Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (316)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (151.99 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai đường thẳng BD và S C bằng




a 6
a 6
a 6
.
C.
.
D.
.
A. a 6.
B.
3
2
6
[ = 60◦ , S O
Câu 2. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc với mặt đáy và S O = a.


√ Khoảng cách từ O đến (S√BC) bằng


a 57
2a 57
a 57
A. a 57.
B.
.
C.
.
D.
.
19
19
17
!2x−1
!2−x
3
3
Câu 3. Tập các số x thỏa mãn


5
5
A. (−∞; 1].
B. [3; +∞).
C. (+∞; −∞).
D. [1; +∞).
5

Câu 4. Tính lim
n+3
A. 1.
B. 2.
C. 3.
D. 0.
Câu 5. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 3.
B. 0, 4.
C. 0, 2.
D. 0, 5.
Câu 6. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R \ {1}.
B. D = (0; +∞).

C. D = R.

Câu 7. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Bốn mặt.
B. Hai mặt.
C. Ba mặt.

D. D = R \ {0}.
D. Năm mặt.

Câu 8. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 4 đỉnh, 12 cạnh, 4 mặt.

D. 8 đỉnh, 12 cạnh, 6 mặt.




Câu 9. [12215d] Tìm m để phương trình 4 x+ 1−x − 4.2 x+ 1−x − 3m + 4 = 0 có nghiệm
9
3
3
A. 0 ≤ m ≤ .
B. m ≥ 0.
C. 0 ≤ m ≤ .
D. 0 < m ≤ .
4
4
4
Câu 10. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. f (x) có giới hạn hữu hạn khi x → a.
B. lim f (x) = f (a).
x→a
C. lim+ f (x) = lim− f (x) = +∞.
D. lim+ f (x) = lim− f (x) = a.
x→a
x→a
x→a
x→a

Câu 11. √
Thể tích của khối lập phương có cạnh bằng a 2
3



2a 2
A.
.
B. V = 2a3 .
C. 2a3 2.
D. V = a3 2.
3
Câu 12. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 64cm3 .
B. 91cm3 .
C. 84cm3 .
D. 48cm3 .
log(mx)
Câu 13. [3-1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0 ∨ m = 4.
B. m < 0 ∨ m > 4.
C. m < 0.
D. m ≤ 0.
2

2

Câu 14. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
Trang 1/10 Mã đề 1



(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (I) và (II).

B. (I) và (III).

C. (II) và (III).

D. Cả ba mệnh đề.

Câu 15. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng
thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay
đổi trong thời gian gửi.
A. 0, 6%.
B. 0, 8%.
C. 0, 5%.
D. 0, 7%.
x−3
Câu 16. [1] Tính lim
bằng?
x→3 x + 3
A. 1.
B. +∞.
C. 0.
D. −∞.
Câu 17. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập

vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 10 năm.
B. 8 năm.
C. 7 năm.
D. 9 năm.
Câu 18. Khối đa diện đều loại {3; 5} có số cạnh
A. 8.
B. 20.

C. 30.

D. 12.

Câu 19. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC)
một góc bằng 60◦ . Thể√tích khối chóp S .ABC là


a3 3
a3
a3 3
a3 3
.
B.
.
C.
.
D.
.

A.
12
8
4
4
Câu 20. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
ab
1
ab
1
A. √
.
B. √
.
C. 2
.
.
D.

a + b2
a2 + b2
2 a2 + b2
a2 + b2
Câu 21. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
B. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
C. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngồi ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
D. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
Câu 22. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực

x≥1
A. m ≤ 3.
B. m < 3.
C. m > 3.
D. m ≥ 3.
Câu 23. Thể tích của khối lăng√trụ tam giác đều có cạnh √
bằng 1 là:

3
3
3
3
B.
.
C.
.
D.
.
A. .
4
12
2
4
Câu 24. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
A. T = e + .
B. T = e + 1.
C. T = e + 3.

