Tải bản đầy đủ (.pdf) (5 trang)

Đề ôn tập thpt qg môn toán (810)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (121.22 KB, 5 trang )

Tài liệu Pdf free LATEX

ĐỀ ÔN TẬP THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 6 trang)
Mã đề thi 001

Câu 1. Cho số phức z = 2 + 5i. Tìm số phức w = iz + z.
A. w = 3 + 7i.
B. w = −7 − 7i.
C. w = −3 − 3i.

D. w = 7 − 3i.

Câu 2. Số phức z thỏa mãn điều kiện (3 + i)z + (1 − 2i)2 = 8 − 17i. Khi đó hiệu phần thực và phần ảo
của z là
A. −7.
B. 7.
C. −3.
D. 3.
Câu 3. Tính
√ mô-đun của số phức z thỏa mãn z(2 − i) + 13i = √1.

5 34
34
A. |z| =
C. |z| =
.
B. |z| = 34.
.


D. |z| = 34.
3
3
(1 + i)(2 + i) (1 − i)(2 − i)
Câu 4. Cho số phức z thỏa mãn z =
+
. Trong tất cả các kết luận sau, kết luận
1−i
1+i
nào đúng?
1
B. |z| = 4.
C. z là số thuần ảo.
D. z = z.
A. z = .
z
Câu 5. Cho hai số phức z1 = 1 + 2i và z2 = 2 − 3i. Khi đó số phức w = 3z1 − z2 + z1 z2 có phần ảo bằng
bao nhiêu?
A. −9.
B. −10.
C. 10.
D. 9.
Câu 6.
√ mô-đun của số phức w = 6z − 25i là
√ Cho số phức z thỏa mãn z(1 + 3i) = 17 + i. Khi đó
A. 29.
B. 5.
C. 2 5.
D. 13.
Câu 7. Cho tập hợp A có 15 phần tử. Số tập con gồm hai phần tử của A bằng

A. 30.
B. 105.
C. 210.
D. 225.
R 1
Câu 8. Cho x dx = F(x) + C. Khẳng định nào dưới đây đúng?
D. F ′ (x) =
A. F ′ (x) = ln x.
B. F ′ (x) = − x12 .
C. F ′ (x) = 1x .

2
.
x2

Câu 9. Trong không gian Oxyz, cho hai điểm M(1; −1; −1) và N(5; 5; 1). Đường thẳng MN có phương
trình là:




Câu 10. Có bao nhiêu giá trị nguyên của tham số a ∈ (−10; +∞) để hàm số y =

x3 + (a + 2)x + 9 − a2


đồng biến trên khoảng (0; 1)?
A. 12.
B. 6.


C. 5.

D. 11.

Câu 11. Trên tập hợp số phức, xét phương trình z2 − 2(m + 1)z + m2 = 0(m là tham số thực). Có bao
nhiêu giá trị của m để phương trình đó có hai nghiệm phân biệt z1 , z2 thỏa mãn |z1 | + |z2 | = 2?
A. 3.
B. 4.
C. 1.
D. 2.
Câu 12. Cho hàm số bậc ba y = f (x) có đồ thị là đường cong trong hình bên. Giá trị cực đại của hàm số
đã cho là
A. 3.
B. −1.
C. 0.
D. 2.
Câu 13. Cho hàm số y = x2 − x + m có đồ thị là (C). Tìm tất cả các giá trị của tham số m để tiếp tuyến
của đồ thị (C) tại giao điểm của (C) với trục Oy đi qua điểm B(1; 2).
A. m = 1.
B. m = 2.
C. m = 4.
D. m = 3.
2
x
Câu 14. Tính tích tất cả các nghiệm của phương trình (log2 (4x))2 + log2 ( ) = 8
8
1
1
1
1

A. .
B.
.
C. .
D. .
6
128
64
32
Trang 1/6 Mã đề 001


Câu 15. Một hình trụ (T ) có diện tích xung quanh bằng 4π và thiết diện qua trục của hình trụ này là một
hình vng. Diện tích tồn phần của (T ) là
A. 6π.
B. 12π.
C. 8π.
D. 10π.
Câu 16. Hàm số nào trong các hàm số sau đồng biến trên R.
A. y = x4 + 3x2 .
B. y = −x3 − x2 − 5x.
4x + 1
C. y = x3 + 3x2 + 6x − 1.
D. y =
.
x+2
Câu 17. Hàm số y = x4 − 4x2 + 1 đồng biến trên khoảng nào trong các khoảng sau đây.
A. (3; 5).
B. (−3; 0).
C. (−1; 1).

D. (1; 5).
Câu 18. Cho hình chóp đều S.ABCD có cạnh đáy bằng a và chiều cao bằng 2a, diện tích xung quanh
của hình √
nón đỉnh S và đáy là hình√trịn nội tiếp tứ giác ABCD
√ bằng

2
2
2
πa 15
πa 17
πa 17
πa2 17
A.
.
B.
.
C.
.
D.
.
4
6
8
4
Câu 19. (Chuyên Ngoại Ngữ - Hà Nội) Cho số phức z thỏa mãn |z| = 1. Tìm giá trị lớn nhất của biểu
thức T = |z + 1| √
+ 2|z − 1|.




