TỐN PDF LATEX
TRẮC NGHIỆM ƠN THI MƠN TỐN THPT
(Đề thi có 11 trang)
Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
Câu 1. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
0 0
ABC.A0 B
√ C là
√
3
a 3
a3 3
a3
A.
.
B.
.
C.
.
D. a3 .
6
2
3
Câu 2. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 20 mặt.
B. 20 đỉnh, 30 cạnh, 12 mặt.
C. 20 đỉnh, 30 cạnh, 20 mặt.
D. 12 đỉnh, 30 cạnh, 12 mặt.
Câu 3. Cho hình chóp S .ABC có đáy ABC là tam giác vng cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √
√
a3 3
a3 6
a3 6
a3 6
A.
.
B.
.
C.
.
D.
.
24
8
48
24
Câu 4. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Khơng có câu nào B. Câu (I) sai.
C. Câu (II) sai.
D. Câu (III) sai.
sai.
d = 60◦ . Đường chéo
Câu 5. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vng tại A, AC = a, ACB
0
0 0
0 0
◦
BC của mặt bên (BCC B ) tạo với mặt phẳng (AA C C) một góc 30 . Thể tích của khối lăng trụ ABC.A0 B0C 0
là
√
√
√
√
2a3 6
4a3 6
a3 6
.
B.
.
C.
.
D. a3 6.
A.
3
3
3
2
Câu 6. [1224d] Tìm tham số thực m để phương trình log3 x + log3 x + m = 0 có nghiệm
1
1
1
1
B. m ≤ .
C. m < .
D. m > .
A. m ≥ .
4
4
4
4
Câu 7. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {4; 3}.
B. {3; 4}.
C. {5; 3}.
D. {3; 5}.
Câu 8. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng√hợp với đáy một góc 30◦√. Thể tích khối chóp S .ABCD
√
√ là
3
3
3
3
8a 3
8a 3
a 3
4a 3
A.
.
B.
.
C.
.
D.
.
9
3
9
9
Câu 9. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. Không tồn tại.
B. −5.
C. −3.
D. −7.
Câu 10. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
A. T = 4 + .
B. T = e + 1.
C. T = e + .
D. T = e + 3.
e
e
Z 1
Câu 11. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
0
A. 1.
B.
1
.
4
C.
1
.
2
D. 0.
Trang 1/11 Mã đề 1
!
x+1
Câu 12. [3] Cho hàm số f (x) = ln 2017 − ln
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
4035
2016
2017
.
C.
.
D.
.
A. 2017.
B.
2018
2018
2017
x2 − 3x + 3
Câu 13. Hàm số y =
đạt cực đại tại
x−2
A. x = 0.
B. x = 1.
C. x = 2.
D. x = 3.
Câu 14. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 2.
B. 1.
C. Vơ nghiệm.
D. 3.
Câu 15. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
1
ab
1
ab
.
B. √
.
C. 2
.
D. √
.
A. √
2
a +b
a2 + b2
a2 + b2
2 a2 + b2
x−1 y z+1
Câu 16. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình
= =
và
2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. 10x − 7y + 13z + 3 = 0.
B. 2x − y + 2z − 1 = 0.
C. −x + 6y + 4z + 5 = 0.
D. 2x + y − z = 0.
Câu 17. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh của khối chóp bằng số mặt của khối chóp.
B. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
C. Số đỉnh của khối chóp bằng số mặt của khối chóp.
D. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
Câu 18. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m > 0.
B. m > −1.
C. m ≥ 0.
D. m > 1.
Câu 19. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
môđun z.
√
√
√
√
5 13
A. 2 13.
B. 2.
C. 26.
D.
.
13
Câu 20. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. −2.
B. 4.
C. 2.
D. −4.
mx − 4
Câu 21. Tìm m để hàm số y =
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
A. 26.
B. 67.
C. 45.
D. 34.
Câu 22. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
ab
1
ab
1
A. √
.
B. 2
.
C. √
.
D. √
.
2
a +b
a2 + b2
2 a2 + b2
a2 + b2
Câu 23. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 2.