D. T = 4 + .
e
e
Câu 25. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của

A. Giảm đi n lần.
B. Tăng lên n lần.
C. Tăng lên (n − 1) lần. D. Không thay đổi.
Trang 2/10 Mã đề 1


x+3
Câu 26. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng
x−m
(0; +∞)?
A. 2.
B. 3.
C. 1.
D. Vơ số.
Câu 27. Khối chóp ngũ giác có số cạnh là
A. 10 cạnh.
B. 12 cạnh.

C. 11 cạnh.

D. 9 cạnh.

Câu 28. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 14.

B. ln 10.
C. ln 4.
D. ln 12.
Câu 29. [2] Tổng các nghiệm của phương trình 2 x +2x = 82−x là
A. −5.
B. 5.
C. −6.


4n2 + 1 − n + 2
Câu 30. Tính lim
bằng
2n − 3
A. +∞.
B. 2.
C. 1.
2

D. 6.

3
.
2
Câu 31. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m < 3.
B. m ≥ 3.
C. m ≤ 3.
D. m > 3.
D.


Câu 32. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
B. Số đỉnh của khối chóp bằng số mặt của khối chóp.
C. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
D. Số cạnh của khối chóp bằng số mặt của khối chóp.
Z 3
x
a
a
Câu 33. Cho I =
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá

d
d
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = 16.
B. P = −2.
C. P = 4.
D. P = 28.
Câu 34. Khối đa diện đều loại {3; 3} có số đỉnh
A. 2.
B. 3.

C. 4.

Câu 35. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
1
A. f 0 (0) =

.
B. f 0 (0) = ln 10.
C. f 0 (0) = 1.
ln 10

D. 5.
D. f 0 (0) = 10.

Câu 36. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
A. 64.

B. 81.

C. 96.

Câu 37. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 3.
B. 2.
C. 1.

D. 82.

8
x

D. 0.

Câu 38. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Đường phân giác góc phần tư thứ nhất.
B. Hai đường phân giác y = x và y = −x của các góc tọa độ.

C. Trục thực.
D. Trục ảo.

Câu 39. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.
√ tích khối chóp S .ABC3 √


3
a 6
a 6
a3 6
a3 2
A.
.
B.
.
C.
.
D.
.
18
6
36
6
Trang 3/10 Mã đề 1


Câu 40. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là

A. (1; 2).
B. [−1; 2).
C. [1; 2].

D. (−∞; +∞).

Câu 41. Khối đa diện đều loại {5; 3} có số mặt
A. 30.
B. 8.

D. 20.

C. 12.

Câu 42. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 6 lần.
B. Tăng gấp đôi.
C. Tăng gấp 4 lần.
D. Tăng gấp 8 lần.
2−n
bằng
Câu 43. Giá trị của giới hạn lim
n+1
A. −1.
B. 1.
C. 0.
D. 2.
Câu 44. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
9

11
.
B. 7.
C. 5.
D. .
A.
2
2

d = 30 , biết S BC là tam giác đều
Câu 45. [3] Cho hình chóp S .ABC có đáy là tam giác vng tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
A.
.
B.
.
C.
.
D.
.
9
16
26

13
Câu 46. Khối đa diện đều loại {3; 4} có số mặt
A. 6.
B. 8.
C. 12.
D. 10.
Câu 47. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 2ac
3b + 3ac
3b + 2ac
.
B.
.
C.
.
A.
c+2
c+3
c+2
Câu 48. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 6 mặt.
C. 9 mặt.
log2 240 log2 15

+ log2 1 bằng
Câu 49. [1-c] Giá trị biểu thức
log3,75 2 log60 2
A. −8.
B. 4.

C. 1.

D.

3b + 3ac
.
c+1

D. 4 mặt.

D. 3.

Câu 50. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
0
đến đường
√ thẳng BD bằng



b a2 + c2
a b2 + c2
c a2 + b2
abc b2 + c2
A. √
.
B. √
.
C. √
.
D. √

.
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
Câu 51. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 22.
B. y(−2) = 2.
C. y(−2) = 6.
D. y(−2) = −18.
Câu 52. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối √
chóp S .ABMN là



3
2a3 3
a3 3
4a3 3
5a 3
.
B.
.
C.
.
D.
.

