TỐN PDF LATEX
TRẮC NGHIỆM ƠN THI MƠN TỐN THPT
(Đề thi có 11 trang)
Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
Câu 1. [1] Đạo hàm của hàm số y = 2 x là
1
.
A. y0 = 2 x . ln x.
B. y0 =
ln 2
n−1
Câu 2. Tính lim 2
n +2
A. 2.
B. 1.
C. y0 = 2 x . ln 2.
D. y0 =
C. 3.
D. 0.
1
2 x . ln
Câu 3. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Ba mặt.
B. Hai mặt.
C. Bốn mặt.
D. Năm mặt.
Câu 4. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 3 mặt.
C. 4 mặt.
D. 9 mặt.
x
.
Câu 5. Cho khối chóp S .ABC√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc
√ với đáy và S C = a 3. 3Thể
√ tích khối chóp S .ABC
√là
√
a3 6
2a 6
a3 3
a3 3
.
B.
.
C.
.
D.
.
A.
12
9
4
2
Câu 6. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
ab
ab
1
1
A. 2
.
B. √
.
C. √
.
D. √
.
2
a +b
a2 + b2
2 a2 + b2
a2 + b2
Câu 7. Hàm số y =
A. x = 3.
x2 − 3x + 3
đạt cực đại tại
x−2
B. x = 0.
C. x = 2.
D. x = 1.
Câu 8. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t − 6t(m/s). Tính quãng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 24 m.
B. 8 m.
C. 12 m.
D. 16 m.
2
Câu 9. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n3 lần.
B. 3n3 lần.
C. n2 lần.
D. n lần.
!4x
!2−x
2
3
≤
là
Câu 10. Tập các số x thỏa mãn
3
2
#
"
!
"
!
#
2
2
2
2
A. −∞; .
B. − ; +∞ .
C.
; +∞ .
D. −∞; .
3
3
5
5
Câu 11. [1] Hàm số nào đồng biến trên khoảng (0; +∞)?
A. y = log π4 x.
B. y = log √2 x.
C. y = log 14 x.
D. y = loga x trong đó a =
√
3 − 2.
Câu 12. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 46cm3 .
B. 27cm3 .
C. 72cm3 .
D. 64cm3 .
5
Câu 13. Tính lim
n+3
A. 2.
B. 3.
C. 0.
D. 1.
Câu 14. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1
1
A. .
B. .
C. .
D. 4.
8
4
2
Trang 1/11 Mã đề 1
Câu 15. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng BD và S C bằng
√
√
√
a 6
a 6
a 6
.
B. a 6.
C.
.
D.
.
A.
2
3
6
Câu 16. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai
quyển sách cùng một môn nằm cạnh nhau là
9
1
1
2
A.
.
B.
.
C. .
D. .
10
10
5
5
Câu 17. Tính lim
x→5
2
A. .
5
x2 − 12x + 35
25 − 5x
C. +∞.
B. −∞.
2
D. − .
5
√
Câu 18. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.
√
√
√ tích khối chóp S .ABC3 √
3
a 6
a3 6
a3 2
a 6
.
B.
.
C.
.
D.
.
A.
6
18
36
6
Câu 19. Hàm số nào sau đây khơng có cực trị
A. y = x3 − 3x.
B. y = x4 − 2x + 1.
C. y =
x−2
.
2x + 1
1
D. y = x + .
x
Câu 20. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Hai hình chóp tam giác.
B. Hai hình chóp tứ giác.
C. Một hình chóp tam giác và một hình chóp tứ giác.
D. Một hình chóp tứ giác và một hình chóp ngũ giác.
Câu 21. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d ⊥ P.
B. d song song với (P).
C. d nằm trên P.
D. d nằm trên P hoặc d ⊥ P.
Câu 22. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (4; +∞).
B. (−∞; 6, 5).
C. [6, 5; +∞).
√
Câu 23. [12215d] Tìm m để phương trình 4 x+
3
A. m ≥ 0.
B. 0 < m ≤ .
4
1−x2
√
D. (4; 6, 5].
− 3m + 4 = 0 có nghiệm
3
9
C. 0 ≤ m ≤ .
D. 0 ≤ m ≤ .
4
4
− 4.2 x+
1−x2
Câu 24. Khối đa diện đều loại {4; 3} có số cạnh
A. 30.
B. 10.
C. 20.
D. 12.
x−3 x−2 x−1
x
Câu 25. [4-1213d] Cho hai hàm số y =
+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; 2].
