Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (554)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (156.71 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 0.
B. 3.
C. 2.
Câu 2. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình
A. 1.

B. 4.

C. 3.

D. 1.
1
3|x−1|

= 3m−2 có nghiệm duy nhất?
D. 2.

Câu 3. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].


(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 2.

B. 4.

C. 1.

D. 3.

Câu 4. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng lên?
A. 2n2 lần.
B. 2n3 lần.
C. n3 lần.
D. n3 lần.
9t
Câu 5. [4] Xét hàm số f (t) = t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
9 + m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. 0.
B. 2.
C. 1.
D. Vô số.
Câu 6. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. −1 + sin x cos x.
B. 1 + 2 sin 2x.
C. 1 − sin 2x.
Câu 7. Phát biểu nào sau đây là sai?
A. lim un = c (un = c là hằng số).
1

C. lim k = 0.
n

D. −1 + 2 sin 2x.

B. lim qn = 0 (|q| > 1).
1
D. lim = 0.
n
2

Câu 8. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
1
2
1
C. 2 .
A. √ .
B. 3 .
e
e
2 e

D.

1
.
2e3

Câu 9. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi

cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất khơng thay đổi?
A. 102.016.000.
B. 102.424.000.
C. 102.423.000.
D. 102.016.000.
1
Câu 10. Hàm số y = x + có giá trị cực đại là
x
A. 1.
B. −2.
C. −1.
D. 2.
Câu 11. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, biết S H ⊥ (ABCD). Thể √
tích khối chóp S .ABCD là√
3
3
2a 3
4a3 3
a3
a
A.
.
B.
.
C.
.
D.
.

6
3
3
3
Trang 1/10 Mã đề 1


Câu 12. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).

√ Thể tích khối chóp S 3.ABC
√ là

3
a 3
a 3
a3 2
a3 3
A.
.
B.
.
C.
.
D.
.
4
6
12
12

d = 30◦ , biết S BC là tam giác đều
Câu 13. [3] Cho hình chóp S .ABC có đáy là tam giác vuông tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
A.
.
B.
.
C.
.
D.
.
9
26
16
13
Z 2
ln(x + 1)
Câu 14. Cho
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
x2
1
A. 0.
B. −3.

C. 1.
D. 3.
Câu 15. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. log2 2020.
B. 2020.
C. log2 13.
D. 13.
Câu 16. Tính lim
x→1

A. −∞.

x3 − 1
x−1

B. 0.

C. 3.

D. +∞.

Câu 17. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ông muốn hoàn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng khơng đổi trong thời gian ơng A hồn nợ.
100.(1, 01)3
120.(1, 12)3
triệu.
B.

m
=
triệu.
A. m =
(1, 12)3 − 1
3
100.1, 03
(1, 01)3
C. m =
triệu.
D. m =
triệu.
3
(1, 01)3 − 1
Câu 18. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|




12 17
A. 5.
B. 34.
C.
.
D. 68.
17
[ = 60◦ , S O
Câu 19. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc với mặt đáy và S O = a.

√ Khoảng cách từ A đến (S
√ BC) bằng


a 57
a 57
2a 57
A. a 57.
B.
.
C.
.
D.
.
19
17
19
Câu 20. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 9 cạnh, 6 mặt. B. 6 đỉnh, 6 cạnh, 6 mặt. C. 6 đỉnh, 9 cạnh, 5 mặt. D. 5 đỉnh, 9 cạnh, 6 mặt.
Câu 21. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
mơđun z.




5 13
A. 2 13.
B. 2.
C. 26.
D.

.
13
Câu 22. [2]√Tìm m để giá trị lớn nhất của hàm số y = 2x3 + (m2 + 1)2 x trên [0; 1] bằng 8 √
A. m = ± 2.
B. m = ±3.
C. m = ±1.
D. m = ± 3.
Câu 23. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 3 mặt.
C. 9 mặt.
D. 4 mặt.
Câu 24. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối tứ diện.
B. Khối bát diện đều.
C. Khối lăng trụ tam giác.
D. Khối lập phương.
Trang 2/10 Mã đề 1


x−2 x−1
x
x+1
+
+
+
và y = |x + 1| − x − m (m là tham
x−1
x
x+1 x+2

số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; −3).
B. [−3; +∞).
C. (−3; +∞).
D. (−∞; −3].