A.
3
3
2
3
Câu 53. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 8 cạnh, 4 mặt. B. 4 đỉnh, 6 cạnh, 4 mặt. C. 3 đỉnh, 3 cạnh, 3 mặt. D. 6 đỉnh, 6 cạnh, 4 mặt.
Câu 54. Cho
√ số phức z thỏa mãn |z + 3| = 5 và |z − 2i| = |z − 2√− 2i|. Tính |z|.
A. |z| = 10.
B. |z| = 17.
C. |z| = 17.
D. |z| = 10.
 π π
Câu 55. Cho hàm số y = 3 sin x − 4 sin3 x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. −1.
B. 1.
C. 7.
D. 3.
Trang 4/10 Mã đề 1


2
Câu 56. Tính
√ mơ đun của số phức z biết
√ (1 + 2i)z = 3 + 4i.
A. |z| = 5.
B. |z| = 2 5.
C. |z| = 5.


D. |z| =

√4
5.

7n2 − 2n3 + 1
Câu 57. Tính lim 3
3n + 2n2 + 1
2
7
A. - .
B. 0.
C. 1.
D. .
3
3
Câu 58. Cho hình chóp S .ABCD có √
đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết
a 5. Thể tích khối chóp √
S .ABCD là
√ S H ⊥ (ABCD), S A =
2a3 3
4a3
4a3 3
2a3
A.
.
B.

.
C.
.
D.
.
3
3
3
3
d = 60◦ . Đường chéo
Câu 59. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vng tại A, AC = a, ACB
BC 0 của mặt bên (BCC 0 B0 ) tạo với mặt phẳng (AA0C 0C) một góc 30◦ . Thể tích của khối lăng trụ ABC.A0 B0C 0





2a3 6
a3 6
4a3 6
3
A.
.
B.
.
C. a 6.
D.
.
3
3

3
Câu 60. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp đã cho là 1728. Khi đó, các kích thước của hình hộp
√ là√
A. 6, 12, 24.
B. 8, 16, 32.
C. 2 3, 4 3, 38.
D. 2, 4, 8.
Câu 61. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
B. − < m < 0.
C. m ≥ 0.
D. m ≤ 0.
A. m > − .
4
4
Câu 62. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C) và (A0C 0 D) bằng




a 3
a 3
2a 3
A. a 3.
B.
.

C.
.
D.
.
3
2
2
Câu 63. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 120 cm2 .
B. 1200 cm2 .
C. 160 cm2 .
D. 160 cm2 .
Câu 64. Dãy! số nào có giới hạn bằng 0?
n
6
.
B. un = n2 − 4n.
A. un =
5

!n
−2
C. un =
.
3

D. un =

Câu 65. Khối đa diện loại {3; 3} có tên gọi là gì?

A. Khối 12 mặt đều.
B. Khối tứ diện đều.
C. Khối lập phương.
Z 2
ln(x + 1)
Câu 66. Cho
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
x2
1
A. 0.
B. −3.
C. 1.

n3 − 3n
.
n+1

D. Khối bát diện đều.

D. 3.

Câu 67. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 8 đỉnh, 10 cạnh, 6 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
Câu 68. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 70, 128 triệu đồng. B. 50, 7 triệu đồng.

C. 3, 5 triệu đồng.
D. 20, 128 triệu đồng.
2

2

sin x
Câu 69. [3-c] Giá trị nhỏ nhất và√giá trị lớn nhất của hàm số f (x)
+ 2cos x √
lần lượt là
√ =2
A. 2 và 3.
B. 2 2 và 3.
C. 2 và 2 2.
D. 2 và 3.

Trang 5/10 Mã đề 1


d = 300 .
Câu 70. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vng tại A. BC = 2a, ABC
Độ dài cạnh bên
CC 0 = 3a. Thể tích V của
√ khối lăng trụ đã cho.

