TỐN PDF LATEX
TRẮC NGHIỆM ƠN THI MƠN TỐN THPT
(Đề thi có 10 trang)
Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
Câu 1. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối
√
√ chóp S .ABCD là
√
3
3
a 3
a3 3
a3 6
a 2
.
B.
.
C.
.
D.
.
A.
16
48
24
48
Câu 2. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
A. 18.
B. 12.
C. 27.
D.
.
2
Câu 3. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. −3 ≤ m ≤ 3.
B. m ≤ 3.
C. −2 ≤ m ≤ 2.
D. m ≥ 3.
Câu 4. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối tứ diện.
B. Khối bát diện đều.
C. Khối lăng trụ tam giác.
D. Khối lập phương.
Câu 5. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất khơng thay đổi?
A. 18 tháng.
B. 17 tháng.
C. 15 tháng.
D. 16 tháng.
Câu 6. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
A. 2e.
Câu 7. Hàm số y =
A. x = 0.
B. 2e + 1.
x2 − 3x + 3
đạt cực đại tại
x−2
B. x = 3.
C.
2
.
e
D. 3.
D. x = 2.
√
Câu 8. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.
√ tích khối chóp S .ABC3 √
√
√
3
a 6
a 6
a3 6
a3 2
A.
.
B.
.
C.
.
D.
.
36
6
18
6
Câu 9. Khối đa diện đều loại {4; 3} có số đỉnh
A. 4.
B. 8.
C. x = 1.
C. 10.
D. 6.
Câu 10. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 3.
B. Vô nghiệm.
C. 2.
D. 1.
Câu 11. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (0; 1).
B. (−1; 0).
C. (−∞; 0) và (1; +∞). D. (−∞; −1) và (0; +∞).
Câu 12. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
. Khi đó thể tích khối lăng trụ là
BC là
4
√
√
√
√
a3 3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
24
36
6
12
Trang 1/10 Mã đề 1
Câu 13. Cho hình chóp S .ABCD có √
đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết
a 5. Thể tích khối chóp S .ABCD là
√ S H ⊥ (ABCD), S A =
√
4a3 3
2a3
4a3
2a3 3
A.
.
B.
.
C.
.
D.
.
3
3
3
3
Câu 14. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD), S D = a 5. Thể tích khối
√
√
√ chóp S .ABCD là
3
3
3
√
a
a
a
6
15
5
A. a3 6.
.
C.
.
D.
.
B.
3
3
3
d = 30◦ , biết S BC là tam giác đều
Câu 15. [3] Cho hình chóp S .ABC có đáy là tam giác vuông tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
A.
.
B.
.
C.
.
D.
.
13
16
9
26
Câu 16. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
1
1
ab
ab
.
B. √
.
C. √
.
D. 2
.
A. √
a + b2
a2 + b2
a2 + b2
2 a2 + b2
Câu 17. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α
aα
B. aαβ = (aα )β .
C. aα+β = aα .aβ .
D. aα bα = (ab)α .
A. β = a β .
a
Câu 18. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Khơng có.
B. Có hai.
C. Có một hoặc hai.
D. Có một.
Câu 19. Trong khơng gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; −3; −3).
B. A0 (−3; −3; 3).
C. A0 (−3; 3; 1).
D. A0 (−3; 3; 3).
Câu 20. Hàm số nào sau đây khơng có cực trị
1
x−2
C. y = x + .
D. y =
.
x
2x + 1
Câu 21. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 − 2; m = 1.
B. M = e2 − 2; m = e−2 + 2.
−2
C. M = e + 1; m = 1.
D. M = e−2 + 2; m = 1.
A. y = x3 − 3x.
B. y = x4 − 2x + 1.
Câu 22. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
0 0
(AB0C) và
√ (A C D) bằng
√
√
√
2a 3
a 3
a 3
A.
.
B. a 3.
C.
.
D.
.
2
2
3
Câu 23.
f (x), g(x) liên
đề nào sai? Z
Z Cho hàm số Z
Z tục trên R. Trong cácZmệnh đề sau, mệnh Z
f (x)g(x)dx =
A.
