TỐN PDF LATEX
TRẮC NGHIỆM ƠN THI MƠN TỐN THPT
(Đề thi có 10 trang)
Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
Câu 1. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 10 mặt.
B. 6 mặt.
C. 4 mặt.
D. 8 mặt.
Câu 2. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối √
chóp S .ABMN là
√
√
√
3
4a3 3
5a3 3
a3 3
2a 3
.
B.
.
C.
.
D.
.
A.
3
3
3
2
Câu 3. Khối đa diện đều loại {4; 3} có số cạnh
A. 12.
B. 10.
C. 20.
Câu 4. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. Không tồn tại.
B. 0.
C. 9.
log 2x
Câu 5. [1229d] Đạo hàm của hàm số y =
là
x2
1 − 2 ln 2x
1 − 4 ln 2x
1
.
B. y0 = 3
.
C. y0 =
.
A. y0 = 3
2x ln 10
x ln 10
2x3 ln 10
Câu 6. Hàm số y =
A. x = 2.
x2 − 3x + 3
đạt cực đại tại
x−2
B. x = 3.
D. 30.
D. 13.
D. y0 =
1 − 2 log 2x
.
x3
C. x = 0.
D. x = 1.
un
Câu 7. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. 1.
B. −∞.
C. 0.
D. +∞.
Câu 8. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số đỉnh của khối chóp bằng số mặt của khối chóp.
B. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
C. Số cạnh của khối chóp bằng số mặt của khối chóp.
D. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
Câu 9. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
ABC.A0 B0C 0 là
√
√
3
a3 3
a
3
a3
.
B.
.
C. a3 .
D.
.
A.
3
2
6
9t
Câu 10. [4] Xét hàm số f (t) = t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
9 + m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. 0.
B. Vô số.
C. 2.
D. 1.
Câu 11. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 50, 7 triệu đồng.
B. 3, 5 triệu đồng.
C. 20, 128 triệu đồng. D. 70, 128 triệu đồng.
√
√
Câu 12. Phần thực√và phần ảo của số phức
z
=
2
−
1
−
3i lần lượt √l
√
√
A. Phần thực là √2 − 1, phần ảo là −√ 3.
B. Phần thực là 2, √
phần ảo là 1 − √
3.
C. Phần thực là 2 − 1, phần ảo là 3.
D. Phần thực là 1 − 2, phần ảo là − 3.
Trang 1/10 Mã đề 1
3a
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng
√
a 2
a
2a
a
B.
.
C. .
D.
.
A. .
4
3
3
3
Câu 14. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
mơđun z.
√
√
√
√
5 13
A. 2.
B.
D. 26.
.
C. 2 13.
13
1
Câu 15. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (1; +∞).
B. (1; 3).
C. (−∞; 1) và (3; +∞). D. (−∞; 3).
Câu 13. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
Câu 16. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 6.
B. 1.
C. −1.
D. 2.
Câu 17. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 20 mặt.
B. 20 đỉnh, 30 cạnh, 20 mặt.
C. 20 đỉnh, 30 cạnh, 12 mặt.
D. 12 đỉnh, 30 cạnh, 12 mặt.
Câu 18. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 0.
B. 1.
C. 2.
D. 3.
0 0 0 0
0
Câu 19.√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
√ bằng
a 6
a 3
a 6
a 6
.
B.
.
C.
.
D.
.
A.
7
2
2
3
√
Câu 20. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã
√
√ cho là
√
√
3
πa 3
πa3 3
πa3 3
πa3 6
A. V =
.
B. V =
.
C. V =
.
D. V =
.
2
6
3
6
q
Câu 21. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23 x+ log23 x + 1+4m−1 = 0
√ i
h
có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 2].
B. m ∈ [−1; 0].
C. m ∈ [0; 1].
D. m ∈ [0; 4].
Câu 22. [1] Hàm số nào đồng√biến trên khoảng (0; +∞)?
A. y = loga x trong đó a = 3 − 2.
B. y = log π4 x.
C. y = log 41 x.
D. y = log √2 x.
Z 2
ln(x + 1)
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
Câu 23. Cho
x2
1
A. 0.
B. 3.
C. 1.
D. −3.
Câu 24. Giá trị của lim (3x2 − 2x + 1)
x→1
A. 2.
B. 1.
D. +∞.
C. 3.
Câu 25. Khẳng định nào sau đây đúng?
A. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
B. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
C. Hình lăng trụ đứng là hình lăng trụ đều.
D. Hình lăng trụ tứ giác đều là hình lập phương.
mx − 4
Câu 26. Tìm m để hàm số y =
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
A. 26.
B. 67.
C. 45.
D. 34.
Trang 2/10 Mã đề 1
Câu 27. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
11
9
C.
.
D. 5.
A. 7.
B. .
2
2
Câu 28.√Biểu thức nào sau đây khơng có nghĩa
A. (− 2)0 .
B. 0−1 .
C.
Câu 29. [1] Giá trị của biểu thức 9log3 12 bằng
A. 2.
B. 4.
C. 144.
√
−1.
−3
D. (−1)−1 .
D. 24.
Câu 30. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim+ f (x) = f (a) và lim+ f (x) = f (b).
B. lim+ f (x) = f (a) và lim− f (x) = f (b).
x→a
x→b
x→a
x→b
C. lim− f (x) = f (a) và lim− f (x) = f (b).
x→a
x→b
x→a
x→b
D. lim− f (x) = f (a) và lim+ f (x) = f (b).
Câu 31. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối chóp S .ABCD là
√
√
3
3
√
a3 5
a
a
15
6
A.
.
B. a3 6.
.
D.
.
C.
3
3
3
q
Câu 32. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23 x+ log23 x + 1+4m−1 =
√ i
h
0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 4].
B. m ∈ [−1; 0].
C. m ∈ [0; 2].
D. m ∈ [0; 1].
Z 1
Câu 33. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
1
A. .
2
0
B. 1.
C.
1
.
4
D. 0.
Câu 34. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1
1
A. .
B. 4.
C. .
D. .
8
4
2
Câu 35. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 3.
B. 2.
C. 1.
D. Vô nghiệm.
Câu 36. Cho hai hàm y = f (x), y = g(x)
Z có đạo hàm
Z trên R. Phát biểu nào sau đây đúng?
A. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f 0 (x)dx =
g0 (x)dx.
Z
Z
B. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
Z
Z
C. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
D. Nếu
f 0 (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
2
Câu 37. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 8.
B. 5.
C. 6.
D. 7.
Câu 38. Khối đa diện đều loại {3; 5} có số đỉnh
A. 12.
B. 20.
D. 8.
C. 30.
Câu 39. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của
nó
A. Khơng thay đổi.
B. Tăng lên (n − 1) lần. C. Giảm đi n lần.
D. Tăng lên n lần.
Trang 3/10 Mã đề 1
!
!
!
4x
1
2
2016
Câu 40. [3] Cho hàm số f (x) = x
. Tính tổng T = f
+f
+ ··· + f
4 +2
2017
2017
2017
2016
A. T = 1008.
B. T = 2016.
C. T = 2017.
D. T =
.
2017
Câu 41. [1] !Tập xác định của hàm số y != log3 (2x + 1) là
!
!
1
1
1
1
B. − ; +∞ .
C. −∞; − .
D.
; +∞ .
A. −∞; .
2
2
2
2
Câu 42. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −9.
B. −5.
C. −12.
D. −15.
Câu 43. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có một.
B. Có hai.
C. Khơng có.
D. Có vơ số.
Câu 44. Trong các khẳng định sau, khẳng định nào sai?
A. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
B. Z
F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
u0 (x)
dx = log |u(x)| + C.
C.
u(x)
D. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
Câu 45. Trong không gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0) lần
lượt là hình chiếu của B, C lên các cạnh! AC, AB. Tọa độ hình chiếu
! của A lên BC là
!
7
5
8
; 0; 0 .
C.
; 0; 0 .
D.
; 0; 0 .
A. (2; 0; 0).
B.
3
3
3
1
Câu 46. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. (−∞; −2) ∪ (−1; +∞). B. −2 < m < −1.
C. (−∞; −2] ∪ [−1; +∞). D. −2 ≤ m ≤ −1.
Câu 47. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (1; +∞).
B. (−1; 1).
C. (−∞; 1).
2n + 1
Câu 48. Tìm giới hạn lim
n+1
A. 2.
B. 0.
C. 1.
D. (−∞; −1).
D. 3.
Câu 49. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là 4, phần ảo là 1.