Câu 26. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 63.
B. Vơ số.
C. 62.
D. 64.
!
x+1
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
Câu 27. [3] Cho hàm số f (x) = ln 2017 − ln
x
4035
2017
2016
A.
.
B. 2017.
C.
.
D.
.
2018
2018

2017
un
Câu 28. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. −∞.
B. 0.
C. 1.
D. +∞.

Câu 29. [2] Phương trình log4 (x + 1)2 + 2 = log √2 4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
A. 1 nghiệm.
B. 3 nghiệm.
C. Vô nghiệm.
D. 2 nghiệm.
Câu 25. [4-1212d] Cho hai hàm số y =

2

Câu 30. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 5.
B. 6.
C. 7.
D. 8.
p
ln x
1
Câu 31. Gọi F(x) là một nguyên hàm của hàm y =
ln2 x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3

1
8
1
8
A. .
B. .
C. .
D. .
3
3
9
9
3
2
Câu 32. Hàm số y = −x + 3x − 1 đồng biến trên khoảng nào dưới đây?
A. R.
B. (2; +∞).
C. (−∞; 1).
D. (0; 2).
Câu 33. Tính diện tích hình phẳng giới hạn bởi các đường y = xe x , y = 0, x = 1. √
3
3
1
B. 1.
C. .
D.
.
A. .
2
2

2
Câu 34. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 46cm3 .
B. 72cm3 .
C. 27cm3 .
D. 64cm3 .
x2 − 12x + 35
Câu 35. Tính lim
x→5
25 − 5x
2
2
A. +∞.
B. − .
C. −∞.
D. .
5
5
1
Câu 36. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 2 ≤ m ≤ 3.
B. 0 < m ≤ 1.
C. 0 ≤ m ≤ 1.
D. 2 < m ≤ 3.
Câu 37. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m , 0.
B. m = 0.
C. m < 0.


D. m > 0.

Câu 38. Khối đa diện đều loại {3; 5} có số mặt
A. 8.
B. 30.

D. 12.

C. 20.

Câu 39. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
B. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
Trang 3/10 Mã đề 1



Câu 40. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 62.
B. 63.
C. Vơ số.
D. 64.
Câu 41. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD


√ = a. Khoảng cách từ A đến mặt phẳng (BCD) bằng


a 2
a 2
.
B. a 2.
C.
.
D. 2a 2.
A.
4
2
4
0
Câu 42. [2] Cho hàm số f (x) = ln(x + 1). Giá trị f (1) bằng
ln 2
1
C. 1.
D.
.
A. 2.
B. .
2
2
Câu 43. Cho hình chóp S .ABCD có đáy ABCD là hình vuông cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với đáy
một góc 60◦ . Thể tích√khối chóp S .ABCD là √



2a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D. a3 3.
3
6
3
4x + 1
Câu 44. [1] Tính lim
bằng?
x→−∞ x + 1
A. 2.
B. −1.
C. −4.
D. 4.
Câu 45. Khối đa diện đều loại {3; 3} có số đỉnh
A. 5.
B. 2.
2
7n − 2n3 + 1
Câu 46. Tính lim 3
3n + 2n2 + 1
A. 1.
B. 0.


C. 4.

D. 3.

7
2
.
D. - .
3
3
x
y
Câu 47. [4-c] Xét các số thực dương x, y thỏa mãn 2 + 2 = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
.
C. 12.
D. 18.
A. 27.
B.
2
Câu 48. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √

3
a 6
a3 6

a3 6
a3 3
A.
.
B.
.
C.
.
D.
.
48
8
24
24


Câu 49. [12215d] Tìm m để phương trình 4 x+
9
A. 0 ≤ m ≤ .
B. m ≥ 0.
4
x−2
Câu 50. Tính lim
x→+∞ x + 3
2
A. − .
B. −3.
3
x−3
Câu 51. [1] Tính lim

bằng?
x→3 x + 3
A. −∞.
B. 1.

1−x2

C.



