Free LATEX
ĐỀ LUYỆN THI THPT QG MƠN TỐN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 6 trang)
Mã đề 001
Câu 1. Đồ thị hàm số nào sau đây nhận trục tung là trục đối xứng?
A. y = −x4 + 3x2 − 2.
B. y = x2 − 2x + 2.
3
2
C. y = x − 2x + 3x + 2.
D. y = x3 .
Câu 2. Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + 5 = 0. Tọa độ của một véc
tơ pháp tuyến của (P) là
A. (2; −1; −2).
B. (−2; −1; 2).
C. (2; −1; 2).
D. (−2; 1; 2).
Câu 3. Đồ thị hàm số nào sau đây có vơ số đường tiệm cận đứng?
A. y = sin x.
B. y = tan x.
3x + 1
.
C. y = x3 − 2x2 + 3x + 2.
D. y =
x−1
Câu 4. Cho 0 < a , 1; 0 < x , 2. Đẳng thức nào sau đây là sai?
1
A. loga x2 = 2loga x.
B. loga2 x = loga x.
2
C. aloga x = x.
D. loga (x − 2)2 = 2loga (x − 2).
x
Câu 5. Giá trị nhỏ nhất của hàm số y = 2
trên tập xác định của nó là
x +1
1
1
B. min y = 0.
C. min y = .
D. min y = −1.
A. min y = − .
R
R
R
R
2
2
Câu R6. Công thức nào sai?
R
A. R e x = e x + C.
B. R cos x = sin x + C.
C. sin x = − cos x + C.
D. a x = a x . ln a + C.
Câu 7. Tìm tất cả các giá trị của tham số m để giá trị lớn nhất của hàm số y = −x2 + 2mx − 1 − 2m trên
đoạn [−1; 2] nhỏ hơn 2.
7
D. m ≥ 0.
A. m ∈ (0; 2).
B. m ∈ (−1; 2).
C. −1 < m < .
2
Câu 8. Một chất điểm chuyển động có vận tốc phụ thuộc thời gian theo hàm số v(t) = 2t + 10(m/s). Tính
qng đường S mà chất điểm đó đi được sau 2 giây kể từ lúc bắt đầu chuyển động?
A. S = 24 (m).
B. S = 12 (m).
C. S = 28 (m).
D. S = 20 (m).
Câu 9. Giá trị nhỏ nhất của hàm số y = 2x + cos xtrên đoạn [0; 1] bằng?
A. −1.
B. 1.
C. 0.
D. π.
Câu 10. Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; 2; 0) và B(1; 0; 4). Tìm tọa độ trung
điểm I của đoạn thẳng AB.
A. I(1; 1; 2).
B. I(0; 1; 2).
C. I(0; −1; 2).
D. I(0; 1; −2).
x−1
y+2
z
Câu 11. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d :
=
= . Viết phương
1
−1
2
trình mặt phẳng (P) đi qua điểm M(2; 0; −1)và vng góc với d.
A. (P) : x − y − 2z = 0. B. (P) : x − 2y − 2 = 0. C. (P) : x + y + 2z = 0. D. (P) : x − y + 2z = 0.
Câu 12. Tìm tất cả các giá trị của tham số m sao cho đồ thị của hai hàm số y = x3 +x2 và y = x2 +3x+mcắt
nhau tại nhiều điểm nhất.
A. 0 < m < 2.
B. −2 < m < 2.
C. m = 2.
D. −2 ≤ m ≤ 2.
Câu 13. Cho x, y, z là ba số thực khác 0 thỏa mãn 2 x = 5y = 10−z . Giá trị của biểu thức A = xy + yz +
zxbằng?
A. 3.
B. 0.
C. 2.
D. 1.
Trang 1/6 Mã đề 001
Câu 14. Cho hình trụ có hai đáy là hai đường trịn (O; r) và (O′ ; r). Một hình nón có đỉnh O và có đáy là
hình trịn (O′ ; r). Mặt xung quanh của hình nón chia khối trụ thành hai phần. Gọi V1 là thể tích của khối
V1
nón, V2 là thể tích của phần cịn lại. Tính tỉ số .
V2
V1 1
V1 1
V1 1
V1
A.
