TỐN PDF LATEX
TRẮC NGHIỆM ƠN THI MƠN TỐN THPT
(Đề thi có 10 trang)
Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
2−n
Câu 1. Giá trị của giới hạn lim
bằng
n+1
A. 1.
B. 0.
12 + 22 + · · · + n2
Câu 2. [3-1133d] Tính lim
n3
1
A. +∞.
B. .
3
d = 90◦ , ABC
d
Câu 3. Cho hình chóp S .ABC có BAC
Thể tích√khối chóp S .ABC là
√
a3 3
a3 3
A.
.
B.
.
12
24
C. −1.
C.
D. 2.
2
.
3
D. 0.
= 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
C. 2a
2
√
a3 2
.
D.
24
√
2.
Câu 4. [2] Tổng các nghiệm của phương trình 2 x +2x = 82−x là
A. −5.
B. −6.
C. 5.
2
D. 6.
3
Câu 5. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm , tỷ số giữa chiều cao và chiều rộng
bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 160 cm2 .
B. 1200 cm2 .
C. 160 cm2 .
D. 120 cm2 .
Câu 6. Khẳng định nào sau đây đúng?
A. Hình lăng trụ tứ giác đều là hình lập phương.
B. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
C. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
D. Hình lăng trụ đứng là hình lăng trụ đều.
Câu 7. !Dãy số nào sau đây có giới !hạn là 0?
n
n
1
5
.
B. − .
A.
3
3
!n
5
C.
.
3
!n
4
D.
.
e
Câu 8. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Đường phân giác góc phần tư thứ nhất.
B. Trục ảo.
C. Trục thực.
D. Hai đường phân giác y = x và y = −x của các góc tọa độ.
Câu 9. Dãy số
!n nào có giới hạn bằng 0?
6
A. un =
.
B. un = n2 − 4n.
5
n3 − 3n
C. un =
.
n+1
!n
−2
D. un =
.
3
Câu 10. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình lăng trụ.
B. Hình lập phương.
C. Hình chóp.
D. Hình tam giác.
Câu 11. Khối đa diện đều loại {3; 4} có số đỉnh
A. 10.
B. 8.
C. 4.
D. 6.
trên đoạn [1; 2] là
1
C. 2 .
e
D.
2
.
e3
D.
ln 2
.
2
−2x2
Câu 12. [2-c] Giá trị lớn nhất của hàm số y = xe
1
1
A. √ .
B.
.
2e3
2 e
Câu 13. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
1
A. 1.
B. .
C. 2.
2
Trang 1/10 Mã đề 1
Câu 14. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. 13.
B. 2020.
C. log2 13.
D. log2 2020.
Câu 15. Cho
Z hai hàm yZ = f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
A. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
Z
Z
0
B. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f (x)dx =
g0 (x)dx.
Z
Z
C. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
D. Nếu
f 0 (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Câu 16. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Năm cạnh.
B. Ba cạnh.
C. Hai cạnh.
D. Bốn cạnh.
Câu 17. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Một hình chóp tam giác và một hình chóp tứ giác.
B. Hai hình chóp tam giác.
C. Một hình chóp tứ giác và một hình chóp ngũ giác.
D. Hai hình chóp tứ giác.
√
Câu 18. Thể tích của khối lập phương
có
cạnh
bằng
a
2
√
3
√
√
2a 2
A. 2a3 2.
.
C. V = 2a3 .
D. V = a3 2.
B.
3
Câu 19. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. 2n2 lần.
B. n3 lần.
C. 2n3 lần.
D. n3 lần.
Câu 20. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của√|z + 2 + i|
√
√
√
12 17
.
B. 5.
C. 34.
D. 68.
A.
17
Câu 21. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối bát diện đều. B. Khối lập phương.
C. Khối 12 mặt đều.
D. Khối tứ diện đều.
Câu 22. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M,
√ N, P bằng
√
√
√
20 3
14 3
A.
.
B. 6 3.
C. 8 3.
D.
.
3
3
Câu 23.
! nào sau đây sai?
Z Mệnh đề
0
A.
f (x)dx = f (x).
Z
B. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
f (x)dx = F(x) + C.
C. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
D. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
log2 240 log2 15
−
+ log2 1 bằng
log3,75 2 log60 2
B. −8.
C. 4.
Câu 24. [1-c] Giá trị biểu thức
A. 3.
D. 1.
Trang 2/10 Mã đề 1
Câu 25. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
2
A. −1.
B. 6.
C. 4.
3
Z
6
3x + 1
. Tính
1
f (x)dx.
0
D. 2.
x3 −3x+3
Câu 26. [2-c] Giá trị lớn nhất của hàm số f (x) = e
trên đoạn [0; 2] là
2
5
A. e .
B. e .
C. e.
D. e3 .
x=t
Câu 27. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d :
y = −1 và hai mặt phẳng (P), (Q)
z = −t
lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I
thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).
9
9
B. (x + 3)2 + (y + 1)2 + (z + 3)2 = .
A. (x + 3)2 + (y + 1)2 + (z − 3)2 = .
4
4
9
9
2
2
2
2
2
2
C. (x − 3) + (y − 1) + (z − 3) = .
D. (x − 3) + (y + 1) + (z + 3) = .
4
4
Câu 28. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là 4, phần ảo là −1.
B. Phần thực là 4, phần ảo là 1.
C. Phần thực là −1, phần ảo là −4.
D. Phần thực là −1, phần ảo là 4.
1 − 2n
bằng?
Câu 29. [1] Tính lim
3n + 1
2
2
1
A. 1.
B. − .
C. .
D. .
3
3
3
Câu 30. Dãy số nào sau đây có giới hạn khác 0?
1
sin n
n+1
1
A. √ .
B.
.
C.
.
D. .
n
n
n
n
Câu 31. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
1
A. f 0 (0) =
.
B. f 0 (0) = ln 10.
C. f 0 (0) = 10.
D. f 0 (0) = 1.
ln 10
!
1
1
1
Câu 32. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
5
3
C. 2.
D. .
A. +∞.
B. .
2
2
1
Câu 33. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x
+
1
A. xy0 = ey − 1.
B. xy0 = ey + 1.
C. xy0 = −ey − 1.
D. xy0 = −ey + 1.
Câu 34. Khối đa diện đều loại {4; 3} có số mặt
A. 10.
B. 6.
C. 8.
D. 12.
Câu 35. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Khơng có.
B. Có vơ số.
C. Có một.
D. Có hai.
Câu 36. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1
1
A. .
B. .
C. .
D. 4.
8
4
2
Câu 37. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ
C đến đường thẳng BB0 bằng 2, khoảng
√
cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2 3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng
3
√
√
2 3
A.
.
B. 3.
C. 1.
D. 2.
3
Trang 3/10 Mã đề 1
√
Câu 38. Tính lim
A. 2.
√
4n2 + 1 − n + 2
bằng
2n − 3
B. +∞.
C.
3
.
2
D. 1.
x2
Câu 39. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
B. M = , m = 0.
C. M = e, m = 1.
D. M = e, m = 0.
A. M = e, m = .
e
e
Câu 40. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n lần.
B. 3n3 lần.
C. n3 lần.
D. n2 lần.
Câu 41. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (−∞; 0) và (2; +∞). B. (0; 2).
C. (0; +∞).
D. (−∞; 2).
Câu 42. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. −2 ≤ m ≤ 2.
B. −3 ≤ m ≤ 3.
C. m ≤ 3.
D. m ≥ 3.
[ = 60◦ , S O
Câu 43. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc với mặt đáy và S O = a.
√ Khoảng cách từ A đến (S
√ BC) bằng
√
√
a 57
a 57
2a 57
B.
.
C.
.
D.
.
A. a 57.
17
19
19
Câu 44. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 5 đỉnh, 9 cạnh, 6 mặt. B. 6 đỉnh, 9 cạnh, 5 mặt. C. 6 đỉnh, 9 cạnh, 6 mặt. D. 6 đỉnh, 6 cạnh, 6 mặt.
Câu 45. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 10 cạnh, 6 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
Câu 46. Cho z là√nghiệm của phương trình√ x2 + x + 1 = 0. Tính P = z4 + 2z3 − z
−1 + i 3
−1 − i 3
A. P =
.
B. P =
.
