TỐN PDF LATEX
TRẮC NGHIỆM ƠN THI MƠN TỐN THPT
(Đề thi có 10 trang)
Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
Câu 1. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Trục ảo.
B. Hai đường phân giác y = x và y = −x của các góc tọa độ.
C. Đường phân giác góc phần tư thứ nhất.
D. Trục thực.
Câu 2. [12214d] Với giá trị nào của m thì phương trình
A. 2 ≤ m ≤ 3.
B. 2 < m ≤ 3.
1
3|x−2|
= m − 2 có nghiệm
C. 0 < m ≤ 1.
D. 0 ≤ m ≤ 1.
Câu 3. Phát biểu nào sau đây là sai?
1
B. lim √ = 0.
n
1
D. lim k = 0 với k > 1.
n
A. lim qn = 1 với |q| > 1.
C. lim un = c (Với un = c là hằng số).
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
x
+
1
B. xy0 = ey − 1.
C. xy0 = −ey − 1.
D. xy0 = −ey + 1.
Câu 4. [3-12217d] Cho hàm số y = ln
A. xy0 = ey + 1.
Câu 5. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 10 cạnh, 6 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
Câu 6.√ Thể tích của khối lăng trụ tam giác đều có cạnh bằng
√ 1 là:
3
3
3
A.
.
B. .
C.
.
12
4
4
Câu 7. [1] Đạo hàm của làm số y = log x là
1
ln 10
1
A.
.
B. y0 =
.
C. y0 = .
10 ln x
x
x
√
3
D.
.
2
D. y0 =
1
.
x ln 10
Câu 8. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (1; +∞).
B. Hàm số nghịch biến trên khoảng (−∞; 0).
C. Hàm số đồng biến trên khoảng (1; 2).
D. Hàm số nghịch biến trên khoảng (0; 1).
3
Câu 9. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e2 .
B. e3 .
C. e5 .
D. e.
Câu 10. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 3.
B. 2.
C. 0.
D. 1.
Câu 11. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. Vô nghiệm.
B. 1.
C. 3.
D. 2.
Câu 12. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Ba cạnh.
B. Năm cạnh.
C. Bốn cạnh.
D. Hai cạnh.
Câu 13. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. 2020.
B. log2 2020.
C. log2 13.
D. 13.
Câu 14. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
B. m < .
C. m ≤ .
D. m > .
A. m ≥ .
4
4
4
4
Trang 1/10 Mã đề 1
Câu 15. [3] Biết rằng giá trị lớn nhất của hàm số y =
số tự nhiên. Tính S = m2 + 2n3
A. S = 32.
B. S = 24.
ln2 x
m
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
x
e
C. S = 135.
D. S = 22.
Câu 16. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất khơng thay đổi và người đó khơng rút tiền ra?
A. 12 năm.
B. 10 năm.
C. 14 năm.
D. 11 năm.
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 17. Cho hình chóp S .ABC có BAC
Thể tích khối chóp S .ABC là
√
√
√
√
a3 3
a3 3
a3 2
2
.
C.
.
D.
.
A. 2a 2.
B.
24
24
12
Câu 18. Cho hình chóp S .ABCD có đáy ABCD là hình vuông biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối
√
√ chóp S .ABCD là
√
3
3
a 2
a 3
a3 3
a3 6
A.
.
B.
.
C.
.
D.
.
16
48
24
48
x+1
Câu 19. Tính lim
bằng
x→+∞ 4x + 3
1
1
A. 3.
B. 1.
C. .
D. .
4
3
log 2x
Câu 20. [1229d] Đạo hàm của hàm số y =
là
x2
1
1 − 2 ln 2x
1 − 2 log 2x
1 − 4 ln 2x
A. y0 = 3
.
B. y0 = 3
.
C. y0 =
.
.
D. y0 =
3
2x ln 10
x ln 10
x
2x3 ln 10
√
Câu 21. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.
√ tích khối chóp S .ABC3 √
√
√
3
a 6
a 2
a3 6
a3 6
A.
.
B.
.
C.
.
D.
.
