Tải bản đầy đủ (.pdf) (5 trang)

Đề luyện thi thpt môn toán (589)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (126.25 KB, 5 trang )

Free LATEX

ĐỀ LUYỆN THI THPT QG MƠN TỐN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001

Câu 1. Tìm tất cả các giá trị của tham số m để giá trị lớn nhất của hàm số y = −x2 + 2mx − 1 − 2m trên
đoạn [−1; 2] nhỏ hơn 2.
7
C. m ≥ 0.
D. m ∈ (−1; 2).
A. m ∈ (0; 2).
B. −1 < m < .
2
Câu 2. Cho a > 1; 0 < x < y. Bất đẳng thức nào sau đây là đúng?
B. ln x > ln y.
C. log x > log y.
A. log 1 x > log 1 y.
a

D. loga x > loga y.

a

x
Câu 3. Giá trị nhỏ nhất của hàm số y = 2
trên tập xác định của nó là
x +1
1


1
B. min y = .
C. min y = 0.
D. min y = −1.
A. min y = − .
R
R
R
R
2
2
Câu 4. Cho hình
đều S .ABCcó cạnh đáy bằng a và cạnh bên√bằng b. Thể tích của khối chóp là:
√ chóp
2
3ab
3a2 b
A. VS .ABC =
.
B. VS .ABC =
.
12
12
q


a2 b2 − 3a2
a2 3b2 − a2
C. VS .ABC =
.

D. VS .ABC =
.
12
12
ax + b
có đồ thị như hình vẽ bên. Kết luận nào sau đây là sai?
Câu 5. Cho hàm số y =
cx + d
A. ad > 0 .
B. ac < 0.
C. bc > 0 .
D. ab < 0 .
Câu 6. Tính tổng tất cả các nghiệm của phương trình 6.22x − 13.6 x + 6.32x = 0
A. −6.

B. 1.

C. 0.

Câu R7. Công thức nào sai?
A. cos x = sin x + C.
R
C. sin x = − cos x + C.

D.

13
.
6


R
B. a x = a x . ln a + C.
R
D. e x = e x + C.

Câu 8. Trong không gian với hệ tọa độ Oxyz, cho điểm A(5; 5; 2),mặt phẳng (P):z − 2 = 0, mặt cầu (S )có
tâm I(3; 4; 6) và bán kính R = 5.Viết phương trình đường thẳng đi qua A, nằm trong (P) và cắt (S) theo
dây cung dài nhất?
A. x = 5 + 2ty = 5 + tz = 2 − 4t.
B. x = 3 + 2ty = 4 + tz = 6.
C. x = 5 + 2ty = 5 + tz = 2.
D. x = 5 + ty = 5 + 2tz = 2.
Câu 9. Tìm giá trị cực đại yCD của hàm số y = x3 − 12x + 20.
A. yCD = −2.
B. yCD = 4.
C. yCD = 52.

D. yCD = 36.

d = 1200 . Gọi
Câu 10. Cho hình lăng trụ đứng ABC.A1 B1C1 có AB = a, AC = 2a, AA1 = 2a 5 và BAC
K, I lần√lượt là trung điểm của cạnh
√ CC1 , BB1 . Tính khoảng cách từ điểm I đến mặt
√ phẳng (A1 BK).

a 5
a 15
a 5
A.
.

B.
.
C. a 15.
D.
.
3
3
6
Câu 11. Giá trị nhỏ nhất của hàm số y = 2x + cos xtrên đoạn [0; 1] bằng?
A. 1.
B. −1.
C. π.

D. 0.

Câu 12. Cho a > 0 và a , 1. Giá trị của alog
A. 6.
B. 3.

D.

√ 3
a

bằng?
C. 9.


