.
B. √ .
D. 2 3π.
C. 4 3π.
3
3
√
Câu 19. Cho hình phẳng (D) giới hạn bởi các đường y = x, y = x, x = 2 quay quanh trục hoành. Tìm
thể tích V của khối trịn xoay tạo thành.
π
10π
A. V = π.
B. V =
.
C. V = 1.
D. V = .
3
3
Câu 18. Trong các hình nón (ℵ) nội tiếp mặt cầu (S ) bán kính R =
Câu 20. Cho hình chóp đều S .ABCD có đáy ABCD là hình vng cạnh 2a, đường cao của hình chóp
bằng a. Tính góc giữa hai mặt phẳng (S AC) và (S AB).
A. 450 .
B. 360 .
C. 600 .
D. 300 .
x
Câu 21. Giá trị nhỏ nhất của hàm số y = 2
trên tập xác định của nó là
x +1
1
1
B. min y = .
C. min y = −1.
D. min y = 0.
A. min y = − .
R
R
R
R
2
2
√
x
Câu 22. Đồ thị hàm số y = ( 3 − 1) có dạng nào trong các hình H1, H2, H3, H4 sau đây?
A. (H1).
B. (H3).
C. (H2).
D. (H4).
Câu 23. Kết quả nào đúng?
R
sin3 x
2
A. sin x cos x = −
+ C.
3
3
R
sin x
C. sin2 x cos x =
+ C.
3
B.
R
sin2 x cos x = cos2 x. sin x + C.
D.
R
sin2 x cos x = −cos2 x. sin x + C.
Câu 24. Cho lăng trụ đều ABC.A′ B′C ′ có tất cả các cạnh đều bằng a. Tính khoảng cách giữa hai đường
thẳng AB′ và BC ′ .
√
√
2a
5a
3a
a
A. √ .
B. √ .
C.
.
D.
.
3
2
5
5
1
Câu 25. Kết luận nào sau đây về tính đơn điệu của hàm số y = là đúng?
x
A. Hàm số nghịch biến trên (0; +∞).
B. Hàm số nghịch biến trên R.
C. Hàm số đồng biến trên (−∞; 0) ∪ (0; +∞).
D. Hàm số đồng biến trên R.
Câu 26. Người ta cần cắt một tấm tơn có hình dạng là một elíp với độ dài trục lớn bằng 2a, độ dài trục
bé bằng 2b (a > b > 0) để được một tấm tơn có dạng hình chữ nhật nội tiếp elíp. Người ta gị tấm tơn
Trang 2/5 Mã đề 001001
hình chữ nhật thu được thành một hình trụ khơng có đáy như hình bên. Tính thể tích lớn nhất có thể được
của khối trụ thu được.
2a2 b
4a2 b
4a2 b
2a2 b
C. √ .
A. √ .
B. √ .
D. √ .
3 3π
3 3π
3 2π
3 2π
Câu 27. Cho hình chóp đều S .ABCD có cạnh đáy bằng a Gọi M, N lần lượt là trung điểm của SA và BC
o
Biết góc
√ (ABCD) bằng 60 . Tính sin của góc giữa MN và√mặt phẳng (S BD)
√ giữa MN và mặt phẳng
2
10
5
3
.
B.
.
C. .
D.
.
A.
5
5
5
4
x−3
y−6
z−1
Câu 28. Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1 :
=
=
và
−2
2
1
d2 : x = ty = −tz = 2 (t ∈ R). Đường thẳng đi qua điểm A(0; 1; 1), vng góc với d1 và cắt d2 có phương
trình là:
x
y−1 z−1
x
y−1 z−1
A.
=
=
.
B.
=
=
.
−1
3
4
−1
−3
4
x−1
y
z−1
x y−1 z−1
C.
=
=
.
D. =
=
.