A. max T = 3 2.
B. max T = 3 5.
C. max T = 2 10.
D. max T = 2 5.
Câu 20. Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm M biểu diễn số phức w thõa mãn điều kiện
w = (1 − 2i)z + 3, biết z là số phức thỏa mãn |z + 2| = 5.
A. (x − 5)2 + (y − 4)2 = 125.
B. x = 2.
2
2
C. (x + 1) + (y − 2) = 125.
D. (x − 1)2 + (y − 4)2 = 125.






−2 − 3i




Câu 21. Tìm giá trị lớn nhất của |z| biết rằng z thỏa mãn điều kiện

z + 1


= 1.

√ 3 − 2i
A. max |z| = 2.
B. max |z| = 1.
C. max |z| = 2.
D. max |z| = 3.

Câu 22. (KHTN – Lần 1) Trong các số phức z thỏa điều kiện |(1 + i)z + 1 − 7i| = 2, tìm max |z|.
A. max |z| = 4.
B. max |z| = 3.
C. max |z| = 7.
D. max |z| = 6.

Câu 23. (Toán Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 2. Mệnh đề nào
dưới đây đúng ?
1
1
3
3
A. |z| < .
B. < |z| < .
C. |z| > 2.
D. ≤ |z| ≤ 2.
2
2
2
2
Câu 24. Cho số phức z thỏa mãn (z + 1) (z − 2i) là số thuần ảo. Tập hợp các điểm biểu diễn số phức z là
một hình trịn có diện tích bằng



A. 25π.
B. 5π.
C. .
D. .
4
2
z
Câu 25. Cho các số phức z, w khác 0 được biểu diễn bởi hai điểm A, B trong mặt phẳng Oxy. Nếu là
w
số thuần ảo thì mệnh đề nào sau đây đúng?
A. Tam giác OAB là tam giác đều.
B. Tam giác OAB là tam giác vuông.
C. Tam giác OAB là tam giác nhọn.
D. Tam giác OAB là tam giác cân.
Câu 26. (Chuyên Ngoại Ngữ - Hà Nội) Cho số phức z thỏa mãn |z| = 1. Tìm giá trị lớn nhất của biểu
thức T = |z + 1| √
+ 2|z − 1|.



A. max T = 3 2.
B. max T = 2 5.
C. max T = 3 5.
D. max T = 2 10.

Câu 27. (Toán Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 2. Mệnh đề nào
dưới đây đúng ?
1
3
3

1
A. |z| > 2.
B. < |z| < .
C. ≤ |z| ≤ 2.
D. |z| < .
2
2
2
2
Câu 28. Cho các số phức z thoả mãn (1 + z)2 là số thực. Tập hợp điểm M biểu diễn số phức z là
A. Parabol.
B. Đường tròn.
C. Hai đường thẳng.
D. Một đường thẳng.
Trang 2/6 Mã đề 001


Câu 29. Tập hợp điểm biểu diễn các số phức w = (1 + i)z + 1 với z là số phức thỏa mãn |z − 1| ≤ 1 là
hình trịn có diện tích bằng bao nhiêu
A. 3π.
B. 4π.
C. 2π.
D. π.

Câu 30. (KHTN – Lần 1) Trong các số phức z thỏa điều kiện |(1 + i)z + 1 − 7i| = 2, tìm max |z|.
A. max |z| = 7.
B. max |z| = 4.
C. max |z| = 3.
D. max |z| = 6.
Câu 31. (Chuyên Lào Cai) Xét số phức z và z có điểm biểu diễn lần lượt là M và M ′ . Số phức ω = (4+3i)z

và ω có điểm biểu diễn lần lượt là N và N ′ . Biết rằng M, M ′ , N, N ′ là bốn đỉnh của hình chữ nhật. Tìm
1
9 9
9
giá trị nhỏ nhất của ⇒ |z + 4i − 5| ≥ √ ⇔ x = ⇔ z = − i|z + 4i − 5|.
2
2 2
2
1
2
1
4
C. √ .
D. √ .
A. .
B. √ .
2
13
2
5
Câu 32. Gọi z1 và z2 là các nghiệm của phương trình z2 − 4z + 9 = 0. Gọi M, N là các điểm biểu diễn
của z1 , z2 trên mặt phẳng phức. Khi đó√ độ dài của MN là

A. MN = 4.
B. MN = 5.
C. MN = 5.
D. MN = 2 5.
Câu 33. Cắt một hình nón bởi một mặt phẳng đi qua trục của nó, ta được thiết diện là tam giác vuông
với cạnh√huyền bằng 2a. Tính thể
√ tích3 của khối nón.

3
π 2.a
π.a3
2π.a3
4π 2.a
.
B.
.
C.
.
D.
.
A.
3
3
3
3
Câu 34. Giá trị nhỏ nhất của hàm số y = 2x + cos xtrên đoạn [0; 1] bằng?
A. −1.
B. 1.
C. π.
D. 0.