3.
Trang 1/5 Mã đề 001



Câu 13. Trong không gian Oxyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 2y + 4z − 1 = 0 và mặt phẳng
(P) : x + y − 3z + m − 1 = 0. Tìm tất cả m để (P)cắt (S ) theo giao tuyến là một đường trịn có bán kính
lớn nhất.
A. m = 7.
B. m = −7.
C. m = 5.
D. m = 9.
Câu 14. Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) : x + y − z − 1 = 0. Viết phương trình
mặt cầu (S ) có tâm I(2; 1; −1) và tiếp xúc với (P).
1
1
B. (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = .
A. (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = .
3
3
C. (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = 3.
D. (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = 3.
Câu 15. Cho hình thang cân có độ dài đáy nhỏ và hai cạnh bên đều bằng 1 mét. Khi đó hình thang đã
cho có√diện tích lớn nhất bằng?


3 3 2
3
3 2
A.
(m ).
B. 3 3(m2 ).
C. 1 (m2 ).

D.
(m ).
4
2
Câu 16. Cho hình lập phương ABCD.A′ B′C ′ D′ có cạnh bằng a. Tính thể tích khối chóp D.ABC ′ D′ .
a3
a3
a3
a3
B. .
C. .
D. .
A. .
9
4
3
6
Câu 17.
2i, z2 = 2 − i. Giá trị của biểu
√ Cho số phức z1 = 3 + √
√ thức |z1 + z1 z2 | là √
A. 130.
B. 3 10.
C. 10 3.
D. 2 30.
Câu 18. Số phức z thỏa mãn điều kiện (3 + i)z + (1 − 2i)2 = 8 − 17i. Khi đó hiệu phần thực và phần ảo
của z là
A. −7.
B. 3.
C. 7.

D. −3.

Câu 19. Cho số phức z = (m − 1) + (m + 2)i với m ∈ R. Tập hợp tất các giá trị của m để |z| ≤ 5 là
A. −1 ≤ m ≤ 0.
B. m ≥ 1 hoặc m ≤ 0. C. m ≥ 0 hoặc m ≤ −1. D. 0 ≤ m ≤ 1.
(1 + i)(2 − i)

1 + 3i

B. |z| = 1.
C. |z| = 2.

Câu 20. Mô-đun của số phức z =
A. |z| = 5.

Câu 21. Cho số phức z = 2 + 5i. Tìm số phức w = iz + z.
A. w = −3 − 3i.
B. w = −7 − 7i.
C. w = 7 − 3i.

D. |z| =


5.

D. w = 3 + 7i.

Câu 22. Cho số phức z thỏa (1 − 2i)z + (1 + 3i)2 = 5i. Khi đó điểm nào sau đây biểu diễn số phức z ?
A. N(2; 3).
B. Q(−2; −3).

C. M(2; −3).
D. P(−2; 3).
Câu 23. Cho số phức z = 3 − 2i.Tìm phần thực và phần ảo của số phức z.
A. Phần thực là3 và phần ảo là 2.
B. Phần thực là −3 và phần ảo là−2.
C. Phần thực là 3 và phần ảo là 2i.
D. Phần thực là−3 và phần ảo là −2i.
25
1
1
=
+
. Khi đó phần ảo của z bằng bao nhiêu?
z
1 + i (2 − i)2
A. 17.
B. 31.
C. −31.
D. −17.
2017
(1 + i)
Câu 25. Số phức z =
có phần thực hơn phần ảo bao nhiêu đơn vị?
21008 i
A. 0.
B. 1.
C. 21008 .
D. 2.
Câu 24. Cho số phức z thỏa


Câu 26. Trong không gian với hệ tọa độ Oxyz, cho mặt cầu(S): x2 + y2 + z2 − 4x − 2y + 10z + 14 = 0 và
mặt phẳng (P) có phương trình x + y + z − 4 = 0. Mặt phẳng (P) cắt mặt cầu (S) theo một đường trịn có
chu vi là:

A. 4π.
B. 2π.
C. 4 3π.
D. 8π.
Câu 27. Tìm tập hợp tất cả các giá trị của tham số m để hàm số y = x3 + (m − 2)x2 − 3mx + m có điểm
cực đại có hồnh độ nhỏ hơn 1.
A. S = (−1; +∞) .
B. S = (−4; −1).
C. S = [−1; +∞) .
D. S = (−∞; −4) ∪ (−1; +∞) .
Trang 2/5 Mã đề 001



Câu 28. Cho hình chóp tứ giác S .ABCD có đáy là hình vng cạnh bằng a 2, tam giác S AB vuông cân
tại S và√mặt phẳng (S AB) vuông góc với mặt phẳng đáy. √
Khoảng cách từ A đến mặt
√ phẳng (S CD) là

a 2
a 6
a 10
.
B. a 2.
.
D.