C. P = 2.
D. P = 2i.
2
2
x+2
bằng?
Câu 47. Tính lim
x→2
x
A. 2.
B. 1.
C. 0.
D. 3.
x
9
Câu 48. [2-c] Cho hàm số f (x) = x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9 +3
1
A. −1.
B. .
C. 2.
D. 1.
2
0 0 0 0
0
Câu 49.√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
√ bằng
a 3
a 6
a 6
a 6
A.
.
B.
.
C.
.
D.
.
2
2
3
7
2n + 1
Câu 50. Tìm giới hạn lim
n+1
A. 2.
B. 3.
C. 0.
D. 1.
Câu 51. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (−∞; 0).
B. Hàm số nghịch biến trên khoảng (0; 1).
C. Hàm số đồng biến trên khoảng (1; 2).
D. Hàm số nghịch biến trên khoảng (1; +∞).
n−1
Câu 52. Tính lim 2
n +2
A. 1.
B. 2.
C. 0.
D. 3.
Câu 53. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 0, 8.
B. −7, 2.
C. 7, 2.
D. 72.
Trang 4/10 Mã đề 1
Câu 54. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất không đổi và người đó khơng rút tiền ra?
A. 13 năm.
B. 12 năm.
C. 10 năm.
D. 11 năm.
Câu 55. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vuông góc với ∆ và
AC = BD
√ = a. Khoảng cách từ A√đến mặt phẳng (BCD) bằng
√
√
a 2
a 2
.
B.
.
C. a 2.
D. 2a 2.
A.
4
2
Câu 56. Hàm số f có nguyên hàm trên K nếu
A. f (x) có giá trị nhỏ nhất trên K.
B. f (x) có giá trị lớn nhất trên K.
C. f (x) xác định trên K.
D. f (x) liên tục trên K.
Câu 57. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể√tích của khối chóp S .ABC√ theo a
√
a3 15
a3 15
a3
a3 5
.
B.
.
C.
.
D.
.
A.
25
5
25
3
Câu 58. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (4; 6, 5].
B. [6, 5; +∞).
C. (4; +∞).
D. (−∞; 6, 5).
log 2x
Câu 59. [1229d] Đạo hàm của hàm số y =
là
x2
1
1 − 4 ln 2x
1 − 2 ln 2x
1 − 2 log 2x
A. y0 = 3
.
B. y0 =
.
C. y0 = 3
.
D. y0 =
.
3
2x ln 10
2x ln 10
x ln 10
x3
Câu 60. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 8 mặt.
B. 4 mặt.
C. 6 mặt.
D. 10 mặt.
1
Câu 61. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (−∞; 3).
B. (−∞; 1) và (3; +∞). C. (1; +∞).
D. (1; 3).
Câu 62. Khối đa diện đều loại {4; 3} có số đỉnh
A. 10.
B. 4.
C. 8.
D. 6.
log(mx)
Câu 63. [1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0 ∨ m > 4.
B. m ≤ 0.
C. m < 0 ∨ m = 4.
D. m < 0.
Câu 64. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
A. −7.
B. −4.
C. −2.
Câu 65. [1] Tập
! xác định của hàm số y! = log3 (2x + 1) là
!
1
1
1
A. − ; +∞ .
B.
; +∞ .
C. −∞; .
2
2
2
D.
67
.
27
!
1
D. −∞; − .
2
Câu 66. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 1.
B. Vô nghiệm.
C. 3.
D. 2.
Câu 67. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {4; 3}.
B. {3; 4}.
C. {3; 3}.
D. {5; 3}.
Câu 68. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất khơng thay đổi và người đó không rút tiền ra?
A. 12 năm.
B. 14 năm.
C. 10 năm.
D. 11 năm.
Trang 5/10 Mã đề 1
Câu 69.
Z Các khẳng định nào sau
Z đây là sai?
f (x)dx = F(x) + C ⇒
A.
Z
C.
f (x)dx = F(x) +C ⇒
f (t)dt = F(t) + C. B.
Z
f (u)dx = F(u) +C. D.
Z
Z
Z
k f (x)dx = k
f (x)dx, k là hằng số.
!0
f (x)dx = f (x).