B. −1.
C. 6.
D. 1.
Câu 24. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
C. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
Trang 2/11 Mã đề 1
Câu 25. Tính lim
x→3
A. 3.
x2 − 9
x−3
B. −3.
√
D. +∞.
C. 6.
Câu 26. Xác định phần ảo của số phức z = ( 2 + 3i)2
√
A. 7.
B. −7.
C. −6 2.
√
D. 6 2.
Câu 27. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 27cm3 .
B. 72cm3 .
C. 64cm3 .
D. 46cm3 .
Câu 28. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C) và (A0C 0 D) bằng
√
√
√
√
a 3
2a 3
a 3
B.
.
C.
.
D.
.
A. a 3.
3
2
2
Câu 29. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. log2 13.
B. log2 2020.
C. 13.
D. 2020.
Câu 30. Tính lim
A. +∞.
cos n + sin n
n2 + 1
B. 0.
C. −∞.
D. 1.
Câu 31. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 9 mặt.
C. 4 mặt.
D. 3 mặt.
Câu 32. Khối đa diện đều loại {3; 5} có số đỉnh
A. 12.
B. 20.
D. 30.
C. 8.
√
Câu 33. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã
√ cho là
√
√
√
πa3 6
πa3 3
πa3 3
πa3 3
A. V =
.
B. V =
.
C. V =
.
D. V =
.
6
6
2
3
Câu 34. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính quãng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 16 m.
B. 8 m.
C. 12 m.
D. 24 m.
Câu 35. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 8 mặt.
B. 7 mặt.
C. 9 mặt.
D. 6 mặt.
π
x
Câu 36. [2-c] Giá trị lớn nhất của hàm số y = e cos x trên đoạn 0; là
2
√
1 π3
3 π6
A. 1.
B. e .
e .
C.
2
2
√
2 π4
e .
D.
2
Câu 37. Giá trị của lim (3x2 − 2x + 1)
A. +∞.
x→1
B. 3.
C. 1.
D. 2.
Câu 38. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m > .
B. m ≥ .
C. m ≤ .
D. m < .
4
4
4
4
Câu 39. Khối đa diện đều loại {4; 3} có số cạnh
A. 12.
B. 30.
C. 10.
D. 20.
Câu 40. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
2
A. 2.
B. −1.
C. 6.
3
Z
6
3x + 1
. Tính
1
f (x)dx.
0
D. 4.
Trang 3/11 Mã đề 1
[ = 60◦ , S O
Câu 41. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ Khoảng cách từ A đến (S
√ BC) bằng
√ với mặt đáy và S O = a.
√
a 57
a 57
2a 57
.
B.
.
C.
.
D. a 57.
A.
19
17
19
2
Câu 42. Giá trị của lim(2x − 3x + 1) là
x→1
A. +∞.
B. 2.
C. 0.
D. 1.
Câu 43. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất
√
√ của hàm số. Khi đó tổng
√M + m
A. 8 3.
B. 7 3.
C. 16.
D. 8 2.
Câu 44. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog
A. 25.
√
a
5
bằng
√
1
C. .
5
B. 5.
D.
5.
Câu 45. Mệnh đề nào sau đây sai?
A. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
!0
Z
B.
f (x)dx = f (x).
C. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a;Zb).
D. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
f (x)dx = F(x) + C.
Câu 46. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 5.
B. 0, 2.
C. 0, 4.
D. 0, 3.
Câu 47. Hàm số f có nguyên hàm trên K nếu
A. f (x) có giá trị nhỏ nhất trên K.
C. f (x) có giá trị lớn nhất trên K.
B. f (x) xác định trên K.
D. f (x) liên tục trên K.
2
Câu 48. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
1
1
1
.
C.
.
A. √ .
B.
2e3
e2
2 e
Câu 49. Tính lim
x→5
2
A. − .
5
x2 − 12x + 35
25 − 5x
B. +∞.
C.
2
.
5
D.