18
6
36
6
2
Câu 22. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 3 − log2 3.
B. 1 − log3 2.
C. 2 − log2 3.
D. 1 − log2 3.
log(mx)
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0 ∨ m = 4.
B. m ≤ 0.
C. m < 0.
D. m < 0 ∨ m > 4.
!
!
!
x
4
1
2
2016
Câu 24. [3] Cho hàm số f (x) = x
. Tính tổng T = f
+f
+ ··· + f
4 +2
2017
2017
2017
2016
.
C. T = 2017.
D. T = 2016.
A. T = 1008.
B. T =
2017
Câu 25. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
x+1 y−5
z
d:
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng
2
2
−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (2; 1; 6).
B. ~u = (3; 4; −4).
C. ~u = (1; 0; 2).
D. ~u = (2; 2; −1).
Câu 23. [1226d] Tìm tham số thực m để phương trình
Câu 26. Cho hai hàm y = f (x), y = g(x)
Z có đạo hàm
Z trên R. Phát biểu nào sau đây đúng?
A. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f 0 (x)dx =
g0 (x)dx.
Z
Z
B. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Trang 2/10 Mã đề 1
Z
C. Nếu
Z
D. Nếu
f (x)dx =
Z
f (x)dx =
Z
0
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
g(x)dx thì f (x) , g(x), ∀x ∈ R.
Câu 27. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối bát diện đều. B. Khối 12 mặt đều.
C. Khối 20 mặt đều.
D. Khối tứ diện đều.
√
Câu 28. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 62.
B. 63.
C. Vô số.
D. 64.
Câu 29. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 27.
B. 10.
C. 12.
Câu 30. [2] Tổng các nghiệm của phương trình 3
A. 6.
B. 7.
D. 3.
x2 −3x+8
= 92x−1 là
C. 8.
D. 5.
Câu 31. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 15, 36.
B. 3, 55.
C. 20.
D. 24.
Câu 32. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là −1, phần ảo là 4.
B. Phần thực là 4, phần ảo là −1.
C. Phần thực là −1, phần ảo là −4.
D. Phần thực là 4, phần ảo là 1.
Câu 33. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 216 triệu.
B. 212 triệu.
C. 220 triệu.
D. 210 triệu.
Câu 34. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
B. −e.
C. − 2 .
A. − .
e
e
D. −
1
.
2e
√
Câu 35. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của √
khối chóp S .ABCD là
√
√
a3
a3 3
a3 3
3
A.
.
B. a 3.
C.
.
D.
.
3
4
12
Câu 36. Dãy số nào sau đây có giới hạn khác 0?
n+1
1
sin n
1
A.
.
B. √ .
C.
.
D. .
n
n
n
n
Câu 37. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
3
A. a .
B.
.
C.
.
D.
.
6
12
24
Câu 38. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 5.
B. 0, 3.
C. 0, 4.
D. 0, 2.
Câu 39. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m , 0.
B. m < 0.
C. m > 0.
D. m = 0.
Trang 3/10 Mã đề 1
1 − xy
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
x + 2y
√
√
9 11 + 19
9 11 − 19
C. Pmin =
. D. Pmin =
.
9
9
Câu 40. [12210d] Xét các số thực dương x, y thỏa mãn log3
Pmin của P = x +
√ y.
√
18 11 − 29
2 11 − 3
A. Pmin =
. B. Pmin =
.
21
3
Câu 41. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 5 đỉnh, 9 cạnh, 6 mặt. B. 6 đỉnh, 9 cạnh, 5 mặt. C. 6 đỉnh, 6 cạnh, 6 mặt. D. 6 đỉnh, 9 cạnh, 6 mặt.
Câu 42. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vuông góc
với
đáy
và
S
C
=
a
3. Thể
√ tích khối chóp S .ABC
√là
√
√
3
3
3
2a 6
a 6
a3 3
a 3
.
B.
.
C.
.
D.
.
A.
4
9
12
2
Câu 43. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. m ≤ 3.