3
3

3a 3
a 3

.
B. V =
.
C. V = 3a3 3.
D. V = 6a3 .
A. V =
2
2
Câu 71. Khối đa diện đều loại {5; 3} có số cạnh
A. 12.
B. 30.
C. 20.
D. 8.
ln x p 2
1
Câu 72. Gọi F(x) là một nguyên hàm của hàm y =
ln x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
8
1
1
8
A. .
B. .
C. .
D. .
9
9
3

3
Câu 73. Khối đa diện đều loại {4; 3} có số mặt
A. 6.
B. 10.
C. 8.
D. 12.
Câu 74. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim− f (x) = f (a) và lim+ f (x) = f (b).
B. lim− f (x) = f (a) và lim− f (x) = f (b).
x→a
x→a
x→b
x→b
C. lim+ f (x) = f (a) và lim− f (x) = f (b).
D. lim+ f (x) = f (a) và lim+ f (x) = f (b).
x→a

x→a

x→b

x→b

Câu 75. [2-c] Giá trị nhỏ nhất của hàm số y = (x − 2)e trên đoạn [−1; 2] là
A. −2e2 .
B. 2e4 .
C. −e2 .
D. 2e2 .
2


2x

d = 120◦ .
Câu 76. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
.
D. 3a.
A. 4a.
B. 2a.
C.
2
0
Câu 77. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ
√ C đến đường thẳng BB bằng 2, khoảng
0
0
cách từ A đến các đường thẳng BB và CC lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2
3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng
3


2 3
A.
.

B. 2.
C. 1.
D. 3.
3
Câu 78. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ơng ta muốn
hồn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ơng ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 2, 22 triệu đồng.
B. 3, 03 triệu đồng.
C. 2, 20 triệu đồng.
D. 2, 25 triệu đồng.
Câu 79. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. Vô nghiệm.
B. 2.
C. 1.

D. 3.

Câu 80. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt
√ phẳng vng góc với (ABCD). Thể tích khối chóp
√ S .ABCD là
3
3
3

a 3
a 3

a 2
.
B.
.
C. a3 3.
D.
.
A.
2
2
4
Câu 81. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √

3
3
a 6
a 6
a3 6
a3 3
A.
.
B.
.
C.
.
D.
.

8
24
48
24
q
2
Câu 82. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 = 0
√ i
h
có ít nhất một nghiệm thuộc đoạn 1; 3 3
Trang 6/10 Mã đề 1


A. m ∈ [0; 1].

B. m ∈ [0; 4].

C. m ∈ [−1; 0].

D. m ∈ [0; 2].

x+1
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
2017
2016
4035
A.
.
B.

.
C.
.
D. 2017.
2018
2017
2018
Câu 84. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất không thay đổi?
A. 102.424.000.
B. 102.016.000.
C. 102.016.000.
D. 102.423.000.
!

Câu 83. [3] Cho hàm số f (x) = ln 2017 − ln

Câu 85. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
67
.
D. −4.
A. −2.
B. −7.
C.
27
1
Câu 86. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 ln đồng biến trên
3


một đoạn có độ dài bằng 24.
A. m = −3.
B. −3 ≤ m ≤ 4.
C. m = 4.
D. m = −3, m = 4.
Câu 87. Hàm số y =
A. x = 1.

x2 − 3x + 3
đạt cực đại tại
x−2
B. x = 0.

C. x = 3.

D. x = 2.

Câu 88. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 2400 m.
B. 1202 m.
C. 6510 m.
D. 1134 m.
Câu 89. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Chỉ có (II) đúng.
B. Cả hai đều sai.