2
.
e3
D. −∞.
x = 1 + 3t
Câu 50. [1232h] Trong không gian Oxyz, cho đường thẳng d :
y = 1 + 4t . Gọi ∆ là đường thẳng đi qua
z = 1
điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương
trình là
x = 1 + 3t
x = 1 + 7t
x = −1 + 2t
x = −1 + 2t
A.
B.
.
C.
y = 1 + 4t .
y=1+t
y = −10 + 11t . D.
y = −10 + 11t .
z = 1 − 5t
z = 1 + 5t
z = −6 − 5t
z = 6 − 5t
Câu 51. Tính lim
x→1
A. 0.
x3 − 1
x−1
B. +∞.
C. 3.
D. −∞.
Câu 52. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số nghịch biến trên khoảng (−2; 1).
Trang 4/11 Mã đề 1
B. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
C. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
D. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
Câu 53. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 22.
B. 21.
C. 24.
D. 23.
Câu 54. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 1.
B. 3.
C. 0.
D. 2.
x
x+1
x−2 x−1
+
+
+
và y = |x + 1| − x − m (m là tham
Câu 55. [4-1212d] Cho hai hàm số y =
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−3; +∞).
B. (−∞; −3).
C. (−∞; −3].
D. [−3; +∞).
Câu 56. Cho số phức z thỏa mãn |z + 3| = 5 và |z − 2i| = |z − 2√− 2i|. Tính |z|.
√
A. |z| = 17.
B. |z| = 10.
C. |z| = 17.
D. |z| = 10.
Câu 57. Cho hàm số y = x3 − 2x2 + x + 1. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (1; +∞).
!
1
C. Hàm số nghịch biến trên khoảng ; 1 .
3
!
1
B. Hàm số nghịch biến trên khoảng −∞; .
! 3
1
D. Hàm số đồng biến trên khoảng ; 1 .
3
Câu 58.
Z Trong các khẳng định sau, khẳng định nào sai? Z
dx = x + C, C là hằng số.
A.
Z
C.
xα dx =
xα+1
+ C, C là hằng số.
α+1
1
dx = ln |x| + C, C là hằng số.
Z x
D.
0dx = C, C là hằng số.
B.
Câu 59. Tính thể tích khối lập phương
biết tổng diện tích tất cả các mặt bằng 18.
√
C. 27.
D. 9.
A. 8.
B. 3 3.
1
Câu 60. [3-12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 ≤ m ≤ 1.
B. 0 < m ≤ 1.
C. 2 < m ≤ 3.
D. 2 ≤ m ≤ 3.
2
Câu 61. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 1 − log2 3.
B. 1 − log3 2.
C. 2 − log2 3.
Câu 62. Hàm số nào sau đây khơng có cực trị
1
A. y = x + .
B. y = x4 − 2x + 1.
x
Câu 63. Tứ diện đều thuộc loại
A. {4; 3}.
B. {5; 3}.
D. 3 − log2 3.
x−2
.
2x + 1
C. y = x3 − 3x.
D. y =
C. {3; 4}.
D. {3; 3}.
Câu 64. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
1
A. f 0 (0) =
.
B. f 0 (0) = 10.
C. f 0 (0) = 1.
ln 10
D. f 0 (0) = ln 10.
Câu 65. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD
√ = a. Khoảng cách từ A đến mặt phẳng (BCD) bằng
√
√
√
a 2
a 2
A.
.
B. a 2.
C.
.
D. 2a 2.
4
2
Trang 5/11 Mã đề 1
Câu 66. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối 12 mặt đều.
C. Khối lập phương.
D. Khối tứ diện đều.
Câu 67. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
9
3
C. 3.
D. .
A. 1.
B. .
2
2
3
! x −3mx2 +m
1
Câu 68. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
nghịch biến trên
π
khoảng (−∞; +∞)
A. m = 0.
B. m , 0.
C. m ∈ (0; +∞).
D. m ∈ R.
Câu 69. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 8 lần.
B. Tăng gấp 4 lần.
C. Tăng gấp đôi.
D. Tăng gấp 6 lần.
Câu 70. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 9 cạnh, 6 mặt. B. 6 đỉnh, 9 cạnh, 5 mặt. C. 5 đỉnh, 9 cạnh, 6 mặt. D. 6 đỉnh, 6 cạnh, 6 mặt.