−1
−3
4
1
−3
4
3x − 1 3
≤ là:
Câu 29. Tập nghiệm của bất phương trình log4 (3 x − 1).log 1
16
4
4
A. S = [1; 2].
B. S = (1; 2) .
C. S = (−∞; 1] ∪ [2; +∞) .
D. S = (0; 1] ∪ [2; +∞).
√
x− x+2
Câu 30. Đồ thị của hàm số y =
có tất cả bao nhiêu tiệm cận?
x2 − 4
A. 2.
B. 0.
C. 3.
D. 1.
Câu 31. Tập xác định của hàm số y = logπ (3 x − 3) là:
A. (3; +∞).
B. Đáp án khác.
C. [1; +∞).
D. (1; +∞).
Câu 32. Tứ diện OABC có OA = OB = OC = a và đơi một vng góc. Gọi M, N, P lần lượt là trung
điểm AB, BC, CA. Thể tích tứ diện OMNP là
a3
a3
a3
a3
A. .
B.
.
C. .
D. .
6
12
24
4
2x
x
2x
Câu 33. Tính tổng tất cả các nghiệm của phương trình 6.2 − 13.6 + 6.3 = 0
13
A. .
B. 0.
C. 1.
D. −6.
6
Câu 34. Cho hình lăng trụ đứng ABC.A′ B′C ′ có đáy ABC là tam giác tù, AB = AC. Góc tạo bởi hai
đường thẳng AA′ và BC ′ bằng 300 ; khoảng cách giữa AA′ và BC ′ bằng a; góc giữa hai mặt phẳng
(ABB′ A′ √
) và (ACC ′ A′ ) bằng 600 . Tính
thể tích khối lăng trụ√ABC.A′ B′C ′ .
√
√
A. 6a3 3.
B. 3a3 3.
C. 9a3 3.
D. 4a3 3.
Câu 35. Cho hàm số y = x2 − x + m có đồ thị là (C). Tìm tất cả các giá trị của tham số m để tiếp tuyến
của đồ thị (C) tại giao điểm của (C) với trục Oy đi qua điểm B(1; 2).
A. m = 4.
B. m = 1.
C. m = 2.
D. m = 3.
Câu 36. Chọn mệnh đề đúng trong các mệnh đề sau:
A. Nếu a > 1 thì a x > ay ⇔ x > y.
B. Nếu a > 0 thì a x > ay ⇔ x < y.
C. Nếu a > 0 thì a x = ay ⇔ x = y.
D. Nếu a < 1 thì a x > ay ⇔ x < y.
Câu 37. Chọn mệnh đề đúng trong các mệnh đề sau:
R3
R2
R3
A. |x2 − 2x|dx = (x2 − 2x)dx − (x2 − 2x)dx.
1
B.
R3
1
|x2 − 2x|dx = −
1
C.
R3
1
2
R2
(x2 − 2x)dx +
1
(x2 − 2x)dx.
2
R2
R3
1
2
|x2 − 2x|dx = |x2 − 2x|dx −
R3
|x2 − 2x|dx.
Trang 3/5 Mã đề 001001
D.
R3
1
R2
R3
|x2 − 2x|dx = (x2 − 2x)dx + (x2 − 2x)dx.
1
2
Câu 38. Hàm số nào trong các hàm số sau có đồ thị như hình vẽ bên.
C. y = −x4 + 2x2 + 8. D. y = −2x4 + 4x2 .
A. y = −x4 + 2x2 .
B. y = x3 − 3x2
.
Câu 39. Bác An đem gửi tổng số tiền 320 triệu đồng ở một ngân hàng A theo hình thức lãi kép, ở hai
loại kỳ hạn khác nhau. Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, 1
A. 36080254 đồng.
B. 36080255 đồng.
C. 36080253 đồng.
D. 36080251 đồng.
Câu 40. Cho hình lăng trụ đứng ABCD.A′ B′C ′ D′ có đáy ABCD là hình chữ nhật,AB = a; AD = 2a;
AA′ =√2a. Gọi α là số đo góc giữa
và DB′ . Tính giá trị cos α.