B. Phần thực là 4, phần ảo là −1.
C. Phần thực là −1, phần ảo là 4.
D. Phần thực là −1, phần ảo là −4.
Câu 50.
đề nào sau đây sai?
Z [1233d-2] Mệnh
Z
k f (x)dx = k
A.
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
Z
Z
B.
[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
Z
Z
C.
[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
D.
f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
!x
1
1−x
Câu 51. [2] Tổng các nghiệm của phương trình 3 = 2 +
là
9
A. log2 3.
B. − log3 2.
C. − log2 3.
D. 1 − log2 3.
Z
Trang 4/10 Mã đề 1
Câu 52. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với √
đáy một góc 60◦ . Thể tích khối chóp S .ABCD là √
√
√
a3 3
a3 3
2a3 3
3
A.
.
B. a 3.
C.
.
D.
.
6
3
3
1
Câu 53. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
0
y
A. xy = e + 1.
B. xy = e − 1.
C. xy0 = −ey + 1.
D. xy0 = −ey − 1.
Câu 54. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
5
7
A. .
B. 6.
C. 9.
D. .
2
2
Câu 55. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất không thay đổi?
A. 102.016.000.
B. 102.016.000.
C. 102.423.000.
D. 102.424.000.
1 − 2n
bằng?
Câu 56. [1] Tính lim
3n + 1
2
1
2
A. − .
B. 1.
C. .
D. .
3
3
3
2
3
7n − 2n + 1
Câu 57. Tính lim 3
3n + 2n2 + 1
2
7
C. 0.
D. - .
A. 1.
B. .
3
3
!4x
!2−x
2
3
Câu 58. Tập các số x thỏa mãn
≤
là
3 # 2
"
!
"
!
#
2
2
2
2
A.
; +∞ .
B. −∞; .
C. − ; +∞ .
D. −∞; .
5
5
3
3
Câu 59. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là −3, phần ảo là 4.
B. Phần thực là 3, phần ảo là −4.
C. Phần thực là −3, phần ảo là −4.
D. Phần thực là 3, phần ảo là 4.
Câu 60. [1] Đạo hàm của hàm số y = 2 x là
1
.
A. y0 = 2 x . ln 2.
B. y0 = x
2 . ln x
Câu 61.
Z Các khẳng định
Z nào sau đây là sai?
Z
k f (x)dx = k
A.
Z
C.
C. y0 =
1
.
ln 2
D. y0 = 2 x . ln x.
!0
f (x)dx, k là hằng số.
B.
f (x)dx = f (x).
Z
Z
Z
f (x)dx = F(x) +C ⇒
f (u)dx = F(u) +C. D.
f (x)dx = F(x) + C ⇒
f (t)dt = F(t) + C.
Câu 62. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối bát diện đều. B. Khối tứ diện đều.
Câu 63. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối 12 mặt đều.
0
C. Khối 12 mặt đều.
D. Khối 20 mặt đều.
C. Khối lập phương.
D. Khối bát diện đều.
0
0
0
Câu 64. [3-1212h] Cho hình lập phương ABCD.A B C D , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
A. k = .
B. k = .
C. k = .
D. k = .
15
18
9
6
Trang 5/10 Mã đề 1
Câu 65.
đề nào sai? Z
Z Cho hàm sốZf (x), g(x) liên tục trên R. Trong cácZmệnh đề sau, mệnh Z
A.
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.
B.
( f (x) − g(x))dx =
f (x)dx − g(x)dx.
Z
Z
Z
Z
Z
Z
C.
f (x)g(x)dx =
f (x)dx g(x)dx.
D.
( f (x) + g(x))dx =
f (x)dx + g(x)dx.
Câu 66. Dãy số nào sau đây có giới hạn là 0?
n2 − 2
n2 − 3n
A. un =
.
B.
u
=
.
n
5n − 3n2
n2
C. un =
1 − 2n
.
5n + n2
D. un =
n2 + n + 1
.
(n + 1)2
Câu 67. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d song song với (P).
B. d nằm trên P hoặc d ⊥ P.
C. d ⊥ P.
D. d nằm trên P.
Câu 68. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 5.
B. 3.
C. 1.
D. 2.
Câu 69.