Câu 71. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (I) và (III).
B. (I) và (II).
D. (II) và (III).
q
2
Câu 72. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 =
√ i
h
0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 2].
B. m ∈ [0; 1].
C. m ∈ [0; 4].
D. m ∈ [−1; 0].
Câu 73. Khối đa diện đều loại {3; 3} có số mặt
A. 2.
B. 3.
C. Cả ba mệnh đề.
C. 4.
D. 5.
Câu 74. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 27.
B. 10.
C. 3.
D. 12.
Câu 75. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {3; 3}.
B. {3; 4}.
C. {4; 3}.
D. {5; 3}.
Câu 76. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n3 lần.
B. n lần.
C. 3n3 lần.
D. n2 lần.
Câu 77. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
A. − < m < 0.
B. m > − .
C. m ≥ 0.
D. m ≤ 0.
4
4
√
Câu 78. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của √
khối chóp S .ABCD là
√
3
√
a 3
a3
a3 3
A.
.
B.
.
C.
.
D. a3 3.
12
4
3
Trang 6/11 Mã đề 1
Câu 79. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [1; +∞).
B. [−3; 1].
C. [−1; 3].
D. (−∞; −3].
Câu 80. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 2.
B. Vô nghiệm.
C. 3.
D. 1.
Câu 81. [1] Cho a > 0, a , 1. Giá trị của biểu thức log 1a a2 bằng
1
1
A. 2.
B. − .
C. .
2
2
D. −2.
Câu 82. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −12.
B. −5.
C. −15.
D. −9.
Câu 83. [1] Giá trị của biểu thức 9log3 12 bằng
A. 4.
B. 144.
C. 24.
D. 2.
Câu 84. Trong các mệnh đề dưới đây, mệnh đề nào!sai?
un
A. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.
vn
!
un
= −∞.
B. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
vn
!
un
= +∞.
C. Nếu lim un = a > 0 và lim vn = 0 thì lim
vn
D. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!2x−1
!2−x
3
3
Câu 85. Tập các số x thỏa mãn
≤
là
5
5
A. (−∞; 1].
B. (+∞; −∞).
C. [1; +∞).
D. [3; +∞).
Câu 86. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 8 mặt.
C. 6 mặt.
Câu 87. Tính lim
A. 2.
2n2 − 1
3n6 + n4
B.
2
.
3
D. 10 mặt.
C. 1.
D. 0.
C. 9.
D. 7.
Câu 88. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1
A. 5.
B. 0.
Câu 89. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối
√ chóp S .ABCD là
√
√
a3 3
a3 6
a3 2
a3 3
A.
.
B.
.
C.
.
D.
.
24
48
16
48
Câu 90. [3] Cho khối chóp S .ABC có đáy là tam giác vng tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
5a
a
2a
8a
A.
.
B. .
C.
.
D.
.
9
9
9
9
x2
Câu 91. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
A. M = e, m = 0.
B. M = , m = 0.
C. M = e, m = .
D. M = e, m = 1.
e
e
Trang 7/11 Mã đề 1
Câu 92. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Khơng có.
B. Có vơ số.
C. Có hai.
D. Có một.
√3
Câu 93. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga a bằng
1
1
A. 3.
B. .
C. −3.
D. − .
3
3
Câu 94. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (0; 2).
B. Hàm số đồng biến trên khoảng (0; +∞).
C. Hàm số nghịch biến trên khoảng (−∞; 2).
D. Hàm số đồng biến trên khoảng (0; 2).
Câu 95. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim+ f (x) = f (a) và lim− f (x) = f (b).
B. lim− f (x) = f (a) và lim+ f (x) = f (b).
x→a
x→b
x→a
x→b
C. lim+ f (x) = f (a) và lim+ f (x) = f (b).
Câu 96. Phần thực√và phần ảo của số √
phức z =
A. Phần thực là √2, phần ảo là 1 − √
3.