Câu
35.
Cho
hình
chóp
S
.ABC


S
A⊥(ABC).
Tam
giác
ABC
vng
cân
tại
B

S
A
=
a
6, S B =

a 7. Tính góc giữa SC và mặt phẳng (ABC).
A. 450 .
B. 1200 .
C. 300 .
D. 600 .

Câu 36. Tìm tất cả các khoảng đồng biến của hàm số y = x − 2 x + 2017.
1
1
A. (0; 1).
B. (0; ).
C. (1; +∞) .
D. ( ; +∞).

4
4
′ ′ ′ ′
Câu 37. Cho hình lập phương ABCD.A B C D có cạnh bằng a. Tính thể tích khối chóp D.ABC ′ D′ .
a3
a3
a3
a3
A. .
B. .
C. .
D. .
4
6
3
9
Câu 38. Cho khối tứ diện ABCD có thể tích V và điểm M trên cạnh AB sao cho AB = 4MB. Tính thể
tích của khối tứ diện B.MCD.
V
V
V
V
A. .
B. .
C. .
D. .
3
4
5
2

Câu 39. Hình đa diện dưới đây có bao nhiêu cạnh?

A. 21.

B. 18.

C. 12.

D. 15.

Câu 40. Đồ thị hàm số y = −x3 + 3x2 − 3x + 2 có bao nhiêu điểm cực trị?
A. 0.
B. 3.
C. 2.
D. 1.
Câu 41. Cho hàm số y = x3 − 3x2 − 9x − 5. Trong các khẳng định sau, khẳng định nào sai?
A. Giá trị cực đại của hàm số là 0.
B. Hàm số có một điểm cực đại và một điểm cực tiểu.
C. Giá trị cực tiểu của hàm số là 3.
D. Hàm số có hai điểm cực trị.
Trang 3/6 Mã đề 001


Câu 42. Cho hàm số y = −x4 − x2 + 1. Trong các khẳng định sau, khẳng định nào sai?
A. Đồ thị hàm số khơng có tiệm cận.

B. Đồ thị hàm số có một điểm cực đại.

C. Điểm cực tiểu của hàm số là (0; 1).


D. Đồ thị hàm số cắt trục tung tại điểm (0; 1).

Câu 43. Xét hàm số f (x) = −x4 + 2x2 + 3 trên đoạn [0; 2]. Trong các khẳng định sau, khẳng định nào
sai?
A. Hàm số f (x) đạt giá trị nhỏ nhất trên đoạn [0; 2] tại x = 0.
B. Hàm số f (x) đạt giá trị lớn nhất trên đoạn [0; 2] tại x = 1.
C. Giá trị lớn nhất của hàm số f (x) trên đoạn [0; 2] bằng 4.
D. Giá trị nhỏ nhất của hàm số f (x) trên đoạn [0; 2] bằng −5.

Câu 44. Cho hàm số y =

x+1
có đồ thị là (C) và đường thẳng d có phương trình y = 5 − x. Tìm số giao
x−1

điểm của (C) và d.
A. 3.

B. 2.

C. 1.

x−1
2

Câu 45. Trong không gian Oxyz, cho đường thẳng d :
A. N(2; 1; 2).

B. Q(1; 2; −3).


Câu 46. Tiệm cận ngang của đồ thị hàm số y =
A. y = 31 .

B. y = 23 .

D. 0.

=

y−2
−1

=

z+3
.
−2

C. M(2; −1; −2).

2x+1
3x−1

Điểm nào dưới đây thuộc d?
D. P(1; 2; 3).

là đường thẳng có phương trình:

C. y = − 32 .


D. y = − 13 .

Câu 47. Trong không gian Oxyz, mặt phẳng (P) : x + y + z + 1 = 0 có một vectơ pháp tuyến là:




A. →
n2 = (1; −1; 1).
B. →
n3 = (1; 1; 1).
C. →
n4 = (1; 1; −1).
D. →
n1 = (−1; 1; 1).

Câu 48. Một hộp chứa 15 quả cầu gồm 6 quả màu đỏ được đánh số từ 1 đến 6 và 9 quả màu xanh được
đánh số từ 1 đến 9. Lấy ngẫu nhiên hai quả từ hộp đó, xác suất để lấy được hai quả khác màu đồng thời
tổng hai số ghi trên chúng là số chẵn bằng
A.

18
.
35

B. 17 .

C.

4

.
35

D.

9
.
35

Câu 49. Trên tập hợp số phức, xét phương trình z2 − 2(m + 1)z + m2 = 0(m là tham số thực). Có bao
nhiêu giá trị của m để phương trình đó có hai nghiệm phân biệt z1 , z2 thỏa mãn |z1 | + |z2 | = 2?
A. 2.

Câu 50. Nếu
A. −2.

B. 1.
R2
0

f (x)dx = 4 thì
B. 0.

C. 3.

D. 4.

R 2 h1
0


i
f
(x)

2
dx bằng
2
C. 8.

D. 6.
Trang 4/6 Mã đề 001


- - - - - - - - - - HẾT- - - - - - - - - -

Trang 5/6 Mã đề 001



×