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
B. xy = −e − 1.
C. xy0 = −ey + 1.
D. xy0 = ey − 1.
Câu 70. [3-12217d] Cho hàm số y = ln
A. xy0 = ey + 1.
Câu 71. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, biết S H ⊥ (ABCD). Thể tích khối chóp S .ABCD là√
√
a3
4a3 3
2a3 3
a3
.
B.
.
C.
.
D.
.
A.
3
6
3
3
√
Câu 72. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã
√
√
√
√ cho là
πa3 3
πa3 3
πa3 6
πa3 3
.
B. V =
.
C. V =
.
D. V =
.
A. V =
3
2
6
6
2mx + 1
1
Câu 73. Giá trị lớn nhất của hàm số y =
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
A. 0.
B. −2.
C. 1.
D. −5.
Câu 74. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Hai khối chóp tứ giác.
B. Một khối chóp tam giác, một khối chóp ngữ giác.
C. Một khối chóp tam giác, một khối chóp tứ giác.
D. Hai khối chóp tam giác.
Câu 75. Hàm số nào sau đây khơng có cực trị
A. y = x3 − 3x.
B. y = x4 − 2x + 1.
1
C. y = x + .
x
D. y =
x−2
.
2x + 1
Câu 76. Trong khơng gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; 3; 3).
B. A0 (−3; −3; −3).
C. A0 (−3; 3; 1).
D. A0 (−3; −3; 3).
√
x2 + 3x + 5
Câu 77. Tính giới hạn lim
x→−∞
4x − 1
1
1
A. − .
B. .
C. 1.
D. 0.
4
4
Câu 78. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai
quyển sách cùng một môn nằm cạnh nhau là
1
2
1
9
A. .
B. .
C.
.
D.
.
5
5
10
10
2
Câu 79. [2] Tìm m để giá trị nhỏ nhất√của hàm số y = 2x3 + (m√
+ 1)2 x trên [0; 1] bằng 2
A. m = ±3.
B. m = ± 3.
C. m = ± 2.
D. m = ±1.
Câu 80. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Hai mặt.
B. Một mặt.
C. Ba mặt.
D. Bốn mặt.
Câu 81. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 70, 128 triệu đồng. B. 50, 7 triệu đồng.
C. 3, 5 triệu đồng.
D. 20, 128 triệu đồng.
Trang 6/10 Mã đề 1
x+2
Câu 82. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. Vô số.
B. 3.
C. 1.
D. 2.
Câu 83. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 3.
B. 4.
C. 6.
D. 8.
√
Câu 84. [2] Phương trình log4 (x + 1)2 + 2 = log √2 4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
A. Vô nghiệm.
B. 2 nghiệm.
C. 1 nghiệm.
D. 3 nghiệm.
Câu 85.
f (x), g(x) liên
Z Cho hàm số Z
Z tục trên R. Trong cácZmệnh đề sau, mệnh
Z đề nào sai?
A.
f (x)g(x)dx =
f (x)dx g(x)dx.
B.
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.
Z
Z
Z
Z
Z
Z
C.
( f (x) + g(x))dx =
f (x)dx + g(x)dx.
D.
( f (x) − g(x))dx =
f (x)dx − g(x)dx.
Câu 86. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của
nó
A. Khơng thay đổi.
B. Tăng lên n lần.
C. Giảm đi n lần.
D. Tăng lên (n − 1) lần.
Câu 87. Khối lập phương thuộc loại
A. {3; 4}.
B. {4; 3}.
C. {3; 3}.
D. {5; 3}.
Câu 88. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 1.
B. 3.
C. 2.
D. 0.
2
Câu 89. [3] Biết rằng giá trị lớn nhất của hàm số y =
số tự nhiên. Tính S = m2 + 2n3
A. S = 32.
B. S = 24.
m
ln x
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
x
e
C. S = 22.
D. S = 135.
Câu 90. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. 3.
B. −3.
C. 0.
D. −6.
√
Câu 91. Cho chóp S .ABCD có đáy ABCD là hình vuông cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của khối chóp S .ABCD là
√
√
3
3
3
√
a
a
3
a
3
B.
.
C.
.
D.
.