C. Cả hai đều đúng.

D. Chỉ có (I) đúng.

0

Câu 90. Cho hai đường thẳng d và d cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Khơng có.
B. Có một.
C. Có vơ số.
D. Có hai.
Câu 91. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể
là:
A. 27cm3 .
B. 46cm3 .
C. 64cm3 .
log 2x
Câu 92. [1229d] Đạo hàm của hàm số y =

x2
1 − 2 ln 2x
1 − 4 ln 2x
1
A. y0 = 3
.
B. y0 =
.
C. y0 = 3

.
3
x ln 10
2x ln 10
2x ln 10
Câu 93. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. −1.
B. 6.
C. 2.

tích của khối lập phương đó
D. 72cm3 .

D. y0 =

1 − 2 log 2x
.
x3

D. 1.

Câu 94. Trong các khẳng định sau, khẳng định nào sai?
A. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
B. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
C. Cả ba đáp án trên.

D. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
Trang 7/10 Mã đề 1



Câu 95. Tính lim
x→5

x2 − 12x + 35
25 − 5x
2
B. .
5

2
D. − .
5
Z 1
6
2
3
Câu 96. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
. Tính
f (x)dx.
0
3x + 1
A. +∞.

A. 2.

B. −1.

C. −∞.

C. 4.


D. 6.

Câu 97. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai
quyển sách cùng một môn nằm cạnh nhau là
1
1
2
9
A.
.
B. .
C. .
D.
.
10
5
5
10
1
Câu 98. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (1; +∞).
B. (−∞; 3).
C. (−∞; 1) và (3; +∞). D. (1; 3).
Câu 99. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|





12 17
B.
.
C. 68.
D. 34.
A. 5.
17
Câu 100. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi
G la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
B. k = .
C. k = .
D. k = .
A. k = .
9
18
6
15
Câu 101. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Hai cạnh.
B. Năm cạnh.
C. Bốn cạnh.
D. Ba cạnh.

2

Câu 102. Xác định phần ảo của √
số phức z = ( 2 + 3i)

A. −7.
B. 6 2.
C. −6 2.
D. 7.
Câu 103. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. 22016 .
B. 1.
C. 0.
D. e2016 .
9t
Câu 104. [4] Xét hàm số f (t) = t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao
9 + m2
cho f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. 1.
B. 0.
C. 2.
D. Vô số.
Câu 105. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
A.
.
B. 27.
C. 12.
D. 18.

2
Câu 106. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi
M, N và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M,
√ N, P bằng



20 3
14 3
A.
.
B. 8 3.
C.
.
D. 6 3.
3
3
2
Câu 107. Cho z1 , z2 là hai nghiệm của phương trình z + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = −10.
B. P = −21.
C. P = 10.
D. P = 21.
cos n + sin n
Câu 108. Tính lim
n2 + 1
A. 1.
B. −∞.
C. 0.

D. +∞.
Trang 8/10 Mã đề 1


!
!
!
4x
1
2
2016
Câu 109. [3] Cho hàm số f (x) = x
. Tính tổng T = f
+f
+ ··· + f
4 +2
2017
2017
2017
2016
A. T = 2016.
B. T = 2017.
C. T = 1008.
D. T =
.
2017
Câu 110. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc
45◦ . Tính
√ thể tích của khối chóp 3S .ABC theo a



3
a 15
a
a3 15
a3 5
A.
.
B.
.
C.
.
D.
.
5
3
25
25
Z 1
Câu 111. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
0

1
.
C. 1.
2
Câu 112. Khẳng định nào sau đây đúng?
A. Hình lăng trụ đứng là hình lăng trụ đều.
B. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.

C. Hình lăng trụ tứ giác đều là hình lập phương.
D. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
A. 0.

B.

D.

1
.
4


Câu 113. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh
bên S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng



3a 38
3a
a 38
3a 58
.
B.
.
C.
.
D.
.

A.
29
29
29
29
x+1
Câu 114. Tính lim
bằng
x→+∞ 4x + 3
1
1
C. .
D. 3.
A. 1.
B. .
3
4
Câu 115. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vuông cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng
√ góc với đáy, S C = a3 √3. Thể tích khối chóp S .ABCD là
a3 3
a 3
a3
A.
.
B.
.
C. a3 .
D.