B. [2; +∞).
C. (−∞; 2).
D. (2; +∞).
Câu 26.! Dãy số nào sau đây có giới
!n hạn là 0?
n
1
4
A.
.
B.
.
3
e
!n
5
C.
.
3
Câu 27. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
1
A. 1.
B. 2.
C. .
2
!n
5
D. − .
3
D.
ln 2
.
2
Trang 2/11 Mã đề 1
1
1
1
Câu 28. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
3
5
A. 2.
B. .
C. .
2
2
!
D. +∞.
x2
Câu 29. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
C. M = e, m = 1.
D. M = , m = 0.
A. M = e, m = 0.
B. M = e, m = .
e
e
x−3
Câu 30. [1] Tính lim
bằng?
x→3 x + 3
A. 0.
B. −∞.
C. 1.
D. +∞.
Câu 31. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng
√
a
a
a 3
.
C. .
D. .
A. a.
B.
2
3
2
Câu 32.
Z Các khẳng định nào sau
Z đây là sai?
Z
Z
A.
Z
C.
f (x)dx = F(x) +C ⇒
f (u)dx = F(u) +C. B.
f (x)dx = F(x) + C ⇒
!0
Z
Z
k f (x)dx = k
f (x)dx, k là hằng số.
D.
f (x)dx = f (x).
Câu 33. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (0; 2).
B. (−∞; 1).
C. (2; +∞).
f (t)dt = F(t) + C.
D. R.
2
x −9
Câu 34. Tính lim
x→3 x − 3
A. +∞.
B. −3.
C. 6.
D. 3.
Câu 35. Khối đa diện đều loại {3; 4} có số cạnh
A. 6.
B. 12.
C. 8.
D. 10.
Câu 36. Khối đa diện đều loại {3; 3} có số đỉnh
A. 4.
B. 3.
C. 5.
D. 2.
Câu 37. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. −3 ≤ m ≤ 3.
B. m ≥ 3.
C. −2 ≤ m ≤ 2.
D. m ≤ 3.
p
1
ln x
ln2 x + 1 mà F(1) = . Giá trị của F 2 (e) là:
Câu 38. Gọi F(x) là một nguyên hàm của hàm y =
x
3
1
1
8
8
A. .
B. .
C. .
D. .
3
9
9
3
Câu 39. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của
nó
A. Khơng thay đổi.
B. Tăng lên n lần.
C. Tăng lên (n − 1) lần. D. Giảm đi n lần.
Câu 40. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m > 0.
B. m > −1.
C. m > 1.
D. m ≥ 0.
Câu 41. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 4.
B. 8.
C. 6.
D. 3.
Câu 42. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
0
đến đường
√ thẳng BD bằng
√
√
√
b a2 + c2
c a2 + b2
a b2 + c2
abc b2 + c2
A. √
.
B. √
.
C. √
.
D. √
.
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
Trang 3/11 Mã đề 1
Câu 43. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. f (x) có giới hạn hữu hạn khi x → a.
B. lim f (x) = f (a).
x→a
C. lim+ f (x) = lim− f (x) = +∞.
D. lim+ f (x) = lim− f (x) = a.
x→a
x→a
x→a
Câu 44. Khối đa diện đều loại {4; 3} có số đỉnh
A. 4.
B. 6.
x→a
C. 8.
D. 10.
Câu 45. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là −1, phần ảo là −4.
B. Phần thực là −1, phần ảo là 4.
C. Phần thực là 4, phần ảo là −1.
D. Phần thực là 4, phần ảo là 1.
!2x−1
!2−x
3
3
≤
là
Câu 46. Tập các số x thỏa mãn
5
5
A. [3; +∞).
B. (−∞; 1].
C. [1; +∞).
D. (+∞; −∞).
Câu 47. Mệnh đề nào sau đây sai?
A. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
!0
Z
f (x)dx = f (x).
B.
C. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
Z
D. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
f (x)dx = F(x) + C.