= .
B.
= .
C.
= .
D.
= 1.
V2 6
V2 2
V2 3
V2
Câu 15. Tìm tất cả các giá trị của tham số m để hàm số y = mx − sin xđồng biến trên R.
A. m ≥ −1.
B. m > 1.
C. m ≥ 1.
D. m ≥ 0.
√
Câu 16. Tìm tất cả các khoảng đồng biến của hàm số y = x − 2 x + 2017.
1
1
A. (1; +∞) .
B. (0; 1).
C. ( ; +∞).
D. (0; ).
4
4
Câu 17. Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + 5 = 0. Tọa độ của một
véc tơ pháp tuyến của (P) là
A. (2; −1; 2).
B. (−2; −1; 2).
C. (−2; 1; 2).
D. (2; −1; −2).
3
Câu 18. Trong các hình nón (ℵ) nội tiếp mặt cầu (S ) bán kính R = , ((ℵ) có đỉnh thuộc (S ) và đáy
2
là đường trịn nằm hồn tồn trên (S )), hãy tìm diện tích xung quanh của (ℵ) khi thể tích của (ℵ)lớn
nhất.
√
√
√
2π
4 3π
B. 2 3π.
C. √ .
D.
.
A. 4 3π.
3
3
p
Câu 19. Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3 + 4x = (3 − y) 1 − y. Kết luận
nào sau đây là sai?
A. Nếu 0 < x < π thì y > 1 − 4π2 .
B. Nếu 0 < x < 1 thì y < −3.
C. Nếux = 1 thì y = −3.
D. Nếux > 2 thìy < −15.
Câu 20. Đồ thị hàm số nào sau đây có vơ số đường tiệm cận đứng?
A. y = tan x.
B. y = sin x .
3x + 1
.
C. y = x3 − 2x2 + 3x + 2.
D. y =
x−1
Câu 21. Trong không gian với hệ tọa độ Oxyz cho M(2; −3; −1), N(2; −1; 1). Tìm tọa độ điểm E thuộc
trục tung sao cho tam giác MNEcân tại E.
A. (0; −2; 0).
B. (0; 6; 0).
C. (−2; 0; 0).
D. (0; 2; 0).
Câu 22. Cho hình chóp đều S .ABCcó cạnh đáy bằng a và cạnh bên bằng b. Thể tích của khối chóp
là:
√
√ 2
3ab
a2 3b2 − a2
A. VS .ABC =
.
B. VS .ABC =
.
12
q 12 √
√ 2
a2 b2 − 3a2
3a b
C. VS .ABC =
.
D. VS .ABC =
.
12
12
Câu 23. Tìm tất cả các giá trị của tham số m để giá trị lớn nhất của hàm số y = −x2 + 2mx − 1 − 2m trên
đoạn [−1; 2] nhỏ hơn 2.
7
A. −1 < m < .
B. m ∈ (−1; 2).
C. m ≥ 0.
D. m ∈ (0; 2).
2
Câu 24.√Hình nón có bán kính đáy R, đường sinh l thì diện
√ tích xung quanh của nó bằng
2
2
A. 2π l − R .
B. πRl.
C. π l2 − R2 .
D. 2πRl.
Câu 25. Tìm tất cả các giá trị của tham số m để hàm số y = (1 − m)x4 + 3x2 chỉ có cực tiểu mà khơng có
cực đại
A. m ≤ 1.
B. m < 1.
C. m > 1.
D. m ≥ 1.
Câu 26. Đồ thị hàm số nào sau đây có 3 điểm cực trị:
A. y = x4 − 2x2 − 1.
B. y = x4 + 2x2 − 1.
C. y = 2x4 + 4x2 + 1.
D. y = −x4 − 2x2 − 1.
Trang 2/6 Mã đề 001
Câu 27. Một vật chuyển động với gia tốc a(t) = −20(1 + 2t)−2 . Khi t = 0 thì vận tốc của vật là 30 (m/s).
Quãng đường vật đó đi được sau 2 giây gần với giá trị nào nhất sau đây?