C. Phần thực là 2 − 1, phần ảo là − 3.
x→a
x→b
x→a
x→b
D. lim− f (x) = f (a) và lim− f (x) = f (b).
√
√
2 − 1 − 3i lần lượt l √
√
B. Phần thực là 1√− 2, phần ảo là −√ 3.
D. Phần thực là 2 − 1, phần ảo là 3.
Câu 97. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 4 đỉnh, 12 cạnh, 4 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 6 mặt.
1
bằng
Câu 98. [1] Giá trị của biểu thức log √3
10
1
1
A. 3.
B. − .
C. .
D. −3.
3
3
Câu 99. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng S B và AD bằng
√
√
√
a 2
a 2
.
B.
.
C. a 3.
A.
D. a 2.
2
3
3
Câu 100. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e.
B. e3 .
C. e2 .
D. e5 .
Câu 101. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
C. V = 3S h.
A. V = S h.
B. V = S h.
3
1
D. V = S h.
2
Câu 102.
định nào sau đây là sai?
!0
Z Các khẳng
Z
Z
A.
f (x)dx = f (x).
B.
f (x)dx = F(x) + C ⇒
f (t)dt = F(t) + C.
Z
Z
Z
Z
C.
f (x)dx = F(x) +C ⇒
f (u)dx = F(u) +C. D.
k f (x)dx = k
f (x)dx, k là hằng số.
log 2x
Câu 103. [1229d] Đạo hàm của hàm số y =
là
x2
1
1 − 4 ln 2x
1 − 2 ln 2x
1 − 2 log 2x
A. y0 = 3
.
B. y0 =
.
C. y0 = 3
.
D. y0 =
.
3
2x ln 10
2x ln 10
x ln 10
x3
1
Câu 104. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 luôn đồng biến trên
3
√
một đoạn có độ dài bằng 24.
A. m = −3, m = 4.
B. m = 4.
C. −3 ≤ m ≤ 4.
D. m = −3.
Trang 8/11 Mã đề 1
Câu 105. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối bát diện đều. B. Khối tứ diện đều.
C. Khối lập phương.
D. Khối 12 mặt đều.
un
Câu 106. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. 1.
B. −∞.
C. 0.
D. +∞.
√
Câu 107. [1] Biết log6 a = 2 thì log6 a bằng
A. 36.
B. 6.
C. 108.
D. 4.
Câu 108. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 5 mặt.
C. 3 mặt.
D. 4 mặt.
Câu 109. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9
tháng thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không
thay đổi trong thời gian gửi.
A. 0, 5%.
B. 0, 6%.
C. 0, 8%.
D. 0, 7%.
!
1
1
1
+
+ ··· +
Câu 110. Tính lim
1.2 2.3
n(n + 1)
3
A. 0.
B. 2.
C. 1.
D. .
2
√
Câu 111. [2] Phương trình log4 (x + 1)2 + 2 = log √2 4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
A. Vơ nghiệm.
B. 3 nghiệm.
C. 2 nghiệm.
D. 1 nghiệm.
Câu 112. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
67
A. −4.
B. −7.
C.
.
D. −2.
27
x+3
nghịch biến trên khoảng
Câu 113. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
x−m
(0; +∞)?
A. Vô số.
B. 3.
C. 1.
D. 2.
Câu 114. [1] Tập
! xác định của hàm số! y = log3 (2x + 1) là
!
1
1
1
A. − ; +∞ .
B. −∞; .
C.
; +∞ .
2
2
2
!
1
D. −∞; − .
2
Câu 115. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3.
Tính f (2) + f (4)?
A. 12.
B. 4.
C. 11.
D. 10.
Câu 116. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC)
một góc bằng 60◦ . Thể√tích khối chóp S .ABC là
√
√
a3 3
a3 3
a3
a3 3
A.
.
B.
.
C.
.
D.
.
12
8
4
4
Câu 117. Cho hình chóp S .ABCD có√đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết
√ S H ⊥ (ABCD), S A =
√a 5. Thể tích khối chóp3 S .ABCD là
3
3
2a 3
4a 3
2a
4a3
A.
.
B.
.
C.
.
D.
.