Câu 48. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
A. m ≥ 0.
B. m ≤ 0.
C. − < m < 0.
D. m > − .
4
4
log2 240 log2 15
−
+ log2 1 bằng
Câu 49. [1-c] Giá trị biểu thức
log3,75 2 log60 2
A. −8.
B. 4.
C. 1.
D. 3.
Câu 50. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể√tích của khối chóp S .ABC√ theo a
√
a3 15
a3 5
a3 15
a3
A.
.
B.
.
C.
.
D.
.
25
25
5
3
!
!
!
4x
1
2
2016
Câu 51. [3] Cho hàm số f (x) = x
. Tính tổng T = f
+f
+ ··· + f
4 +2
2017
2017
2017
2016
A. T = 2017.
B. T = 1008.
C. T =
.
D. T = 2016.
2017
Câu 52. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 50, 7 triệu đồng.
B. 3, 5 triệu đồng.
C. 70, 128 triệu đồng. D. 20, 128 triệu đồng.
Câu 53. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng
√
√
√
√
a 6
A. a 6.
B.
.
C. a 3.
D. 2a 6.
2
Câu 54. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Thập nhị diện đều. B. Tứ diện đều.
C. Bát diện đều.
D. Nhị thập diện đều.
Câu 55. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
A. f 0 (0) = ln 10.
B. f 0 (0) = 1.
C. f 0 (0) = 10.
D. f 0 (0) =
1
.
ln 10
Trang 4/11 Mã đề 1
Câu 56. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 10 cạnh, 6 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
Câu 57. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của hình chóp S .ABCD với√mặt phẳng (AIC) có diện√tích là
√
2
11a2
a2 2
a2 5
a 7
.
B.
.
C.
.
D.
.
A.
8
32
4
16
Câu 58. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
9
3
A. .
B. 1.
C. 3.
D. .
2
2
Câu 59. Cho
√ số phức z thỏa mãn |z + 3| = 5 và |z − 2i| = |z − 2 − 2i|. Tính |z|.
√
B. |z| = 10.
C. |z| = 17.
D. |z| = 10.
A. |z| = 17.
π
Câu 60. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là
2
√
√
1 π3
2 π4
3 π6
A.
e .
B.
e .
C. e .
D. 1.
2
2
2
Câu 61. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất không thay đổi?
A. 102.424.000.
B. 102.016.000.
C. 102.016.000.
D. 102.423.000.
Câu 62. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác S AB đều và nằm trong mặt
Thể tích khối chóp
√
√ S .ABCD là
√ phẳng vng góc với 3(ABCD).
3
3
√
a 2
a 3
a 3
.
C.
.
D.
.
B.
A. a3 3.
4
2
2
Câu 63. Khối đa diện đều loại {3; 3} có số cạnh
A. 6.
B. 5.
C. 4.
D. 8.
Z 2
ln(x + 1)
Câu 64. Cho
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
x2
1
A. 0.
B. −3.
C. 1.
D. 3.
1
2mx + 1
Câu 65. Giá trị lớn nhất của hàm số y =
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
A. 1.
B. 0.
C. −5.
D. −2.
Câu 66. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
x+1 y−5
z
d:
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng
2
2
−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (2; 2; −1).
B. ~u = (2; 1; 6).
C. ~u = (1; 0; 2).
D. ~u = (3; 4; −4).
Câu 67. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 5.
B. V = 4.
C. V = 3.
D. V = 6.
Câu 68. Dãy số nào có giới hạn bằng 0?!
n
n3 − 3n
−2
.
B. un =
.
A. un =
n+1
3
C. un = n − 4n.
2
!n
6
D. un =
.
5
Trang 5/11 Mã đề 1
Câu 69. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α
aα
B. aα bα = (ab)α .
C. aα+β = aα .aβ .
D. aαβ = (aα )β .
A. β = a β .
a
Câu 70. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là −3, phần ảo là 4.
B. Phần thực là 3, phần ảo là 4.
C. Phần thực là −3, phần ảo là −4.
D. Phần thực là 3, phần ảo là −4.
Câu 71. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2
A. 2e + 1.
B. 2e.
C. .
D. 3.
e
Câu 72. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất khơng thay đổi và người đó không rút tiền ra?