.
9
3
3
x3 − 1
Câu 116. Tính lim
x→1 x − 1
A. 3.
B. +∞.
C. 0.
D. −∞.
Câu 117. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 21.
B. 22.
C. 24.
D. 23.
0 0 0 0
Câu 118.
a. Khoảng cách từ C đến √
AC 0 bằng
√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh √
a 6
a 3
a 6
a 6
A.
.

B.
.
C.
.
D.
.
7
2
2
3
Câu 119. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Hai khối chóp tứ giác.
B. Một khối chóp tam giác, một khối chóp tứ giác.
C. Hai khối chóp tam giác.
D. Một khối chóp tam giác, một khối chóp ngữ giác.

Câu 120. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 6.
B. V = 5.
C. V = 3.
D. V = 4.
Trang 9/10 Mã đề 1


Câu 121. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 0, 8.
B. 7, 2.
C. −7, 2.


D. 72.

Câu 122. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 18 lần.
B. Tăng gấp 9 lần.
C. Tăng gấp 3 lần.
D. Tăng gấp 27 lần.
1
Câu 123. [1] Giá trị của biểu thức log √3
bằng
10
1
1
A. 3.
B. − .
C. .
D. −3.
3
3
Câu 124. [1] Hàm số nào đồng biến trên khoảng (0; +∞)?
B. y = log 14 x.
A. y = log π4 x.

C. y = loga x trong đó a = 3 − 2.
D. y = log √2 x.
1
Câu 125. Hàm số y = x + có giá trị cực đại là
x
A. 2.

B. −1.
C.
d = 90◦ , ABC
d
Câu 126. Cho hình chóp S .ABC có BAC
(ABC). Thể
√ tích khối chóp S .ABC là

a3 2
.
B. 2a2 2.
A.
C.
24
x2 − 5x + 6
Câu 127. Tính giới hạn lim
x→2
x−2
A. −1.
B. 0.
C.

−2.

D. 1.

= 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥

a3 3
.

12


a3 3
D.
.
24

1.

D. 5.

Câu 128. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 7 mặt.
C. 8 mặt.

D. 9 mặt.

Câu 129. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 3.
B. Vô nghiệm.
C. 2.
D. 1.
Câu 130. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Thập nhị diện đều. B. Tứ diện đều.
C. Bát diện đều.
D. Nhị thập diện đều.
- - - - - - - - - - HẾT- - - - - - - - - -


Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

D

2.

3.

D

4.

5. A

B
D

6.

7.

C

8.


9.

C

10.

11.

C

12. A

C
D
B

14. A

13. A
15.

D

16.

C

17.


D

18.

C

19.

B

20. A

23.

D

26.

27. A

28. A

29. A

30.

35.

32.


B

33.

C
D

39. A
41.

C

43. A
D

45.
47.
50.

C
D
B

38.

B

40.

D


42.

D

44.

D
B
D

53.

B

55.

B

59.

C

61. A
B

64.
68.

B


57. A

60. A

66.

C

51.

B

56.

62.

B

49. A

54. A
58.

C

36.

46.


C

52.

B

34.

B

37.

C

24.

25. A

31.

D

22.

C

21.

63.
C


B
D
1

C

65.

B

67.

B

69.

B


70.

71.

B

72. A

73. A


74.

C

75.

76.

C

77.

78. A
80.

B
C
B

79.
B

82.

81.
C

C
B


83. A

84. A

85. A

86.

D

88.

87. A

C

89. A
D

90.

91. A

92. A
94.

D

93.


B

95.

B
D

96.

C

97.

98.

C

99.

B

102.

B

101.

D

103.


C

105.
107.

B
C
B

113. A

C

110.

C

114.
D

D

108.
112.

115.

C


106.

D

109.
111.

104.

B
C

116. A

117.

B

118.

D

119.

B

120.

D


122.

D

124.

D

121.
123.
125.

C
B

126. A

C

128.

127. A
129.

D

130. A

2


D



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×