Z
C.
f (x)dx g(x)dx.
Z
Z
( f (x) + g(x))dx =
f (x)dx + g(x)dx.
B.
Z
D.
( f (x) − g(x))dx =
f (x)dx − g(x)dx.
Z
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.
Câu 24. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. log2 2020.
B. 2020.
C. log2 13.
D. 13.
d = 60◦ . Đường chéo
Câu 25. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vuông tại A, AC = a, ACB
0
0 0
0 0
◦
BC của mặt bên (BCC B ) tạo với mặt phẳng (AA C C) một góc 30 . Thể tích của khối lăng trụ ABC.A0 B0C 0
là
√
√
√
√
a3 6
4a3 6
2a3 6
3
A.
.
B.
.
C. a 6.
D.
.
3
3
3
Trang 2/10 Mã đề 1
Câu 26. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 18 lần.
B. Tăng gấp 27 lần.
C. Tăng gấp 3 lần.
D. Tăng gấp 9 lần.
Câu 27. [1] Đạo hàm của hàm số y = 2 x là
1
1
.
B. y0 = x
.
C. y0 = 2 x . ln x.
A. y0 =
ln 2
2 . ln x
3
2
Câu 28. Hàm số y = x − 3x + 3x − 4 có bao nhiêu cực trị?
A. 0.
B. 1.
C. 2.
D. y0 = 2 x . ln 2.
D. 3.
Câu 29.
bằng 1 là:
√
√ Thể tích của khối lăng trụ tam giác đều có cạnh √
3
3
3
3
.
B. .
C.
.
D.
.
A.
12
4
2
4
Câu 30. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. 2e4 .
B. −e2 .
C. 2e2 .
D. −2e2 .
Câu 31.
Z Trong các khẳng định sau, khẳng định nào sai? Z
xα+1
1
A.
dx = ln |x| + C, C là hằng số.
B.
xα dx =
+ C, C là hằng số.
α+1
Z x
Z
C.
dx = x + C, C là hằng số.
D.
0dx = C, C là hằng số.
Câu 32. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 8 mặt.
C. 7 mặt.
D. 6 mặt.
x=t
Câu 33. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d :
y = −1 và hai mặt phẳng (P), (Q)
z = −t
lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I
thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).
9
9
A. (x − 3)2 + (y − 1)2 + (z − 3)2 = .
B. (x − 3)2 + (y + 1)2 + (z + 3)2 = .
4
4
9
9
2
2
2
2
2
2
C. (x + 3) + (y + 1) + (z + 3) = .
D. (x + 3) + (y + 1) + (z − 3) = .
4
4
2
4
3
Câu 34. Cho z là√nghiệm của phương trình√ x + x + 1 = 0. Tính P = z + 2z − z
−1 − i 3
−1 + i 3
A. P =
.
B. P =
.
C. P = 2.
D. P = 2i.
2
2
Câu 35. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số mặt của khối chóp bằng số cạnh của khối chóp.
B. Số đỉnh của khối chóp bằng 2n + 1.
C. Số cạnh của khối chóp bằng 2n.
D. Số mặt của khối chóp bằng 2n+1.
!x
1
1−x
Câu 36. [2] Tổng các nghiệm của phương trình 3 = 2 +
là
9
A. log2 3.
B. 1 − log2 3.
C. − log3 2.
D. − log2 3.
x−1
Câu 37. [3-1214d] Cho hàm số y =
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác đều ABI có hai đỉnh A, √
B thuộc (C), đoạn thẳng AB
√
√ có độ dài bằng
A. 2.
B. 2 2.
C. 2 3.
D. 6.
Câu 38. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m > 3.
B. m ≥ 3.
C. m ≤ 3.
D. m < 3.
Trang 3/10 Mã đề 1
Câu 39. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất không đổi và người đó khơng rút tiền ra?
A. 12 năm.
B. 13 năm.
C. 10 năm.
D. 11 năm.
x−2
Câu 40. Tính lim
x→+∞ x + 3
2
A. 2.
B. −3.
C. − .
D. 1.
3
Câu 41. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
B. k = .
C. k = .
D. k = .
A. k = .
6
18
15
9
0 0
0 0 0
Câu 42. Mặt phẳng (AB C ) chia khối lăng trụ ABC.A B C thành các khối đa diện nào?