3
3
3
3
[ = 60◦ , S A ⊥ (ABCD).
Câu 118. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng√ khoảng cách từ A đến cạnh
√
√ S C là a. Thể tích khối chóp S .ABCD là
3
3
√
a 2
a 3
a3 2
3
A.
.
B.
.
C. a 3.
D.
.
12
6
4
Trang 9/11 Mã đề 1
Câu 119.
Cho hàm số f (x),
mệnh đề nào sai?
Z
Z g(x) liên tục
Z trên R. Trong các
Z mệnh đề sau, Z
A.
( f (x) + g(x))dx =
f (x)dx + g(x)dx.
B.
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.
Z
Z
Z
Z
Z
Z
C.
f (x)g(x)dx =
f (x)dx g(x)dx.
D.
( f (x) − g(x))dx =
f (x)dx − g(x)dx.
Câu 120. Khối đa diện đều loại {3; 5} có số mặt
A. 20.
B. 12.
C. 8.
D. 30.
Câu 121. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. Không tồn tại.
B. 13.
C. 9.
D. 0.
Câu 122. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. Vô nghiệm.
B. 2.
C. 3.
D. 1.
Câu 123. Dãy
0?
!n số nào có giới hạn bằng
3
6
n − 3n
A. un =
.
B. un =
.
5
n+1
4x + 1
bằng?
Câu 124. [1] Tính lim
x→−∞ x + 1
A. 4.
B. −1.
C. un = n − 4n.
!n
−2
D. un =
.
3
C. −4.
D. 2.
2
Câu 125. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (0; −2).
B. (−1; −7).
C. (1; −3).
D. (2; 2).
Câu 126. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng
là
√ góc với đáy, S C = a 3. Thể tích khối chóp S 3.ABCD
√
3
a 3
a 3
a3
A.
.
B. a3 .
C.
.
D.
.
9
3
3
Câu 127. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Năm cạnh.
B. Hai cạnh.
C. Bốn cạnh.
D. Ba cạnh.
0 0 0 0
Câu 128.
a. Khoảng cách từ C đến √
AC 0 bằng
√ ABCD.A B C D cạnh √
√ [2] Cho hình lâp phương
a 6
a 6
a 3
a 6
.
B.
.
C.
.
D.
.
A.
7
3
2
2
Câu 129. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 1.
B. 3.
C. 2.
D. 0.
Câu 130. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
A. log2 a = − loga 2.
B. log2 a = loga 2.
C. log2 a =
.
D. log2 a =
.
log2 a
loga 2
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 10/11 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
2.
B
3.
D
4. A
5.
D
6.
7.
D
8. A
11.
C
12.
B
D
B
14. A
15. A
17.
B
10.
9. A
13.
B
16. A
C
18.
19.
D
20. A
21.
D
22.
23.
C
24.
25.
C
26.
B
D
C
D
27. A
28.
B
29. A
30.
B
32. A
33.
34. A
35.
36.
38.
D
42.
41. A
C
44. A
48.
D
43.
C
45.
C
47.
C
50.
D
39. A
D
46.
C
37.
C
40.
D
D
D
49.
C
51.
C
52.
C
53. A
54.
C
55.
C
57.
C
56.
D
58.
C
59.
60.
C
61.
62.
D
63.
64.
D
65.
66.
D
67.
68. A
69. A
1
B
C
D
C
B
70.
71.
B
D
72.
73.
76. A
78.
C
80.
C
D
75.
C
74.
B
77.
B
79.
B
81.
D
82. A
83.
D
B
84.
C
85.
86.
C
87.
D
88.
C
89.
D
90.
D
92.
93.
D
96.
98.
91. A
C
94.
99. A
D
101.
C
C
108.
D
110.
C
107.
D
109.
D
111.
D
112.
113.
114. A
C
B
115. A
117.
B
118.
D
119.
120. A
B
124. A
D
C
121.
D
123.
D
125. A
126.
130.
C
105. A
106.
128.
B
103.
104. A
122.
D
97.
B
100.
116.
B
95. A
C
102.
C
D
B
D
2
127.
D
129.
D