A. a3 3.
4
12
3
x+3
Câu 92. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng
x−m
(0; +∞)?
A. 3.
B. 1.
C. 2.
D. Vô số.
Câu 93. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
A. m > − .
B. m ≥ 0.
C. m ≤ 0.
D. − < m < 0.
4
4
!
x+1
Câu 94. [3] Cho hàm số f (x) = ln 2017 − ln
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
4035
2016
2017
A. 2017.
B.
.
C.
.
D.
.
2018
2017
2018
Trang 7/10 Mã đề 1
5
Câu 95. Tính lim
n+3
A. 0.
B. 2.
Câu 96. Dãy số nào sau đây có giới hạn là 0?
n2 + n + 1
n2 − 2
A. un =
.
B.
u
=
.
n
(n + 1)2
5n − 3n2
C. 3.
C. un =
D. 1.
1 − 2n
.
5n + n2
D. un =
n2 − 3n
.
n2
Câu 97. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1
A. V = S h.
B. V = S h.
C. V = 3S h.
D. V = S h.
3
2
Câu 98. Phát biểu nào sau đây là sai?
1
A. lim = 0.
B. lim un = c (un = c là hằng số).
n
1
C. lim qn = 0 (|q| > 1).
D. lim k = 0.
n
Câu 99. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 4 đỉnh, 12 cạnh, 4 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
Câu 100. Khối đa diện đều loại {5; 3} có số mặt
A. 30.
B. 8.
C. 20.
D. 12.
Câu 101. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối 12 mặt đều.
C. Khối bát diện đều.
D. Khối 20 mặt đều.
Câu 102. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 2.
B. 1.
C. −1.
D. 6.
Câu 103. Cho hình
√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối
√ chóp S .ABCD là
√
3
3
√
a 15
a3 5
a 6
A.
.
B.
.
C.
.
D. a3 6.
3
3
3
mx − 4
Câu 104. Tìm m để hàm số y =
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
A. 45.
B. 67.
C. 34.
D. 26.
1
Câu 105. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 ln đồng biến trên
3
√
một đoạn có độ dài bằng 24.
A. m = −3, m = 4.
B. m = −3.
C. −3 ≤ m ≤ 4.
D. m = 4.
Câu 106. [1] Cho a > 0, a , 1. Giá trị của biểu thức log 1a a2 bằng
1
1
A. .
B. −2.
C. 2.
D. − .
2
2
Câu 107. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp đã cho là 1728. Khi đó,√các kích
√ thước của hình hộp là
A. 8, 16, 32.
B. 2 3, 4 3, 38.
C. 2, 4, 8.
D. 6, 12, 24.
Câu 108. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của
phẳng (AIC) có diện√tích là
√
√ hình chóp S .ABCD với mặt
2
2
2
a 5
a 2
11a
a2 7
A.
.
B.
.
C.
.
D.
.
16
4
32
8
Câu 109. [1] Đạo hàm của hàm số y = 2 x là
1
1
A. y0 = x
.
B. y0 =
.
C. y0 = 2 x . ln x.
D. y0 = 2 x . ln 2.
2 . ln x
ln 2
Trang 8/10 Mã đề 1
Câu 110. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm
0
A đến đường
√
√
√
√ thẳng BD bằng
abc b2 + c2
a b2 + c2
c a2 + b2
b a2 + c2
.
B. √
.
C. √
.
D. √
.
A. √
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
q
Câu 111. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23 x+ log23 x + 1+4m−1 =
√ i
h
0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 4].
B. m ∈ [−1; 0].
C. m ∈ [0; 1].
D. m ∈ [0; 2].
√
Câu 112. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by = ab.
Giá trị
" nhỏ! nhất của biểu thức P = x + 2y thuộc tập nào dưới đây?
"
!
5
5
A.
;3 .
B. (1; 2).
C. [3; 4).
D. 2; .
2
2
3a
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng
√
a
a 2
a
2a
B.
.
C. .
D.
.
A. .
4
3
3
3
Câu 113. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
Câu 114. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối 20 mặt đều.
B. Khối 12 mặt đều.
C. Khối bát diện đều. D. Khối tứ diện đều.
un
Câu 115. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. +∞.