A. Một khối chóp tam giác, một khối chóp ngữ giác.
B. Hai khối chóp tứ giác.
C. Hai khối chóp tam giác.
D. Một khối chóp tam giác, một khối chóp tứ giác.
Câu 43. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 1.
B. 2.
C. Vô nghiệm.
!4x
!2−x
3
2
≤
là
Câu 44. Tập các số x thỏa mãn
3
2
"
!
#
#
2
2
2
A. − ; +∞ .
B. −∞; .
C. −∞; .
3
3
5
D. 3.
"
!
2
; +∞ .
D.
5
Câu 45. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (−∞; 2).
B. Hàm số nghịch biến trên khoảng (0; 2).
C. Hàm số đồng biến trên khoảng (0; +∞).
D. Hàm số đồng biến trên khoảng (0; 2).
Câu 46. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Khơng có.
B. Có vơ số.
C. Có hai.
D. Có một.
Câu 47. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
9
11
.
B. 7.
C. .
D. 5.
A.
2
2
Câu 48. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 6.
B. 3.
C. 8.
D. 4.
Câu 49. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m ≥ .
B. m > .
C. m < .
D. m ≤ .
4
4
4
4
Câu 50. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
Câu 51. [1] Hàm số nào đồng biến trên khoảng (0; +∞)?
A. y = log 41 x.
B. y = log π4 x.
√
C. y = loga x trong đó a = 3 − 2.
D. y = log √2 x.
Trang 4/10 Mã đề 1
Z
Câu 52. Cho
A. 0.
1
2
ln(x + 1)
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
x2
B. −3.
C. 3.
Câu 53. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối bát diện đều.
C. Khối lập phương.
Câu 54. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình tam giác.
B. Hình lăng trụ.
C. Hình lập phương.
D. 1.
D. Khối tứ diện đều.
D. Hình chóp.
Câu 55. Cho hàm số y = x3 − 2x2 + x + 1. Mệnh
! đề nào dưới đây đúng?
1
A. Hàm số nghịch biến trên khoảng −∞; .
B. Hàm số nghịch biến trên khoảng (1; +∞).
! 3
!
1
1
C. Hàm số đồng biến trên khoảng ; 1 .
D. Hàm số nghịch biến trên khoảng ; 1 .
3
3
√
√
Câu 56. Phần thực√và phần ảo của số √
phức z = 2 − 1 − 3i lần lượt l √
√
A. Phần thực là √2 − 1, phần ảo là √3.
B. Phần thực là 1√− 2, phần ảo là − √3.
C. Phần thực là 2, phần ảo là 1 − 3.
D. Phần thực là 2 − 1, phần ảo là − 3.
Câu 57. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Trục thực.
B. Hai đường phân giác y = x và y = −x của các góc tọa độ.
C. Trục ảo.
D. Đường phân giác góc phần tư thứ nhất.
Câu 58. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 1.
B. 2.
C. 0.
D. 3.
Câu 59. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m = 0.
B. m < 0.
C. m > 0.
D. m , 0.
Câu 60. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = 0.
B. m = −2.
C. m = −3.
D. m = −1.
1
5
Câu 61. [2] Tập xác định của hàm số y = (x − 1) là
A. D = (1; +∞).
B. D = R.
C. D = (−∞; 1).
D. D = R \ {1}.
Câu 62. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số đồng biến trên khoảng (1; 2).
B. Hàm số nghịch biến trên khoảng (−∞; 0).
C. Hàm số nghịch biến trên khoảng (0; 1).
D. Hàm số nghịch biến trên khoảng (1; +∞).
Câu 63. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng
√
a 3
a
a
A. a.
B. .
C.
.
D. .
3
2
2
d = 120◦ .
Câu 64. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
A.
.
B. 2a.
C. 4a.
D. 3a.
2
Câu 65. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = (0; +∞).