Z Trong các khẳng định sau, khẳng định nào sai? Z
1
A.
dx = ln |x| + C, C là hằng số.
B.
dx = x + C, C là hằng số.
Z x
Z
xα+1
C.
0dx = C, C là hằng số.
D.
xα dx =
+ C, C là hằng số.
α+1
Câu 70. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Bốn mặt.
B. Ba mặt.
C. Năm mặt.
D. Hai mặt.
1
Câu 71. [3-12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 < m ≤ 1.
B. 2 ≤ m ≤ 3.
C. 2 < m ≤ 3.
D. 0 ≤ m ≤ 1.
2n + 1
Câu 72. Tính giới hạn lim
3n + 2
1
2
3
A. .
B. .
C. 0.
D. .
2
3
2
d = 30◦ , biết S BC là tam giác đều
Câu 73. [3] Cho hình chóp S .ABC có đáy là tam giác vng tại A, ABC
cạnh a √
và mặt bên (S BC) vuông √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
.
B.
.
C.
.
D.
.
A.
16
9
13
26
Câu 74. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 4.
B. V = 3.
C. V = 6.
D. V = 5.
Câu 75. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai
quyển sách cùng một mơn nằm cạnh nhau là
2
1
9
1
A. .
B.
.
C.
.
D. .
5
10
10
5
Câu 76. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
13
23
5
9
A.
.
B. −
.
C. − .
D.
.
100
100
16
25
Câu 77. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 84cm3 .
B. 48cm3 .
C. 91cm3 .
D. 64cm3 .
Câu 78. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
Trang 6/10 Mã đề 1
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 3.
B. 0.
Câu 79. [1-c] Giá trị của biểu thức
A. 2.
B. −4.
log7 16
log7 15 − log7
C. 2.
15
30
D. 1.
bằng
C. −2.
D. 4.
Câu 80. Cho hàm số y = x3 − 2x2 + x + 1. !Mệnh đề nào dưới đây đúng?
1
A. Hàm số nghịch biến trên khoảng ; 1 .
B. Hàm số nghịch biến trên khoảng (1; +∞).
3
!
!
1
1
C. Hàm số nghịch biến trên khoảng −∞; .
D. Hàm số đồng biến trên khoảng ; 1 .
3
3
Câu 81. Trong các khẳng định sau, khẳng định nào sai?
A. Cả ba đáp án trên.
√
B. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
C. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
D. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
Câu 82. Tính lim
x→+∞
x−2
x+3
2
B. − .
3
x2 − 12x + 35
Câu 83. Tính lim
x→5
25 − 5x
2
A. +∞.
B. .
5
A. 1.
C. −3.
D. 2.
C. −∞.
2
D. − .
5
Câu 84. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 3ac
3b + 2ac
3b + 2ac
3b + 3ac
.
B.
.
C.
.
D.
.
A.
c+1
c+2
c+2
c+3
x = 1 + 3t
Câu 85. [1232h] Trong không gian Oxyz, cho đường thẳng d :
y = 1 + 4t . Gọi ∆ là đường thẳng đi qua
z = 1
điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương
trình là
x
=
1
+
3t
x
=
−1
+
2t
x
=
1
+
7t
x = −1 + 2t
A.
B.
.
D.
y = 1 + 4t .
y = −10 + 11t . C.
y=1+t
y = −10 + 11t .
z = 1 − 5t
z = −6 − 5t
z = 1 + 5t
z = 6 − 5t
Câu 86. Tính thể tích khối lập phương
biết tổng diện tích tất cả các mặt bằng 18.
√
C. 9.
D. 27.
A. 8.
B. 3 3.
Câu 87. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
67
.
27
Câu 88. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng
hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD
√
√
√ là
3
3
3
3
4a 3
a 3
8a 3
8a 3
A.
.
B.
.
C.
.
D.
.
9
9
9
3
A. −7.
B. −4.
C. −2.
D.
Trang 7/10 Mã đề 1
Câu 89. Tứ diện đều thuộc loại
A. {3; 3}.
B. {5; 3}.
C. {3; 4}.
D. {4; 3}.
Câu 90. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n lần.
B. n3 lần.
C. n2 lần.
D. 3n3 lần.
Câu 91. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Một khối chóp tam giác, một khối chóp tứ giác.