A. 11 năm.
B. 14 năm.
C. 12 năm.
D. 10 năm.
Câu 73. Khối đa diện đều loại {4; 3} có số mặt
A. 8.
B. 12.
C. 10.
D. 6.
Câu 74. [1] Đạo hàm của làm số y = log x là
1
1
ln 10
1
B.
.
C. y0 =
.
D. y0 =
.
A. y0 = .
x
10 ln x
x
x ln 10
log 2x
Câu 75. [1229d] Đạo hàm của hàm số y =
là
x2
1 − 2 ln 2x
1 − 4 ln 2x
1 − 2 log 2x
1
.
B. y0 = 3
.
C. y0 =
.
D. y0 =
.
A. y0 = 3
3
2x ln 10
x ln 10
2x ln 10
x3
Câu 76.
√ [4-1246d] Trong tất cả các số phức z thỏa mãn |z√− i| = 1. Tìm giá trị lớn nhất của |z|
B. 2.
C. 5.
D. 1.
A. 3.
2n + 1
Câu 77. Tính giới hạn lim
3n + 2
3
1
2
B. 0.
C. .
D. .
A. .
3
2
2
√
Câu 78. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. Vô số.
B. 62.
C. 64.
D. 63.
π π
3
Câu 79. Cho hàm số y = 3 sin x − 4 sin x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. −1.
B. 7.
C. 1.
D. 3.
Câu 80. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 1.
B. Vô nghiệm.
C. 2.
D. 3.
Câu 81. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 6 lần.
B. Tăng gấp 8 lần.
C. Tăng gấp 4 lần.
D. Tăng gấp đôi.
1 − 2n
Câu 82. [1] Tính lim
bằng?
3n + 1
2
1
2
A. .
B. .
C. − .
D. 1.
3
3
3
Câu 83. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. 1 + 2 sin 2x.
B. −1 + sin x cos x.
C. 1 − sin 2x.
D. −1 + 2 sin 2x.
Câu 84. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {5; 3}.
B. {4; 3}.
C. {3; 5}.
D. {3; 4}.
Trang 6/11 Mã đề 1
4
Câu 85. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 :
2
5
5
A. a 3 .
B. a 3 .
C. a 8 .
√3
a2 bằng
7
D. a 3 .
3a
, hình chiếu vng
Câu 86. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng √
a 2
2a
a
a
A.
.
B.
.
C. .
D. .
3
3
4
3
Câu 87. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
f (x) a
A. lim
= .
B. lim [ f (x) + g(x)] = a + b.
x→+∞ g(x)
x→+∞
b
C. lim [ f (x)g(x)] = ab.
D. lim [ f (x) − g(x)] = a − b.
x→+∞
x→+∞
x − 5x + 6
Câu 88. Tính giới hạn lim
x→2
x−2
A. 0.
B. −1.
2
C. 1.
D. 5.
Câu 89. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 1202 m.
B. 6510 m.
C. 2400 m.
D. 1134 m.
Câu 90. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Khơng có.
B. Có một.
C. Có hai.
D. Có một hoặc hai.
Câu 91. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. −2e2 .
B. −e2 .
C. 2e2 .
D. 2e4 .
Câu 92. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ơng muốn hồn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng không đổi trong thời gian ông A hoàn nợ.
100.1, 03
120.(1, 12)3
A. m =
triệu.
B. m =
triệu.
3
(1, 12) − 1
3
(1, 01)3
100.(1, 01)3
C. m =
triệu.
D.
m
=
triệu.
(1, 01)3 − 1
3
Câu 93. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
B. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
C. Số đỉnh của khối chóp bằng số mặt của khối chóp.
D. Số cạnh của khối chóp bằng số mặt của khối chóp.
Câu 94. Khối đa diện đều loại {3; 5} có số đỉnh
A. 30.
B. 12.
C. 20.
D. 8.
Câu 95. [4-1245d] Trong tất cả√các số phức z thỏa mãn hệ
√ thức |z − 1 + 3i| = 3. Tìm min |z − 1 − i|.
C. 10.
D. 1.
A. 2.
B. 2.
Câu 96. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ông ta muốn
hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ơng ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 2, 25 triệu đồng.
