Free LATEX
ĐỀ LUYỆN THI THPT QG MƠN TỐN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001
Câu 1. Trong không gian với hệ tọa độ Oxyz, cho điểm A(5; 5; 2),mặt phẳng (P):z − 2 = 0, mặt cầu (S )có
tâm I(3; 4; 6) và bán kính R = 5.Viết phương trình đường thẳng đi qua A, nằm trong (P) và cắt (S) theo
dây cung dài nhất?
A. x = 5 + 2ty = 5 + tz = 2 − 4t.
B. x = 3 + 2ty = 4 + tz = 6.
C. x = 5 + 2ty = 5 + tz = 2.
D. x = 5 + ty = 5 + 2tz = 2.
Câu 2. Tìm tất cả các giá trị của tham số m để hàm số y = (1 − m)x4 + 3x2 chỉ có cực tiểu mà khơng có
cực đại
A. m ≥ 1.
B. m < 1.
C. m ≤ 1.
D. m > 1.
Câu 3. Hàm số nào sau đây khơng có cực trị?
A. y = x2 .
C. y = x3 − 6x2 + 12x − 7.
B. y = cos x.
D. y = x4 + 3x2 + 2 .
Câu 4. Cắt mặt trụ bởi một mặt phẳng tạo với trục của nó một góc nhọn ta được
A. Đường hypebol.
B. Đường trịn.
C. Đường elip.
D. Đường parabol.
3 + 2x
tại
Câu 5. Tìm tất cả các giá trị của tham số m để đường thẳng y = x + m cắt đồ thị hàm số y =
x+1
hai điểm phân biệt thuộc hai nửa mặt phẳng khác nhau bờ là trục hoành?
3
B. 1 < m , 4.
C. −4 < m < 1.
D. ∀m ∈ R .
A. m < .
2
Câu 6. Đồ thị hàm số nào sau đây nhận trục tung là trục đối xứng?
A. y = −x4 + 3x2 − 2.
B. y = x3 − 2x2 + 3x + 2.
C. y = x3 .
D. y = x2 − 2x + 2.
Câu 7. Cho hình lập phương ABCD.A′ B′C ′ D′ . Tính góc giữa hai đường thẳng AC và BC ′ .
A. 300 .
B. 450 .
C. 600 .
D. 360 .
x
Câu 8. Giá trị nhỏ nhất của hàm số y = 2
trên tập xác định của nó là
x +1
1
1
A. min y = − .
B. min y = −1.
C. min y = 0.
D. min y = .
R
R
R
R
2
2
R
Câu 9. Tính nguyên hàm cos 3xdx.
1
1
A. 3 sin 3x + C.
B. −3 sin 3x + C.
C. sin 3x + C.
D. − sin 3x + C.
3
3
Câu 10. Cắt một hình nón bởi một mặt phẳng đi qua trục của nó, ta được thiết diện là tam giác vng
với cạnh
bằng 2a. Tính thể tích của khối nón.
√ huyền
√
3
π 2.a
π.a3
4π 2.a3
2π.a3
A.
.
B.
.
C.
.
D.
.
3
3
3
3
Câu 11. Giá trị nhỏ nhất của hàm số y = 2x + cos xtrên đoạn [0; 1] bằng?
A. −1.
B. π.
C. 1.
D. 0.
Câu 12. Cho a > 0 và a , 1. Giá trị của alog
A. 3.
B. 6.
√ 3
a
bằng? √
C. 3.
D. 9.
Câu 13. Cho a, b là hai số thực dương bất kì. Mệnh đề nào dưới đây đúng?
a
ln a
A. ln(ab) = ln a. ln b .
B. ln( ) =
.
b
ln b
C. ln(ab2 ) = ln a + 2 ln b.
D. ln(ab2 ) = ln a + (ln b)2 .
Trang 1/5 Mã đề 001
3
Câu 14. Cho hàm số y =
x
− mx + 5. Hỏi hàm số đã cho có thể có nhiều nhất bao nhiêu điểm cực
trị.