B. Hai khối chóp tứ giác.
C. Hai khối chóp tam giác.
D. Một khối chóp tam giác, một khối chóp ngữ giác.
1
bằng
Câu 92. [1] Giá trị của biểu thức log √3
10
A. −3.
B. 3.
C.
1
.
3
1
D. − .
3
Câu 93. Cho z là nghiệm của phương trình√ x2 + x + 1 = 0. Tính P = z4 + 2z3 − z
√
−1 + i 3
−1 − i 3
A. P = 2.
B. P =
.
C. P = 2i.
D. P =
.
2
2
Câu 94. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. −3.
B. 3.
C. 0.
D. −6.
[ = 60◦ , S A ⊥ (ABCD).
Câu 95. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng√ khoảng cách từ A đến cạnh S C là a. Thể tích khối√chóp S .ABCD là
√
√
a3 2
a3 2
a3 3
3
A.
.
B. a 3.
.
D.
.
C.
4
6
12
Câu 96. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc√với đáy và S C = a 3. √
Thể tích khối chóp S .ABC√là
√
2a3 6
a3 3
a3 6
a3 3
A.
.
B.
.
C.
.
D.
.
9
4
12
2
Câu 97. Khối chóp ngũ giác có số cạnh là
A. 9 cạnh.
B. 10 cạnh.
C. 11 cạnh.
D. 12 cạnh.
Câu 98. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
B. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
C. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
D. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
Câu 99. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
A. log2 a = − loga 2.
B. log2 a =
.
C. log2 a =
.
D. log2 a = loga 2.
loga 2
log2 a
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
B. xy = −e − 1.
C. xy0 = ey + 1.
D. xy0 = −ey + 1.
Câu 100. [3-12217d] Cho hàm số y = ln
A. xy0 = ey − 1.
Câu 101. Khối đa diện đều loại {4; 3} có số đỉnh
A. 4.
B. 10.
C. 8.
D. 6.
Câu 102. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vng
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√
√
a3 5
a3 5
a3 5
a3 3
A.
.
B.
.
C.
.
D.
.
12
6
4
12
Trang 8/10 Mã đề 1
Câu 103. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3.
Tính f (2) + f (4)?
A. 10.
B. 11.
C. 12.
D. 4.
Z 3
a
a
x
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá
Câu 104. Cho I =
√
d
d
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = 16.
B. P = 4.
C. P = 28.
D. P = −2.
2
m
ln x
trên đoạn [1; e3 ] là M = n , trong đó n, m là
Câu 105. [3] Biết rằng giá trị lớn nhất của hàm số y =
x
e
các số tự nhiên. Tính S = m2 + 2n3
A. S = 135.
B. S = 24.
C. S = 22.
D. S = 32.
2
2
Câu 106. [3-c] Giá trị nhỏ nhất√và giá trị lớn nhất của hàm√số f (x) = 2sin x + 2cos x lần lượt
√ là
A. 2 và 3.
B. 2 và 3.
C. 2 2 và 3.
D. 2 và 2 2.
Câu 107. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 6 cạnh, 4 mặt. B. 4 đỉnh, 8 cạnh, 4 mặt. C. 6 đỉnh, 6 cạnh, 4 mặt. D. 3 đỉnh, 3 cạnh, 3 mặt.
Câu 108. Khối đa diện đều loại {5; 3} có số cạnh
A. 12.
B. 20.
C. 30.
D. 8.
Câu 109. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của√|z + 2 + i|
√
√
√
12 17
.
B. 68.
C. 5.
D. 34.
A.
17
Câu 110. √
Tính mơ đun của số phức z√biết (1 + 2i)z2 = 3 + 4i.
√4
A. |z| = 5.
B. |z| = 2 5.
C. |z| = 5.
D. |z| = 5.
Câu 111. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất
√ của hàm số. Khi đó tổng M + m
√
√
B. 16.
C. 7 3.
D. 8 3.
A. 8 2.
Câu 112. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9
tháng thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không
thay đổi trong thời gian gửi.
A. 0, 7%.
B. 0, 6%.
C. 0, 5%.
D. 0, 8%.
Câu 113. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = R.
B. D = [2; 1].
C. D = R \ {1; 2}.
2
D. D = (−2; 1).
x+3
Câu 114. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng
x−m
(0; +∞)?