B. 2, 22 triệu đồng.
C. 2, 20 triệu đồng.
D. 3, 03 triệu đồng.
Trang 7/11 Mã đề 1
1 3
x − 2x2 + 3x − 1.
3
A. (1; +∞).
B. (−∞; 3).
C. (1; 3).
D. (−∞; 1) và (3; +∞).
1 − xy
Câu 98. [12210d] Xét các số thực dương x, y thỏa mãn log3
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
x + 2y
Pmin của P = x√+ y.
√
√
√
9 11 − 19
18 11 − 29
2 11 − 3
9 11 + 19
A. Pmin =
. B. Pmin =
. C. Pmin =
.
D. Pmin =
.
9
21
3
9
Câu 97. Tìm tất cả các khoảng đồng biến của hàm số y =
Câu 99. Tính mơ đun của số phức z√biết (1 + 2i)z2 = 3 + 4i. √
4
A. |z| = 5.
B. |z| = 5.
C. |z| = 5.
√
D. |z| = 2 5.
Câu 100. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất
√ của hàm số. Khi đó tổng M + m
√
√
B. 16.
C. 8 3.
D. 7 3.
A. 8 2.
Z 1
Câu 101. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
1
A. .
2
0
B. 0.
C. 1.
D.
1
.
4
tan x + m
nghịch biến trên khoảng
Câu 102. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
m tan x + 1
π
0; .
4
A. (−∞; 0] ∪ (1; +∞). B. (−∞; −1) ∪ (1; +∞). C. [0; +∞).
D. (1; +∞).
Câu 103. [1] Giá trị của biểu thức 9log3 12 bằng
A. 144.
B. 24.
C. 4.
D. 2.
√
Câu 104. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh
bên S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng
√
√
√
3a
a 38
3a 38
3a 58
.
B.
.
C.
.
D.
.
A.
29
29
29
29
Câu 105. Trong các khẳng định sau, khẳng định nào sai?
√
A. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
B. Cả ba đáp án trên.
C. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
D. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
Câu 106. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 3ac
3b + 2ac
3b + 2ac
3b + 3ac
A.
.
B.
.
C.
.
D.
.
c+2
c+2
c+3
c+1
7n2 − 2n3 + 1
Câu 107. Tính lim 3
3n + 2n2 + 1
2
7
A. - .
B. 1.
C. .
D. 0.
3
3
Câu 108. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 12 mặt.
B. 20 đỉnh, 30 cạnh, 20 mặt.
C. 12 đỉnh, 30 cạnh, 12 mặt.
D. 12 đỉnh, 30 cạnh, 20 mặt.
2
Câu 109. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
1
1
1
A. 3 .
B. 2 .
C. √ .
2e
e
2 e
D.
2
.
e3
Trang 8/11 Mã đề 1
Câu 110. Khẳng định nào sau đây đúng?
A. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
B. Hình lăng trụ tứ giác đều là hình lập phương.
C. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
D. Hình lăng trụ đứng là hình lăng trụ đều.
d = 30◦ , biết S BC là tam giác đều
Câu 111. [3] Cho hình chóp S .ABC có đáy là tam giác vng tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
.
B.
.
C.
.
D.
.
A.
13
26
9
16
9x
Câu 112. [2-c] Cho hàm số f (x) = x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9 +3
1
A. −1.
B. 2.
C. 1.
D. .
2
Câu 113. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
67
.
B. −4.
C. −7.
D. −2.
A.
27
Câu 114.
Trong các khẳng định sau, khẳng định nào sai?Z
Z
xα+1
α
x dx =
A.
0dx = C, C là hằng số.
+ C, C là hằng số.
B.
α+1
Z
Z
1
C.
dx = ln |x| + C, C là hằng số.
D.
dx = x + C, C là hằng số.
x
√
√
Câu 115. Phần thực
và
phần
ảo
của
số
phức
z
=
2
−
1
−
3i lần lượt√l
√
√
√
A. Phần thực là √2 − 1, phần ảo là √
3.
B. Phần thực là 2, √
phần ảo là 1 − √
3.
C. Phần thực là 2 − 1, phần ảo là − 3.
D. Phần thực là 1 − 2, phần ảo là − 3.
x
Câu 116. Tính diện tích hình phẳng giới hạn bởi các đường
√ y = xe , y = 0, x = 1.