√ hai đường thẳng AC √
3
5
3
1
.
B.
.
C.
.
D. .
A.
2
5
4
2
Câu 41. Một hình trụ (T ) có diện tích xung quanh bằng 4π và thiết diện qua trục của hình trụ này là một
hình vng. Diện tích tồn phần của (T ) là
A. 8π.
B. 10π.
C. 6π.
D. 12π.
Câu 42. Cho hình chóp đều S.ABCD có cạnh đáy bằng a và chiều cao bằng 2a, diện tích xung quanh
của hình √
nón đỉnh S và đáy là hình√trịn nội tiếp tứ giác ABCD
√ bằng
√
2
2
2
πa 17
πa 15
πa2 17
πa 17
.
B.
.
C.
.
D.
.
A.
8
4
4
6
π
cos x
và F(− ) = π. Khi đó giá trị
Câu 43. Biết hàm F(x) là một nguyên hàm của hàm f (x) =
sin x + 2 cos x
2
F(0) bằng:
6π
1
6π
1
3π
6π
A. .
B. ln 2 + .
C. ln 2 + .
D. ln 2 + .
5
5
5
4
2
5
Câu 44. Một hình trụ (T ) có diện tích xung quanh bằng 4π và thiết diện qua trục của hình trụ này là một
hình vng. Diện tích tồn phần của (T ) là
A. 6π.
B. 10π.
C. 8π.
D. 12π.
Câu 45. Chọn mệnh đề đúng trong các mệnh đề sau:
R
R
(2x + 1)3
+ C.
A. sin xdx = cos x + C.
B. (2x + 1)2 dx =
3
R
R
e2x
C. e2x dx =
+C .
D. 5 x dx =5 x + C.
2
Câu 46. Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) và tiếp
xúc với mặt phẳng (P) : 2x + y − 2z + 1 = 0.
A. (x − 1)2 + (y − 2)2 + (z − 4)2 = 3.
B. (x − 1)2 + (y + 2)2 + (z − 4)2 = 1.
C. (x − 1)2 + (y − 2)2 + (z − 4)2 = 2.
D. (x − 1)2 + (y − 2)2 + (z − 4)2 = 1.
Câu 47. Cho mặt cầu (S ) có bán kính bằng R = 5, một hình trụ (T )có hai đường trịn đáy nằm trên mặt
cầu (S ). Thể
√ tích của khối trụ (T ) lớn
√ nhất bằng bao nhiêu. √
√
500π 3
400π 3
250π 3
125π 3
A.
.
B.
.
C.
.
D.
.
3
9
9
9
Câu 48. Cho hình√chóp S .ABCD có đáy ABCD là hình vng. Cạnh S A vng góc với mặt phẳng
(ABCD); S A = 2a 3. Góc giữa hai mặt phẳng (S BC) và (ABCD) bằng 600 . Gọi M, N lần lượt là trung
điểm hai√cạnh AB, AD. Tính khoảng
MN và S C.
√ cách giữa hai đường thẳng
√
√
3a 30
3a 6
3a 6
a 15
A.
.
B.
.
C.
.
D.
.
10
8
2
2
Câu 49. Gọi giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x4 − 4x trên đoạn [−1; 2] lần lượt là M, m.
Tính tổng M + m.
A. 6.
B. 4.
C. 5.
D. 3.
Trang 4/5 Mã đề 001001
Câu 50. Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt phẳng (P) đi qua điểm
−n (2; 1; −4).
A(1; 2; 3) và có một véc tơ pháp tuyến là →
A. 2x + y − 4z + 1 = 0.
B. 2x + y − 4z + 7 = 0.
C. −2x − y + 4z − 8 = 0.
D. 2x + y − 4z + 5 = 0.
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 5/5 Mã đề 001001