A. 2.
B. 1.
C. Vô số.
D. 3.
x2
Câu 115. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
A. M = e, m = .
B. M = , m = 0.
C. M = e, m = 1.
D. M = e, m = 0.
e
e
Câu 116. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trang 9/10 Mã đề 1
Trong hai câu trên
A. Cả hai câu trên sai.
B. Chỉ có (I) đúng.
C. Chỉ có (II) đúng.
D. Cả hai câu trên đúng.
x+1
bằng
x→+∞ 4x + 3
1
1
A. 3.
B. .
C. .
4
3
0
Câu 118. [2] Cho hàm số y = ln(2x + 1). Tìm m để y (e) = 2m + 1
1 − 2e
1 + 2e
1 − 2e
A. m =
.
B. m =
.
C. m =
.
4e + 2
4e + 2
4 − 2e
12 + 22 + · · · + n2
Câu 119. [3-1133d] Tính lim
n3
2
A. 0.
B. .
C. +∞.
3
5
Câu 120. Tính lim
n+3
A. 0.
B. 1.
C. 2.
Câu 117. Tính lim
Câu 121. Khối đa diện đều loại {4; 3} có số mặt
A. 10.
B. 6.
D. 1.
D. m =
D.
1 + 2e
.
4 − 2e
1
.
3
D. 3.
C. 8.
D. 12.
Câu 122. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 8.
B. 3.
C. 4.
D. 6.
√
Câu 123. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của khối chóp S .ABCD là √
√
3
√
a3
a3 3
a
3
A.
.
B.
.
C. a3 3.
D.
.
4
12
3
Câu 124. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có một.
B. Có một hoặc hai.
C. Khơng có.
D. Có hai.
Câu 125. Khối đa diện đều loại {5; 3} có số mặt
A. 12.
B. 20.
C. 8.
D. 30.
0
0
0
Câu 126. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A B C D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; −3; 3).
B. A0 (−3; 3; 1).
C. A0 (−3; 3; 3).
D. A0 (−3; −3; −3).
Câu 127. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Chỉ có (II) đúng.
B. Cả hai đều sai.
C. Cả hai đều đúng.
D. Chỉ có (I) đúng.
Câu 128. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC)
một góc bằng 60◦ . Thể√tích khối chóp S .ABC là
√
√
a3 3
a3
a3 3
a3 3
.
B.
.
C.
.
D.
.
A.
8
12
4
4
Câu 129. Cho số phức z thỏa mãn |z + 3| = 5 và |z − 2i| = |z −√2 − 2i|. Tính |z|.
√
A. |z| = 17.
B. |z| = 10.
C. |z| = 17.
D. |z| = 10.
Trang 10/10 Mã đề 1
a
1
Câu 130. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
A. 2.
B. 7.
C. 4.
D. 1.
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 11/10 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
2.
B
3. A
5.
4.
9.
C
10.
C
13.
14.
18. A
D
19.
22.
D
D
24. A
D
26.
25. A
B
29.
C
31.
D
33. A
35.
C
20.
B
23.
27.
B
16. A
C
17. A
21.
C
12. A
D
15.
D
8. A
B
11.
B
6.
B
7.
D
B
37.
D
39.
28.
B
30.
B
32.
B
34.
C
36.
C
38. A
40. A
C
41.
B
42.
C
43.
B
44.
C
45.
B
46.
47.
B
48. A
49.
B
50. A
51.
53.
C
52.
D
56. A
57.
D
58.
59. A
68.
D
C
60. A
62.
C
63. A
66.
C
54.
B
55.
61.
D
D
65.
C
67.
D
69.
1
C
B
D
70.
B
71.
C
72.
B
73.
C
75.
C
74. A
76.
77.
B
78.
D
79.
B
80. A
81.
B
82. A
83.
B
C
84.
B
85.
86.
B
87.
88.
90.
C
91. A
D
93. A
94. A
95. A
C
96.
98.
D
100. A
102.
D
97.
B
99.
B
101.
C
103.
C
105.
B
106.
C
107. A
108.
C
109. A
110.
D
111.
112. A
D
B
113. A
114.
D
115.
116.
D
117.
118. A
119.
120. A
121.
122.
B
123.
124.
B
125. A
126.
D
B
D
B
D
127. A
C
129.
128. A
130.
C
89. A
B
92.
104.
D
B
2
D