.
A.
C.
3
5
2
Câu 29. Cho tam giác ABC vuông tại A, AB = a, BC = 2a. Tính thể tích khối nón nhận được khi quay
tam giác ABC quanh trục AB.


πa3 3
3
3
.
D. πa3 3.
A. πa .
B. 3πa .
C.
3

x− x+2
Câu 30. Đồ thị của hàm số y =
có tất cả bao nhiêu tiệm cận?
x2 − 4
A. 2.
B. 1.
C. 0.
D. 3.
Câu 31. Trong hệ tọa độ Oxyz, cho A(1; 2; 1), B(1; 1; 0), C(1; 0; 2). Tìm tọa độ D để ABCD là hình bình
hành.

A. (1; −2; −3).
B. (1; −1; 1).
C. (−1; 1; 1).
D. (1; 1; 3).
Câu 32. Cường độ một trận động đất M (richter) được cho bởi công thức M = log A − log A0 , với A là
biên độ rung chấn tối đa và A0 là một biên độ chuẩn (hằng số). Đầu thế kỷ 20, một trận động đất ở San
Francisco có cường độ 8,3 độ Richter. Trong cùng năm đó, trận động đất khác Nam Mỹ có biên độ mạnh
hơn gấp 4 lần. Cường độ của trận động đất ở Nam Mỹ có kết quả gần đúng bằng:
A. 33,2.
B. 8,9.
C. 2,075.
D. 11.
Câu 33. Tính diện tích hình phẳng giới hạn bởi đồ thị (C) của hàm số y = x2 − 4x + 5, tiếp tuyến tại
A(1; 2) và tiếp tuyến tại B(4; 5) của đồ thị (C).
7
3
9
5
B. .
C. .
D. .
A. .
4
4
4
4
Câu 34. Cho số phứcz = a − 2 + (b + 1)i với a, b ∈ Z và|z| = 2. Tìm giá trị lớn nhất của biểu thức
S = a√+ 2b.




B. 10.
C. 2 5.
D. 15.
A. 5.
1 + z + z2
Câu 35. Cho số phức z (không phải là số thực, không phải là số ảo) và thỏa mãn
là số thực.
1 − z + z2
Khi đó mệnh đề nào sau đây đúng?
5
1
3
5
7
3
B. 2 < |z| < .
C. < |z| < .
D. < |z| < .
A. < |z| < 2.
2
2
2
2
2
2
2
Câu 36. Cho biết |z1 | + |z2 | = 3.Tìm giá trị nhỏ nhất của biểu thức.P = |z1 + z2 | + |z1 − z2 |2
A. 8.
B. 4.

C. 9.
D. 18.

2 2
Câu 37. Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = 0 và |z1 | = |z2 | = |z3 | =
. Mệnh đề nào dưới đây
3
đúng?

8
2 2
2
2
2
A. |z1 + z2 | + |z2 + z3 | + |z3 + z1 | =
.
B. |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = .
3
3√
2
2
2
2
2
2
C. |z1 + z2 | + |z2 + z3 | + |z3 + z1 | = 1.
D. |z1 + z2 | + |z2 + z3 | + |z3 + z1 | = 2 2.
Câu 38. (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω và hai số thực a, b. Biết z1 = ω + 2i và
z2 = 2ω − 3 là hai nghiệm phức của √
phương trình z2 + az + b √

= 0. Tính T = |z1 | + |z2 |.