B. m ≥ 3.
C. −3 ≤ m ≤ 3.
D. −2 ≤ m ≤ 2.
2
Câu 44. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
1
2
1
A. √ .
B. 3 .
C. 3 .
e
2e
2 e
√
Câu 45. [1] Biết log6 a = 2 thì log6 a bằng
A. 108.
B. 36.
C. 4.
D.
1
.
e2
D. 6.
Câu 46. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Hai khối chóp tam giác.
B. Một khối chóp tam giác, một khối chóp ngữ giác.
C. Hai khối chóp tứ giác.
D. Một khối chóp tam giác, một khối chóp tứ giác.
Câu 47. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 50, 7 triệu đồng.
B. 70, 128 triệu đồng. C. 20, 128 triệu đồng. D. 3, 5 triệu đồng.
Câu 48. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. −2.
B. 4.
C. 2.
D. −4.
Câu 49. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
ln 2
1
.
B. .
C. 1.
D. 2.
A.
2
2
√
Câu 50. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. Vơ số.
B. 62.
C. 64.
D. 63.
Câu 51. Cho hình chóp S .ABCD có √
đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết
√ S H ⊥ (ABCD), S A =
√a 5. Thể tích khối chóp3 S .ABCD là
3
3
2a 3
2a
4a3
4a 3
A.
.
B.
.
C.
.
D.
.
3
3
3
3
x−3
Câu 52. [1] Tính lim
bằng?
x→3 x + 3
A. −∞.
B. 0.
C. +∞.
D. 1.
Câu 53. Khối đa diện đều loại {5; 3} có số cạnh
A. 8.
B. 20.
C. 12.
D. 30.
Trang 4/10 Mã đề 1
[ = 60◦ , S A ⊥ (ABCD).
Câu 54. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng√ khoảng cách từ A đến cạnh S C là a. Thể tích khối√chóp S .ABCD là
√
√
a3 2
a3 2
a3 3
3
A.
.
B. a 3.
C.
.
D.
.
12
4
6
Câu 55. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 2.
B. 3.
C. 1.
D. 4.
Câu 56. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 27 lần.
B. Tăng gấp 18 lần.
C. Tăng gấp 9 lần.
D. Tăng gấp 3 lần.
Câu 57. [4-1246d] Trong tất cả√các số phức z thỏa mãn |z√− i| = 1. Tìm giá trị lớn nhất của |z|
C. 3.
D. 1.
A. 2.
B. 5.
Câu 58. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối bát diện đều. B. Khối 12 mặt đều.
C. Khối lập phương.
Câu 59. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 3.
B. 2.
D. Khối tứ diện đều.
1
3|x−1|
= 3m − 2 có nghiệm duy
C. 4.
D. 1.
√
Câu 60. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng
√
√
√
3a
3a 58
a 38
3a 38
A.
.
B.
.
C.
.
D.
.
29
29
29
29
Câu 61. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh của khối chóp bằng 2n.
B. Số mặt của khối chóp bằng 2n+1.
C. Số đỉnh của khối chóp bằng 2n + 1.
D. Số mặt của khối chóp bằng số cạnh của khối chóp.
Câu 62. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = R.
B. D = R \ {1; 2}.
C. D = (−2; 1).
2
D. D = [2; 1].
Câu 63. Khối đa diện đều loại {5; 3} có số mặt
A. 8.
B. 30.
C. 20.
D. 12.
t
9
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
Câu 64. [4] Xét hàm số f (t) = t
9 + m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. 0.
B. 2.
C. 1.
D. Vô số.
Câu 65. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 x ) = 2 − x bằng
A. 1.
B. 2.
C. 7.
D. 3.
Trang 5/10 Mã đề 1
Câu 66. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất không thay đổi?
A. 102.424.000.
B. 102.016.000.
C. 102.016.000.
D. 102.423.000.
Câu 67.
Z Trong cácα+1khẳng định sau, khẳng định nào sai? Z
x
+ C, C là hằng số.
B.
dx = x + C, C là hằng số.
A.
xα dx =
α+1
Z
Z
1
C.
dx = ln |x| + C, C là hằng số.