B. 0.
C. 1.
D. −∞.
Câu 116. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. 0.
B. 22016 .
C. e2016 .
D. 1.
Câu 117. Phát biểu nào sau đây là sai?
A. lim un = c (Với un = c là hằng số).
1
C. lim √ = 0.
n
B. lim qn = 1 với |q| > 1.
1
D. lim k = 0 với k > 1.
n
Câu 118. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = −1.
B. m = 0.
C. m = −2.
D. m = −3.
√
Câu 119. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.
√ tích khối chóp S .ABC3 √
√
√
3
a 2
a 6
a3 6
a3 6
A.
.
B.
.
C.
.
D.
.
6
18
6
36
Câu 120. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
B. F(x) = G(x) trên khoảng (a; b).
C. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
D. Cả ba câu trên đều sai.
Câu 121. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d nằm trên P hoặc d ⊥ P.
B. d song song với (P).
C. d ⊥ P.
D. d nằm trên P.
Trang 9/10 Mã đề 1
d = 30◦ , biết S BC là tam giác đều
Câu 122. [3] Cho hình chóp S .ABC có đáy là tam giác vuông tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
.
B.
.
C.
.
D.
.
A.
26
9
16
13
Câu 123. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Cả hai đều sai.
B. Chỉ có (II) đúng.
C. Chỉ có (I) đúng.
D. Cả hai đều đúng.
Câu 124. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC)
một góc bằng 60◦ . Thể√tích khối chóp S .ABC là √
√
a3 3
a3 3
a3 3
a3
A.
.
B.
.
C.
.
D.
.
8
4
12
4
Câu 125. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√
√
a3 5
a3 5
a3 3
a3 5
A.
.
B.
.
C.
.
D.
.
6
12
12
4
Câu 126. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2
A. 2e + 1.
B. 3.
C. .
D. 2e.
e
x−3 x−2 x−1
x
Câu 127. [4-1213d] Cho hai hàm số y =
+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. [2; +∞).
B. (−∞; 2].
C. (2; +∞).
D. (−∞; 2).
Câu 128. Cho hình chóp S .ABCD có đáy ABCD là hình vuông biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối
√
√ chóp S .ABCD là
√
3
3
a 2
a 3
a3 3
a3 6
.
B.
.
C.
.
D.
.
A.
16
24
48
48
Câu 129. Khối đa diện đều loại {3; 3} có số cạnh
A. 6.
B. 4.
C. 5.
D. 8.
Câu 130. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số đỉnh của khối chóp bằng số mặt của khối chóp.
B. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
C. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
D. Số cạnh của khối chóp bằng số mặt của khối chóp.
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 10/10 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
C
1.
3.
2.
D
B
4. A
5. A
6.
7. A
8.
D
D
B
9.
D
10.
11.
D
12.
C
C
13.
C
14.
15.
C
16.
17.
B
18. A
B
D
19.
20. A
21. A
22.
B
23.
C
24.
B
25.
C
26.
B
27.
D
28. A
29.
B
30.
C
31.
B
32.
C
33. A
34.
B
B
35.
D
36.
37.
D
38.
39.
D
40.
41. A
43.
D
C
42.
B
44.
B
45. A
46.
47. A
48.
49.
D
C
D
50. A
C
51.
B
52.
53.
B
54.
55.
B
56.
C
B
D
57.
C
58. A
59.
C
60.
C
62.
C
64.
C
61.
63.
B
C
65. A
67.
D
1
66.
D
68.
D
69.
C
70.
71.
C
72. A
73. A
D
C
74.
75.
D
76. A
77. A
78.
D
79.
D
80.
D
81.
D
82.
D
83. A
84.
85. A
86.
C
88.
C
87.
B
89. A
90.
D
91.
B
B
92. A
D
93. A
94.
95. A
96.
C
98.
C
97.
B
99.
D
100.
D
101.
D
102.
D
103. A
104.
105. A
106.
107.
D
108.
109.
D
110.
111.
B
113.
C
B
D
C
112. A
D
114.
115.
B
116. A
117.
B
118.
119.
B
120. A
B
C
122.
121. A
123.
B
124. A
125.
B
126.
127. A
128.
129. A
130. A
2
D
B
C