B. D = R \ {0}.
C. D = R.
D. D = R \ {1}.
Câu 66. Khối đa diện đều loại {3; 3} có số mặt
A. 5.
B. 2.
C. 4.
Câu 67. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. −7, 2.
B. 72.
C. 7, 2.
D. 3.
D. 0, 8.
Trang 5/10 Mã đề 1
Câu 68. Trong các mệnh đề dưới đây, mệnh đề nào
! sai?
un
= +∞.
A. Nếu lim un = a > 0 và lim vn = 0 thì lim
vn
B. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
C. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
v
n
!
un
= 0.
D. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
vn
2
Câu 69. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 7.
B. 8.
C. 6.
D. 5.
9x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
Câu 70. [2-c] Cho hàm số f (x) = x
9 +3
1
A. 2.
B. .
C. −1.
D. 1.
2
Câu 71. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 4 lần.
B. Tăng gấp 6 lần.
C. Tăng gấp 8 lần.
D. Tăng gấp đơi.
√
Câu 72. [2] Phương trình log4 (x + 1)2 + 2 = log √2 4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
A. 3 nghiệm.
B. 2 nghiệm.
C. Vô nghiệm.
D. 1 nghiệm.
!
!
!
4x
1
2
2016
Câu 73. [3] Cho hàm số f (x) = x
. Tính tổng T = f
+f
+ ··· + f
4 +2
2017
2017
2017
2016
.
D. T = 2016.
A. T = 2017.
B. T = 1008.
C. T =
2017
Câu 74. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
A.
.
B.
.
C. a3 .
D.
.
24
12
6
Câu 75. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 12 mặt.
B. 20 đỉnh, 30 cạnh, 12 mặt.
C. 12 đỉnh, 30 cạnh, 20 mặt.
D. 20 đỉnh, 30 cạnh, 20 mặt.
√
Câu 76. [1] Biết log6 a = 2 thì log6 a bằng
A. 4.
B. 6.
C. 108.
D. 36.
√
2
Câu 77. √Xác định phần ảo của số
√ phức z = ( 2 + 3i)
B. 6 2.
C. −7.
D. 7.
A. −6 2.
√
Câu 78. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã
√
√ cho là
√
√
πa3 3
πa3 3
πa3 3
πa3 6
A. V =
.
B. V =
.
C. V =
.
D. V =
.
6
2
3
6
Câu 79. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = ln x − 1.
B. y0 = 1 − ln x.
C. y0 = x + ln x.
D. y0 = 1 + ln x.
Câu 80. [1] Cho a > 0, a , 1. Giá trị của biểu thức log 1a a2 bằng
1
1
A. − .
B. 2.
C. .
2
2
n−1
Câu 81. Tính lim 2
n +2
A. 0.
B. 3.
C. 2.
D. −2.
D. 1.
Trang 6/10 Mã đề 1
2
Câu 82. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 3 − log2 3.
B. 1 − log3 2.
C. 2 − log2 3.
D. 1 − log2 3.
Câu 83. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 1.
B. 2.
C. 3.
D. Vô số.
Câu 84. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngồi ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
B. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
C. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
D. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
Câu 85. [2]√Tìm m để giá trị lớn nhất√của hàm số y = 2x3 + (m2 + 1)2 x trên [0; 1] bằng 8
A. m = ± 2.
B. m = ± 3.
C. m = ±1.
D. m = ±3.
Câu 86. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
B. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
C. Hàm số nghịch biến trên khoảng (−2; 1).
D. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
Câu 87. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 220 triệu.
B. 216 triệu.
C. 210 triệu.
D. 212 triệu.
Câu 88. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m > 1.
B. m ≥ 0.
C. m > 0.
D. m > −1.
Câu 89. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. 3n3 lần.
B. n2 lần.
C. n lần.
D. n3 lần.
Câu 90. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Một hình chóp tam giác và một hình chóp tứ giác.
B. Một hình chóp tứ giác và một hình chóp ngũ giác.
C. Hai hình chóp tứ giác.
D. Hai hình chóp tam giác.
2n + 1
Câu 91. Tìm giới hạn lim
n+1
A. 1.
B. 3.
C. 0.
D. 2.
Câu 92. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 91cm3 .