2 85
2 97
A. T = 2 13.
B. T =
.
C. T =
.
D. T = 4 13.
3
3
z
Câu 39. Cho số phức z thỏa mãn z không phải là số thực và ω =
là số thực. Giá trị lớn nhất của
2 + z2
biểu thức
√ M = |z + 1 − i| là

A. 2 2.
B. 2.
C. 8.
D. 2.
Câu 40. Biết rằng |z1 + z2 | = 3 và |z1 | = 3.Tìm giá trị nhỏ nhất của |z2 |?
1
A. 2.
B. 1.
C. .
2


3
D. .
2
Trang 3/5 Mã đề 001


Câu 41. (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn là M như hình bên.
Biết rằng điểm biểu diễn số phức ω =
phức ω là điểm nào?
A. điểm R.

1
là một trong bốn điểm P, Q, R, S . Hỏi điểm biểu diễn số
z

B. điểm Q.

C. điểm S .

D. điểm P.

2
1
Câu 42. (Đặng Thức Hứa – Nghệ An) Cho các số phức z1 , 0, z2 , 0 thỏa mãn điều kiện +
=
z1 z2










1
z1
z2
. Tính giá trị biểu thức P =





+






z1 + z2
z2
z1


3 2
1
A.

.
B. 2.
C. 2.
D. √ .
2
2


Câu 43. Cho bất phương trình 3 2(x−1)+1 − 3 x ≤ x2 − 4x + 3. Tìm mệnh đề đúng.
A. Bất phương trình có nghiệm thuộc khoảng (−∞; 1).
B. Bất phương trình vơ nghiệm.
C. Bất phương trình đúng với mọi x ∈ [ 1; 3].
D. Bất phương trình đúng với mọi x ∈ (4; +∞).
Câu 44. Tính đạo hàm của hàm số y = 5 x+cos3x
A. y′ = (1 − 3 sin 3x)5 x+cos3x ln 5.
C. y′ = (1 − sin 3x)5 x+cos3x ln 5.

B. y′ = (1 + 3 sin 3x)5 x+cos3x ln 5.
D. y′ = 5 x+cos3x ln 5.

Câu 45. Hàm số nào trong các hàm số sau có đồ thị như hình vẽ bên.
A. y = x3 − 3x2
B. y = −x4 + 2x2 .
C. y = −x4 + 2x2 + 8.
.

D. y = −2x4 + 4x2 .

Câu 46. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 3a; cạnh S A vng góc với mặt
phẳng (ABCD), S A = 2a. Tính thể tích khối chóp S .ABCD

A. 4a3 .
B. 6a3 .
C. 12a3 .
D. 3a3 .
Câu 47. Cho m = log2 3; n = log5 2. Tính log2 2250 theo m, n.
2mn + n + 3
2mn + n + 2
A. log2 2250 =
.
B. log2 2250 =
.
n
n
3mn + n + 4
2mn + 2n + 3
.
D. log2 2250 =
.
C. log2 2250 =
m
n
0
d
Câu 48. Cho hình chóp S .ABC có đáy ABC
√ là tam giác vng tại A; BC = 2a; ABC = 60 . Gọi Mlà
trung điểm cạnh BC, S A = S C = S M = a 5. Tính khoảng cách từ S đến mặt phẳng (ABC).


A. a.
B. 2a.

C. a 3.
D. a 2.

Câu 49. Cho hình lăng trụ đứng ABCD.A′ B′C ′ D′ có đáy ABCD là hình chữ nhật,AB = a; AD = 2a;
AA′ = 2a. Gọi α là số đo góc giữa hai đường thẳng AC và DB′ . Tính giá trị cos α.



3
1
5
3
A.
.
B. .
C.
.
D.
.
2
2
5
4
Câu 50. Trong không gian với hệ trục tọa độ Oxyz cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) và mặt
phẳng (P) : x+2y+z−4 = 0. Giả sử M(a; b; c) là một điểm trên mặt phẳng (P) sao cho MA2 +MB2 +2MC 2
nhỏ nhất. Tính tổng a + b + c.
A. 3.
B. 2.
C. 1.
D. 4.

Trang 4/5 Mã đề 001


- - - - - - - - - - HẾT- - - - - - - - - -

Trang 5/5 Mã đề 001


×