1
3
3
A. .
B. .
C.
.
D. 1.
2
2
2
Câu 117. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = −2.
B. m = −3.
C. m = −1.
D. m = 0.
Câu 118. [2] Cho hình chóp S .ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng
cách giữa hai đường thẳng S B và AD bằng
√
√
√
√
a 2
a 2
A. a 2.
B. a 3.
C.
.
D.
.
2
3
Câu 119. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có nguyên hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (II) sai.
B. Câu (I) sai.
C. Câu (III) sai.
D. Khơng có câu nào
sai.
Câu 120.
Cho hàm số f (x),
Z
Z g(x) liên tục
Z trên R. Trong các
Z mệnh đề sau, mệnhZđề nào sai? Z
A.
( f (x) + g(x))dx =
f (x)dx + g(x)dx.
B.
( f (x) − g(x))dx =
f (x)dx − g(x)dx.
Z
Z
Z
Z
Z
C.
f (x)g(x)dx =
f (x)dx g(x)dx.
D.
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.
Trang 9/11 Mã đề 1
Câu 121.
[1233d-2] MệnhZđề nào sau đây
Z
Z sai?
[ f (x) + g(x)]dx =
A.
Z
B.
[ f (x) − g(x)]dx =
f (x)dx +
Z
g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
f (x)dx −
g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
D.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
C.
Câu 122. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 9 mặt.
C. 6 mặt.
D. 4 mặt.
Câu 123. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vng
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√
√
a3 5
a3 5
a3 3
a3 5
A.
.
B.
.
C.
.
D.
.
12
6
12
4
Câu 124. Giá trị của lim(2x2 − 3x + 1) là
x→1
A. 1.
B. 0.
C. +∞.
D. 2.
Câu 125. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi
M, N và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M,
√ N, P bằng
√
√
√
14 3
20 3
A.
.
B.
.
C. 6 3.
D. 8 3.
3
3
1
Câu 126. Hàm số y = x + có giá trị cực đại là
x
A. −1.
B. 1.
C. −2.
D. 2.
Câu 127. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 10 năm.
B. 7 năm.
C. 8 năm.
D. 9 năm.
Câu 128.
√
√ Biểu thức nào sau đây−1khơng có nghĩa
−3
A.
−1.
B. 0 .
C. (− 2)0 .
D. (−1)−1 .
x+1
Câu 129. Tính lim
bằng
x→−∞ 6x − 2
1
1
1
A. .
B. .
C. .
D. 1.
3
6
2
Câu 130. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 4 đỉnh, 12 cạnh, 4 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 10/11 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
2.
C
3. A
6.
5. A
7.
B
8.
D
D
9. A
10.
B
11.
12.
B
13.
14.
B
15.
16. A
18.
D
B
C
D
17. A
19.
B
C
21.
20. A
D
22.
D
23.
24.
D
25.
B
26. A
27.
B
28. A
29. A
30. A
31. A
32. A
33. A
34.
C
35.
36. A
C
B
39.
D
41.
D
42.
C
43.
44.
C
45.
46.
C
47. A
48.
D
51.
52.
D
C
B
53. A
54. A
55. A
56.
57. A
C
58.
D
59.
60. A
D
61. A
62.
D
63. A
B
66.
68.
B
49. A
50. A
64.
B
37. A
38.
40.
C
C
B
65.
B
67.
B
69. A
1
70. A
71.
D
72. A
73.
D
D
74.
75.
76.
B
77. A
78.
B
79.
80.
C
81.
82.
C
83.
84.
C
85. A
B
C
B
D
86.
B
87. A
88.
B
89.
B
91.
B
D
90.
C
92.
C
93.
94.
B
95.
D
96.
B
97.
D
98.
100.
C
99.
B
101. A
102.
D
103. A
104. A
105. A
106. A
107. A
108. A
109.
110. A
111. A
112.
B
B
113.
C
114. A
D
115.
D
116.
C
117. A
118.
C
119.
D
120.
C
121.
D
122. A
124.
123. A
B
126.
128.
125.
C
127.
C
B
129.
130. A
2
D
B