B. 64cm3 .
C. 84cm3 .
D. 48cm3 .
Câu 93. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3. Tính
f (2) + f (4)?
A. 11.
B. 10.
C. 4.
D. 12.
Z 1
Câu 94. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
1
A. .
4
0
B.
1
.
2
C. 0.
D. 1.
Trang 7/10 Mã đề 1
Câu 95. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD
√ là
3
10a 3
.
D. 10a3 .
A. 40a3 .
B. 20a3 .
C.
3
1 − xy
Câu 96. [12210d] Xét các số thực dương x, y thỏa mãn log3
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
x + 2y
Pmin của P = x√+ y.
√
√
√
18 11 − 29
9 11 + 19
2 11 − 3
9 11 − 19
. B. Pmin =
. C. Pmin =
. D. Pmin =
.
A. Pmin =
9
21
9
3
Câu 97. [1] Giá trị của biểu thức 9log3 12 bằng
A. 24.
B. 4.
2n + 1
Câu 98. Tính giới hạn lim
3n + 2
1
2
B. .
A. .
3
2
2−n
Câu 99. Giá trị của giới hạn lim
bằng
n+1
A. 2.
B. 0.
C. 144.
C.
3
.
2
C. 1.
D. 2.
D. 0.
D. −1.
Câu 100. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. −1.
B. 1.
C. 6.
D. 2.
1
Câu 101. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. (−∞; −2] ∪ [−1; +∞). B. (−∞; −2) ∪ (−1; +∞). C. −2 < m < −1.
D. −2 ≤ m ≤ −1.
Câu 102. Tính lim
A. −∞.
cos n + sin n
n2 + 1
B. 1.
C. 0.
D. +∞.
Câu 103. Khẳng định nào sau đây đúng?
A. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
B. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
C. Hình lăng trụ tứ giác đều là hình lập phương.
D. Hình lăng trụ đứng là hình lăng trụ đều.
Câu 104. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là 4, phần ảo là 1.
B. Phần thực là −1, phần ảo là 4.
C. Phần thực là −1, phần ảo là −4.
D. Phần thực là 4, phần ảo là −1.
Câu 105. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 1.
B. 2.
C. 0.
D. 3.
Câu 106. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với đáy một góc 60◦ . Thể tích khối
√ chóp S .ABCD là 3 √
√
3
√
2a 3
a 3
a3 3
3
A. a 3.
B.
.
C.
.
D.
.
3
3
6
Trang 8/10 Mã đề 1
π π
Câu 107. Cho hàm số y = 3 sin x − 4 sin3 x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. 7.
B. 3.
C. 1.
D. −1.
Câu 108. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Hai mặt.
B. Năm mặt.
C. Ba mặt.
D. Bốn mặt.
!
x+1
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
Câu 109. [3] Cho hàm số f (x) = ln 2017 − ln
x
2017
2016
4035
A. 2017.
B.
.
C.
.
D.
.
2018
2017
2018
Câu 110. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của
P = xy + x + 2y + 17
A. −12.
B. −9.
C. −5.
D. −15.
x−1 y z+1
= =
và
Câu 111. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình
2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. 2x − y + 2z − 1 = 0.
B. 10x − 7y + 13z + 3 = 0.
C. −x + 6y + 4z + 5 = 0.
D. 2x + y − z = 0.
√
x2 + 3x + 5
Câu 112. Tính giới hạn lim
x→−∞
4x − 1
1
1
A. 0.
B. .
C. − .
D. 1.
4
4
Câu 113. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối lập phương.
C. Khối tứ diện đều.
D. Khối 12 mặt đều.
Câu 114. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
23
1637
1728
1079
A.
.
B.
.
C.
.
D.
.