D.
0dx = C, C là hằng số.
x
Câu 68. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Hai hình chóp tứ giác.
B. Một hình chóp tứ giác và một hình chóp ngũ giác.
C. Một hình chóp tam giác và một hình chóp tứ giác.
D. Hai hình chóp tam giác.
x
x+1
x−2 x−1
+
+
+
và y = |x + 1| − x − m (m là tham
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−3; +∞).
B. (−∞; −3].
C. (−∞; −3).
D. [−3; +∞).
Câu 69. [4-1212d] Cho hai hàm số y =
Câu 70. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
11
9
A. 7.
B.
.
C. .
D. 5.
2
2
Câu 71. Khối chóp ngũ giác có số cạnh là
A. 10 cạnh.
B. 12 cạnh.
C. 11 cạnh.
D. 9 cạnh.
Câu 72. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {4; 3}.
B. {3; 4}.
C. {5; 3}.
D. {3; 5}.
Câu 73. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x+1 y−4 z−4
x−2 y−3 z+4
đường thẳng d :
=
=
và d0 :
=
=
2
3
−5
3
−2
−1
x y z−1
x y−2 z−3
.
B. =
=
.
A. = =
1 1
1
2
3
−1
x−2 y+2 z−3
x−2 y−2 z−3
C.
=
=
.
D.
=
=
.
2
2
2
2
3
4
[ = 60◦ , S O
Câu 74. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a.
√ Khoảng cách từ A đến (S BC) bằng
√
√
a 57
a 57
2a 57
A.
.
B.
.
C. a 57.
D.
.
19
17
19
Câu 75. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1
A. 5.
B. 9.
C. 7.
D. 0.
Câu 76. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt√bên (S BC) và (S AD) cùng√hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD
√ là
a3 3
4a3 3
8a3 3
8a3 3
A.
.
B.
.
C.
.
D.
.
9
9
9
3
Câu 77. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (0; 2).
B. Hàm số nghịch biến trên khoảng (−∞; 2).
C. Hàm số đồng biến trên khoảng (0; 2).
D. Hàm số đồng biến trên khoảng (0; +∞).
Trang 6/10 Mã đề 1
Câu 78. [1] Giá trị của biểu thức 9log3 12 bằng
A. 4.
B. 2.
C. 24.
D. 144.
Câu 79.
đề nào sau đây
Z [1233d-2] Mệnh Z
Z sai?
[ f (x) + g(x)]dx =
A.
f (x)dx +
g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
Z
C.
[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
Z
D.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
B.
Câu 80. [3-1132d] Cho dãy số (un ) với un =
A. lim un = 1.
1
C. lim un = .
2
1 + 2 + ··· + n
. Mệnh đề nào sau đây đúng?
n2 + 1
B. lim un = 0.
D. Dãy số un khơng có giới hạn khi n → +∞.
Câu 81. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng
√
a 3
a
a
B.
.
C. .
D. a.
A. .
2
2
3
x2 − 5x + 6
Câu 82. Tính giới hạn lim
x→2
x−2
A. 0.
B. 5.
C. −1.
D. 1.
Câu 83. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. (−∞; −3].
B. [−1; 3].
C. [1; +∞).
D. [−3; 1].
Câu 84. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 6 cạnh, 4 mặt. B. 4 đỉnh, 6 cạnh, 4 mặt. C. 3 đỉnh, 3 cạnh, 3 mặt. D. 4 đỉnh, 8 cạnh, 4 mặt.
Câu 85. Hàm số nào sau đây khơng có cực trị
x−2
1
A. y = x4 − 2x + 1.
B. y =
.
C. y = x3 − 3x.
D. y = x + .
2x + 1
x
Câu 86. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của√|z + 2 + i|
√
√
√
12 17
A.
.