A. 3.
B. 1.
C. 4.
D. 2.
Câu 15. Cho a, b là hai số thực dương, khác 1. Đặt loga b = m, tính theo m giá trị của P = loga2 b −
log √b a3 .
m2 − 12
4m2 − 3
m2 − 12
m2 − 3
A.
.
B.
.
C.
.
D.
.
m
2m
2m
2m
Câu 16. Cho hàm số y = x3 + 3x2 − 9x − 2017. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (1; +∞).
B. Hàm số nghịch biến trên khoảng (−3; 1).
C. Hàm số nghịch biến trên khoảng (−∞; −3).
D. Hàm số đồng biến trên khoảng (−3; 1).
z2
Câu 17. Cho số phức z1 = 2 + 3i, z2 = 5 − i. Giá trị của biểu thức
z1 +
là
z1
√
√
C. 5.
D. 11.
A. 13.
B. 5.
Câu 18. Phần thực của số phức z = 1 + (1 + i) + (1 + i)2 + · · · + (1 + i)2016 là
A. 21008 .
B. −22016 .
C. −21008 + 1.
D. −21008 .
Câu 19. Cho số phức z = 2 + 5i. Tìm số phức w = iz + z.
A. w = −7 − 7i.
B. w = −3 − 3i.
C. w = 7 − 3i.
D. w = 3 + 7i.
Câu 20. Cho số phức z1 = 3 − 2i. Khi đó số phức w = 2z − 3z là
A. −3 + 2i.
B. −3 − 10i.
C. 11 + 2i.
D. −3 − 2i.
2017
(1 + i)
Câu 21. Số phức z =
có phần thực hơn phần ảo bao nhiêu đơn vị?
21008 i
A. 2.
B. 0.
C. 21008 .
D. 1.
25
1
1
Câu 22. Cho số phức z thỏa
=
+
. Khi đó phần ảo của z bằng bao nhiêu?
z
1 + i (2 − i)2
A. 31.
B. −17.
C. −31.
D. 17.
Câu 23. Số phức z thỏa mãn điều kiện (3 + i)z + (1 − 2i)2 = 8 − 17i. Khi đó hiệu phần thực và phần ảo
của z là
A. −7.
B. −3.
C. 7.
D. 3.
√
Câu 24. Cho số phức z = (m − 1) + (m + 2)i với m ∈ R. Tập hợp tất các giá trị của m để |z| ≤ 5 là
A. m ≥ 0 hoặc m ≤ −1. B. −1 ≤ m ≤ 0.
C. m ≥ 1 hoặc m ≤ 0. D. 0 ≤ m ≤ 1.
Câu 25. Đẳng thức nào đúng trong các đẳng thức sau?
A. (1 + i)2018 = −21009 i. B. (1 + i)2018 = −21009 . C. (1 + i)2018 = 21009 .
D. (1 + i)2018 = 21009 i.
Câu 26. Đồ thị như hình bên là đồ thị của hàm số nào?
2x − 1
−2x + 3
2x + 1
2x + 2
A. y =
.
B. y =
.
C. y =
.
D. y =
.
x−1
1−x
x+1
x+1
2x − 3
Câu 27. Với giá trị nào của tham số m thì hàm số y =
đạt giá trị lớn nhất trên đoạn [1; 3] bằng
x + m2
1
:
4
√
A. m = ±1.
B. m = ±3.
C. m = ±2.
D. m = ± 3.
√
Câu 28. Cho hình chóp S .ABC có S A⊥(ABC), S A = a 3. Tam giác ABC vuông cân tại B, AC = 2a.
Thể tích khối chóp S .ABC là √
√
√
3
3
3
√
a
3
a
3
2a
3
A. a3 3 .
B.
.
C.
.
D.
.
3
6
3
Câu 29. Một vật chuyển động với gia tốc a(t) = −20(1 + 2t)−2 . Khi t = 0 thì vận tốc của vật là 30 (m/s).
Quãng đường vật đó đi được sau 2 giây gần với giá trị nào nhất sau đây?
A. 48m.
B. 47m.
C. 49m.
D. 50m.
Trang 2/5 Mã đề 001
Câu 30. Tính tổng tất cả các nghiệm của phương trình 6.22x − 13.6 x + 6.32x = 0
13
A. 1.
B. −6.
C. 0.
D. .
6
n
e
R ln x
Câu 31. Tính tích phân I =
dx, (n > 1).
x
1
1
1
1
A. I = n + 1.
B. I = .
C. I =
.