68
4913
4913
4913
2
x
Câu 115. [2] Tìm m để giá trị nhỏ nhất của hàm số y = 2x3 + (m
2
√ + 1)2 trên [0; 1] bằng √
D. m = ± 3.
A. m = ±3.
B. m = ±1.
C. m = ± 2.
Câu 116. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
A. lim [ f (x) − g(x)] = a − b.
B. lim [ f (x) + g(x)] = a + b.
x→+∞
x→+∞
f (x) a
C. lim [ f (x)g(x)] = ab.
D. lim
= .
x→+∞
x→+∞ g(x)
b
0 0 0 0
Câu 117.
a. Khoảng cách từ C đến √
AC 0 bằng
√ ABCD.A B C D cạnh √
√ [2] Cho hình lâp phương
a 6
a 6
a 6
a 3
.
B.
.
C.
.
D.
.
A.
3
2
7
2
Câu 118. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 12 cạnh, 4 mặt.
B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
Câu 119. Khối đa diện đều loại {5; 3} có số mặt
A. 20.
B. 30.
1
Câu 120. Hàm số y = x + có giá trị cực đại là
x
A. 2.
B. −1.
C. 8.
D. 12.
C. 1.
D. −2.
8
Câu 121. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 96.
B. 81.
C. 64.
D. 82.
Trang 9/10 Mã đề 1
√
Câu 122. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh
bên S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng
√
√
√
3a 38
3a 58
a 38
3a
A.
.
B.
.
C.
.
D.
.
29
29
29
29
Câu 123. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 32π.
B. 16π.
C. 8π.
D. V = 4π.
2
ln x
m
Câu 124. [3] Biết rằng giá trị lớn nhất của hàm số y =
trên đoạn [1; e3 ] là M = n , trong đó n, m là
x
e
các số tự nhiên. Tính S = m2 + 2n3
A. S = 135.
B. S = 22.
C. S = 32.
D. S = 24.
Câu 125. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Năm cạnh.
B. Bốn cạnh.
C. Ba cạnh.
D. Hai cạnh.
Câu 126. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
Thể tích khối chóp S .ABC √là
vng góc
√ với đáy và S C = a 3.3 √
√
a3 3
a 6
2a3 6
a3 3
A.
.
B.
.
C.
.
D.
.
4
12
9
2
x3 − 1
Câu 127. Tính lim
x→1 x − 1
A. 0.
B. 3.
C. −∞.
D. +∞.
Câu 128. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 50, 7 triệu đồng.
B. 3, 5 triệu đồng.
C. 70, 128 triệu đồng. D. 20, 128 triệu đồng.
Câu 129. Khối đa diện đều loại {3; 3} có số đỉnh
A. 3.
B. 5.
C. 2.
Câu 130. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. R.
B. (−∞; 1).
C. (0; 2).
D. 4.
D. (2; +∞).
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 10/10 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
B
2. A
3. A
4. A
D
5.
C
7.
D
6.
C
8.
9.
B
10.
D
11.
B
12.
D
13.
14.
C
15. A
16. A
17. A
18.
D
B
C
20.
D
21. A
22.
D
23. A
24.
19.
25.
26.
C
27.
D
28. A
29.
D
30.
31.
B
32. A
33.
B
34.
35.
C
36.
37.
C
38.
C
B
B
C
D
B
40.
39. A
42.
D
D
43. A
45.
44. A
46.
C
D
47.
C
48.
B
49.
D
50.
B
51.
D
52.
B
53.
D
55.
D
54. A
56.
D
58.
60.
62.
57.
59.
C
D
61. A
B
63. A
C
64. A
66.
B
65.
67. A
C
68. A
69. A
1
C
70.
D
C
71.
72.
B
73.
B
74.
B
75.
B
77.
B
76. A
78.
79.
C
80.
D
82.
D
81. A
83.
C
84. A
B
85. A
86.
D
87.
D
88.
D
89.
D
90.
D
91.
D
D
92.
B
93.
94.
B
95.
D
96.
97.
98. A
D
D
C
101.
102.
C
103. A
D
C
99.
100.
104.
B
105.
B
106.
C
107.
108.
C
109.
B
111.
B
113.
B
115.
B
110. A
C
112.
114.
B
116.
118.
D
119.
D
129.
121.
B
125.
127.
117. A
B
120.
122.
C
D
B
124.
126.
C
C
B
128.
B
D
130.
2
D
C