A. 48m.
B. 49m.
C. 47m.
D. 50m.
Câu 28. Trong không gian với hệ tọa độ Oxyz, cho A(2; −1; 6), B(−3; −1; −4), C(5; −1; 0) Bán kính
đường√trịn nội tiếp tam giác ABC
√ bằng
√
√
B. 4 2.
C. 2 5.
D. 5.
A. 3.
y−6
z−1
x−3
=
=
và
Câu 29. Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1 :
−2
2
1
d2 : x = ty = −tz = 2 (t ∈ R). Đường thẳng đi qua điểm A(0; 1; 1), vng góc với d1 và cắt d2 có phương
trình là:
x−1
y
z−1
x
y−1 z−1
A.
=
=
.
B.
=
=
.
−1
−3
4
−1
3
4
x y−1 z−1
x
y−1 z−1
C. =
=
.
D.
=
=
.
1
−3
4
−1
−3
4
1 3 2
x −2x +3x+1
Câu 30. Cho hàm số f (x) = e 3
. Mệnh đề nào dưới đây đúng?
A. Hàm số đồng biến trên khoảng(−∞; 1) và nghịch biến trên khoảng(3; +∞).
B. Hàm số nghịch biến trên khoảng (−∞; 1) và (3; +∞).
C. Hàm số nghịch biến trên khoảng(−∞; 1) và đồng biến trên khoảng(3; +∞).
D. Hàm số đồng biến trên khoảng (−∞; 1) và (3; +∞).
Câu 31. Cho log2 b = 3, log2 c = −4. Hãy tính log2 (b2 c)
A. 4.
B. 2.
C. 6.
4
4
R
R
R1
Câu 32. Cho f (x)dx = 10 và f (x)dx = 8. Tính f (x)dx
−1
A. 18.
1
B. 2.
D. 8.
−1
C. −2.
D. 0.
Câu 33. Cho a > 1, a , 0 Tìm mệnh đề đúng trong các mệnh đề sau:
A. loga 1 = a và loga a = 0.
B. loga (xy) = loga x.loga y.
C. loga x có nghĩa với ∀x ∈ R.
D. loga xn = log 1 x , (x > 0, n , 0).
an
Câu 34. Cho hàm số y = x2 − x + m có đồ thị là (C). Tìm tất cả các giá trị của tham số m để tiếp tuyến
của đồ thị (C) tại giao điểm của (C) với trục Oy đi qua điểm B(1; 2).
A. m = 3.
B. m = 1.
C. m = 4.
D. m = 2.
Câu 35. Trong không gian với hệ trục tọa độ Oxyz, cho A(1; 3; 5), B(2; 4; 6). Gọi M là điểm nằm trên
đoạn AB sao cho MA = 2MB. Tìm tọa độ điểm M
7 10 31
2 7 21
5 11 17
4 10 16
B. M( ; ; ).
C. M( ; ; ).
D. M( ; ; ).
A. M( ; ; ).
3 3 3
3 3 6
3 3 3
3 3 3
a b c
Câu 36. Cho P = 2 4 8 , chọn mệnh đề đúng trong các mệnh đề sau.
A. P = 26abc .
B. P = 2abc .
C. P = 2a+b+c .
D. P = 2a+2b+3c .
−u = (2; 1; 3),→
−v = (−1; 4; 3). Tìm tọa độ của véc
Câu 37. Trong khơng gian với hệ trục tọa độ Oxyz cho →
−u + 3→
−v .
tơ 2→
→
−
−v = (1; 13; 16).
−u + 3→
−v = (3; 14; 16).
A. 2 u + 3→
B. 2→
−u + 3→
−v = (2; 14; 14).
−u + 3→
−v = (1; 14; 15).
C. 2→
D. 2→
Câu 38. Cho hình lăng trụ đứng ABC.A′ B′C ′ có đáy ABC là tam giác tù, AB = AC. Góc tạo bởi hai
đường thẳng AA′ và BC ′ bằng 300 ; khoảng cách giữa AA′ và BC ′ bằng a; góc giữa hai mặt phẳng
(ABB′ A′ √
) và (ACC ′ A′ ) bằng 600 . Tính
thể tích khối lăng trụ√ABC.A′ B′C ′ .