D. I =
.
n
n+1
n−1
Câu 32. Người ta cần cắt một tấm tơn có hình dạng là một elíp với độ dài trục lớn bằng 2a, độ dài trục
bé bằng 2b (a > b > 0) để được một tấm tơn có dạng hình chữ nhật nội tiếp elíp. Người ta gị tấm tơn
hình chữ nhật thu được thành một hình trụ khơng có đáy như hình bên. Tính thể tích lớn nhất có thể được
của khối trụ thu được.
4a2 b
4a2 b
2a2 b
2a2 b
D. √ .
B. √ .
C. √ .
A. √ .
3 3π
3 3π
3 2π
3 2π
x−3
y−6
z−1
Câu 33. Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1 :
=
=
và
−2
2
1
d2 : x = ty = −tz = 2 (t ∈ R). Đường thẳng đi qua điểm A(0; 1; 1), vng góc với d1 và cắt d2 có phương
trình là:
x−1
y
z−1
x y−1 z−1
A.
=
=
.
B. =
=
.
−1
−3
4
1
−3
4
y−1 z−1
x
y−1 z−1
x
=
=
.
D.
=
=
.
C.
−1
−3
4
−1
3
4
Câu 34. (Sở Nam Định) Tìm mơ-đun của số phức z biết z − 4 = (1 + i)|z| − (4 + 3z)i.
1
A. |z| = 1.
B. |z| = 2.
C. |z| = .
D. |z| = 4.
2
Câu 35. (Chuyên KHTH-Lần 4) Với hai số phức z1 , z2 thỏa mãn z1 + z2 = 8 + 6i và |z1 − z2 | = 2. Tìm giá
trị lớn nhất của biểu
√2 |.
√
√
√ thức P = |z1 | + |z
B. P = 2 26.
C. P = 5 + 3 5.
D. P = 4 6.
A. P = 34 + 3 2.
√
2 2
. Mệnh đề nào dưới đây
Câu 36. Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = 0 và |z1 | = |z2 | = |z3 | =
3
đúng?
√
√
2 2
2
2
2
A. |z1 + z2 | + |z2 + z3 | + |z3 + z1 | =
.
B. |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 2 2.
3
8
2
2
2
C. |z1 + z2 | + |z2 + z3 | + |z3 + z1 | = .
D. |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 1.
3
Câu 37. Cho z1 , z2 , z3 là các số phức thỏa mãn |z1 | = |z2 | = |z3 | = 1. Khẳng định nào sau đây đúng?
A. |z1 + z2 + z3 | > |z1 z2 + z2 z3 + z3 z1 |.
B. |z1 + z2 + z3 | = |z1 z2 + z2 z3 + z3 z1 |.
C. |z1 + z2 + z3 | , |z1 z2 + z2 z3 + z3 z1 |.
D. |z1 + z2 + z3 | < |z1 z2 + z2 z3 + z3 z1 |.
Câu 38. Cho số phức z thỏa mãn |z| = 1.√Tìm giá trị nhỏ nhất của biểu thức T = |z + 1| + 2|z − 1|
A. P = −2016.
B. max T = 2 5.
C. P = 1.
D. P = 2016.
z
Câu 39. Cho số phức z thỏa mãn z không phải là số thực và ω =
là số thực. Giá trị lớn nhất của
2 + z2
biểu thức
√ M = |z + 1 − i| là
√
A. 2.
B. 2 2.
C. 2.
D. 8.
Câu 40. Cho ba số phức z1 , z2 , z3 thỏa mãn |z1 | = |z2 | = |z3 | = 1 và z1 +z2 +z3 = 0. Tính A = z21 +z22 +z23 .
A. A = 1 + i.
B. A = −1.
C. A = 0.
D. A = 1.
2
1
Câu 41. (Đặng Thức Hứa – Nghệ An) Cho các số phức z1 , 0, z2 , 0 thỏa mãn điều kiện +
=
z1 z2