B. 5.
C. 34.
D. 68.
17
!2x−1
!2−x
3
3
Câu 87. Tập các số x thỏa mãn
≤
là
5
5
A. [1; +∞).
B. [3; +∞).
C. (−∞; 1].
D. (+∞; −∞).
2
Câu 88. [2]√Tìm m để giá trị nhỏ nhất của hàm số y = 2x3 + (m√
+ 1)2 x trên [0; 1] bằng 2
A. m = ± 3.
B. m = ±1.
C. m = ± 2.
D. m = ±3.
Câu 89. Khối đa diện đều loại {3; 4} có số mặt
A. 12.
B. 8.
C. 10.
D. 6.
Câu 90. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 9 mặt.
C. 3 mặt.
D. 4 mặt.
Câu 91. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = −21.
B. P = 21.
C. P = −10.
D. P = 10.
Trang 7/10 Mã đề 1
Câu 92. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Ba mặt.
B. Hai mặt.
C. Bốn mặt.
D. Một mặt.
Câu 93. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (1; −3).
B. (0; −2).
C. (2; 2).
D. (−1; −7).
Câu 94. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
2
A. 4.
B. −1.
Câu 95. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối tứ diện đều.
3
Z
6
3x + 1
1
. Tính
f (x)dx.
0
C. 2.
D. 6.
C. Khối lập phương.
D. Khối bát diện đều.
Câu 96. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 12 cạnh, 4 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
x−1
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
Câu 97. [3-1214d] Cho hàm số y =
x+2
tam giác
√ có độ dài bằng
√
√ đều ABI có hai đỉnh A, B thuộc (C), đoạn thẳng AB
A. 2 3.
B. 2.
C. 2 2.
D. 6.
Câu 98. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 72cm3 .
B. 46cm3 .
C. 27cm3 .
D. 64cm3 .
Câu 99. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có vơ số.
B. Khơng có.
C. Có một.
D. Có hai.
Câu 100.
Cho hàm số
Z
Z f (x), g(x) liên tục trên R. Trong các
Z mệnh đề sau, mệnh
Z đề nào
Z sai?
k f (x)dx = f
A.
Z
C.
f (x)dx, k ∈ R, k , 0.
Z
Z
( f (x) + g(x))dx =
f (x)dx + g(x)dx.
f (x)g(x)dx =
B.
Z
D.
f (x)dx g(x)dx.
Z
Z
( f (x) − g(x))dx =
f (x)dx − g(x)dx.
Câu 101. Trong các khẳng định sau, khẳng định nào sai?
A. Z
F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
u0 (x)
B.
dx = log |u(x)| + C.
u(x)
C. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
D. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
Câu 102. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ông ta muốn
hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ơng ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 2, 25 triệu đồng.
B. 3, 03 triệu đồng.
C. 2, 20 triệu đồng.
D. 2, 22 triệu đồng.
Câu 103. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối tứ diện đều.
Câu 104. Hàm số y =
A. x = 2.
x2 − 3x + 3
đạt cực đại tại
x−2
B. x = 1.
C. Khối lập phương.
D. Khối 12 mặt đều.
C. x = 3.
D. x = 0.
Trang 8/10 Mã đề 1
Câu 105. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (0; 2).
B. (−∞; 1).
C. R.
D. (2; +∞).
Câu 106. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 4.
B. ln 12.
C. ln 10.
D. ln 14.
q
2
Câu 107. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 =
√ i
h
0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 1].
B. m ∈ [0; 4].
C. m ∈ [0; 2].
D. m ∈ [−1; 0].
Câu 108. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n2 lần.
B. n lần.
C. n3 lần.
D. 3n3 lần.
Câu 109. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. (1; 2).
B. [1; 2].
C. [−1; 2).
D. (−∞; +∞).
Câu 110. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 2.
B. 1.
C. 6.
D. −1.
Câu 111. Trong các khẳng định sau, khẳng định nào sai?
√
A. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
B. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
C. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
D. Cả ba đáp án trên.
Câu 112. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt
√ S .ABCD là
√ phẳng vng góc với (ABCD). Thể tích khối chóp
3
√
a3 3
a
2
a3 3
.
B.
.
C. a3 3.
.
D.
A.
2
4
2
2n − 3
Câu 113. Tính lim 2
bằng
2n + 3n + 1
A. −∞.
B. 1.
C. 0.
D. +∞.
Câu 114. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {5; 2}.