√
√
A. 6a3 3.
B. 9a3 3.
C. 4a3 3.
D. 3a3 3.
Câu 39. Gọi giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x4 − 4x trên đoạn [−1; 2] lần lượt là M, m.
Tính M + m.
A. 6.
B. 5.
C. 3.
D. 4.
Trang 3/6 Mã đề 001
x2
Câu 40. Tính tích tất cả các nghiệm của phương trình (log2 (4x)) + log2 ( ) = 8
8
1
1
1
1
A. .
B.
.
C. .
D.
.
32
64
6
128
2
Câu 41. Cho tứ diện DABC, tam giác ABC vuông tại B, DA vng góc với mặt phẳng (ABC). Biết
AB = 3a, BC = 4a, DA = 5a. Bán kính mặt cầu ngoại tiếp hình chóp DABC có bán kính bằng
√
√
√
√
5a 2
5a 3
5a 2
5a 3
A.
.
B.
.
C.
.
D.
.
2
2
3
3
Câu 42. Cho mặt cầu (S ) có bán kính bằng R = 5, một hình trụ (T )có hai đường trịn đáy nằm trên mặt
cầu (S ). Thể tích của khối trụ (T ) lớn nhất bằng bao nhiêu.
√
√
√
√
400π 3
125π 3
500π 3
250π 3
.
B.
.
C.
.
D.
.
A.
9
9
3
9
√
Câu 43. Cho bất phương trình 3 2(x−1)+1 − 3 x ≤ x2 − 4x + 3. Tìm mệnh đề đúng.
A. Bất phương trình đúng với mọi x ∈ (4; +∞).
B. Bất phương trình vơ nghiệm.
C. Bất phương trình có nghiệm thuộc khoảng (−∞; 1).
D. Bất phương trình đúng với mọi x ∈ [ 1; 3].
Câu 44. Trong không gian với hệ trục tọa độ Oxyz, cho A(1; 3; 5), B(2; 4; 6). Gọi M là điểm nằm trên
đoạn AB sao cho MA = 2MB. Tìm tọa độ điểm M
5 11 17
2 7 21
7 10 31
4 10 16
B. M( ; ; ).
C. M( ; ; ).
D. M( ; ; ).
A. M( ; ; ).
3 3 3
3 3 3
3 3 3
3 3 6
Câu 45. Trong không gian với hệ trục tọa độ Oxyz cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) và mặt
phẳng (P) : x+2y+z−4 = 0. Giả sử M(a; b; c) là một điểm trên mặt phẳng (P) sao cho MA2 +MB2 +2MC 2
nhỏ nhất. Tính tổng a + b + c.
A. 3.
B. 1.
C. 2.
D. 4.
Câu 46. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a; cạnh S A vng góc với mặt phẳng
(ABC), S A = 2a. Gọi α là số đo góc giữa đường thẳng S B và mp(S AC). Tính giá trị sin α.
√
√
√
15
15
1
5
A.
.
B.
.
C. .
D.
.
10
5
2
3
Câu 47. Bác An đem gửi tổng số tiền 320 triệu đồng ở một ngân hàng A theo hình thức lãi kép, ở hai
loại kỳ hạn khác nhau. Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, 1
A. 36080251 đồng.
B. 36080255 đồng.
C. 36080253 đồng.
D. 36080254 đồng.
Câu 48. Gọi giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x4 − 4x trên đoạn [−1; 2] lần lượt là M, m.
Tính tổng M + m.
A. 6.
B. 5.
C. 4.
D. 3.
Câu 49. Hàm số nào trong các hàm số sau đồng biến trên R.
A. y = x3 + 3x2 + 6x − 1.
B. y = −x3 − x2 − 5x.
4x + 1
C. y = x4 + 3x2 .
D. y =
.
x+2
Câu 50. Trong không gian với hệ trục tọa độ Oxyz, gọi (P)
√ là mặt phẳng đi qua hai điểm A(1; 1; 1), B(0; 1; 2)
3 2
và khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) bằng
. Giả sử phương trình mặt phẳng (P) có dạng
2
ax + by + cz + 2 = 0. Tính giá trị abc.
A. 2.
B. −4.
C. 4.
D. −2.
Trang 4/6 Mã đề 001
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 5/6 Mã đề 001