B. {5}.
C. {3}.
D. {2}.
4x + 1
bằng?
Câu 115. [1] Tính lim
x→−∞ x + 1
A. −4.
B. 2.
C. 4.
D. −1.
Câu 116. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. −1 + 2 sin 2x.
B. 1 + 2 sin 2x.
C. 1 − sin 2x.
D. −1 + sin x cos x.
1 − 2n
Câu 117. [1] Tính lim
bằng?
3n + 1
2
2
1
A. .
B. − .
C. .
D. 1.
3
3
3
Câu 118. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. −e2 .
B. 2e4 .
C. 2e2 .
D. −2e2 .
Câu 119. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng
cách giữa hai đường thẳng BD và√S C bằng
√
√
√
a 6
a 6
a 6
A. a 6.
B.
.
C.
.
D.
.
3
2
6
n−1
Câu 120. Tính lim 2
n +2
A. 2.
B. 1.
C. 3.
D. 0.
Trang 9/10 Mã đề 1
Câu 121. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (−∞; −1).
B. (−∞; 1).
C. (1; +∞).
D. (−1; 1).
Câu 122. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 3.
B. 1.
C. 2.
D. Vô số.
Câu 123. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
ab
1
1
ab
.
B. 2
.
D. √
.
A. √
.
C. √
2
a +b
a2 + b2
a2 + b2
2 a2 + b2
Câu 124. Cho số phức z thỏa mãn |z√+ 3| = 5 và |z − 2i| = |z −√2 − 2i|. Tính |z|.
A. |z| = 10.
B. |z| = 10.
C. |z| = 17.
D. |z| = 17.
Câu 125. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi
G la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
B. k = .
C. k = .
D. k = .
A. k = .
18
6
9
15
Câu 126. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (−∞; 6, 5).
B. (4; 6, 5].
C. (4; +∞).
D. [6, 5; +∞).
Câu 127. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD
√ = a. Khoảng cách từ A√đến mặt phẳng (BCD) bằng
√
√
a 2
a 2
A.
.
B.
.
C. 2a 2.
D. a 2.
2
4
Câu 128. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 24.
B. 22.
C. 21.
D. 23.
1
Câu 129. Hàm số y = x + có giá trị cực đại là
x
A. −2.
B. 2.
C. −1.
D. 1.
Câu 130. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình lăng trụ.
B. Hình chóp.
C. Hình lập phương.
D. Hình tam giác.
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 10/10 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
B
3. A
5.
11.
C
C
C
C
14.
B
C
B
20.
B
22.
23. A
24. A
25.
C
26.
27.
C
28. A
D
29.
31. A
D
18.
21. A
C
B
30.
B
32.
B
34.
B
35. A
D
36. A
37.
C
39. A
41.
D
16.
19.
33.
C
12. A
15. A
17.
B
10.
B
13.
4.
8.
D
9.
B
6.
C
7.
2.
B
38.
B
40.
B
42.
C
43.
C
44.
D
45.
C
46.
D
47.
C
48. A
49.
D
50.
B
51.
D
52.
B
53.
D
54.
55.
B
56. A
57. A
58. A
59.
D
60.
61. A
B
62. A
63.
65.
C
D
64.
B
66. A
B
68.
67. A
1
D
69.
70.
B
C
71. A
72.
D
73. A
74.
D
75.
B
76.
78.
C
77.
C
D
79.
D
80.
C
81.
D
82.
C
83.
D
84.
85.
B
86. A
87. A
89.
88.
B
91. A
C
92.
C
B
94. A
95.
B
96.
97. A
B
90.
93.
B
98.
D
99.
101.
B
100.
B
102.
B
C
103.
C
104.
D
B
D
106.
105. A
107.
D
108.
C
109.
D
110.
C
111. A
112. A
113.
C
114.
115.
C
116. A
117.
B
118. A
119.
D
120.
121.
D
122.
123.
C
124.
126.
B
127. A
128.
B
129. A
130.
B
D
2
D
C
B