− 3m + 4 = 0 có nghiệm
3
3
C. 0 ≤ m ≤ .
D. 0 < m ≤ .
4
4

− 4.2 x+

1−x2

C. 1.

D. 2.

C. 0.

D. +∞.


Câu 52. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
Trang 4/10 Mã đề 1


A. Câu (III) sai.

B. Khơng có câu nào C. Câu (I) sai.
sai.

Câu 53. [3] Biết rằng giá trị lớn nhất của hàm số y =
số tự nhiên. Tính S = m2 + 2n3
A. S = 32.
B. S = 24.
Câu 54. [1] Đạo hàm của làm số y = log x là
ln 10
1
A. y0 =
.
B. y0 = .
x
x

D. Câu (II) sai.

m

ln2 x
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
x
e

C. S = 22.
C.

1
.
10 ln x

D. S = 135.
D. y0 =

1
.
x ln 10

Câu 55. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số đồng biến trên khoảng (0; 2).
B. Hàm số đồng biến trên khoảng (0; +∞).
C. Hàm số nghịch biến trên khoảng (0; 2).
D. Hàm số nghịch biến trên khoảng (−∞; 2).
Câu 56. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối√chóp S .ABMN là




4a3 3
2a3 3
5a3 3
a3 3
.
B.
.
C.
.
D.
.
A.
2
3
3
3
Câu 57. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của

A. Giảm đi n lần.
B. Không thay đổi.
C. Tăng lên n lần.
D. Tăng lên (n − 1) lần.
Câu 58. [1] Cho a > 0, a , 1. Giá trị của biểu thức log a1 a2 bằng
1
1
A. −2.
B. − .
C. .
2
2

Câu 59. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (4; 6, 5].
B. (−∞; 6, 5).
C. [6, 5; +∞).

D. 2.
D. (4; +∞).

Câu 60. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 2.

B. 1.

C. 0.

D. 3.



x2 + 3x + 5
Câu 61. Tính giới hạn lim
x→−∞
4x − 1
1
A. − .
B. 0.
4


C.

1
.
4

D. 1.

Câu 62. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Một khối chóp tam giác, một khối chóp tứ giác.
B. Một khối chóp tam giác, một khối chóp ngữ giác.
C. Hai khối chóp tứ giác.
D. Hai khối chóp tam giác.
x2
Câu 63. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
A. M = e, m = .
B. M = e, m = 1.
C. M = , m = 0.
D. M = e, m = 0.
e
e
Trang 5/10 Mã đề 1


Câu 64. [1] !Tập xác định của hàm số y! = log3 (2x + 1) là
!

1
1
1
B.
; +∞ .
C. − ; +∞ .
A. −∞; .
2
2
2

!
1
D. −∞; − .
2

Câu 65. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có hai.
B. Có một.
C. Khơng có.
D. Có một hoặc hai.
Câu 66. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 3.
B. 1.
C. Vô nghiệm.
D. 2.
Câu 67. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vuông, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng

(S AB). Thiết diện của
phẳng (AIC) có diện√tích là

√ hình chóp S .ABCD với mặt
2
2
2
a 5
a 7
11a
a2 2
A.
.
B.
.
C.
.
D.
.
16
8
32
4
x+1
bằng
Câu 68. Tính lim
x→+∞ 4x + 3
1
1
A. .

B. 3.
C. 1.
D. .
3
4
Câu 69. Trong các khẳng định sau, khẳng định nào sai?
A. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
B. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
Z 0
u (x)
dx = log |u(x)| + C.
C.
u(x)
D. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
Câu 70. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x−2 y−3 z+4
x+1 y−4 z−4
đường thẳng d :
=
=
và d0 :
=
=
2
3
−5
3
−2
−1

x y−2 z−3
x−2 y+2 z−3
A. =
=
.
B.
=
=
.
2
3
−1
2
2
2
x−2 y−2 z−3
x y z−1
C.
=
=
.
D. = =
.
2
3
4
1 1
1
Câu 71. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Thập nhị diện đều. B. Tứ diện đều.

C. Nhị thập diện đều.

D. Bát diện đều.

Câu 72. Cho z là nghiệm của phương trình x2 + x + 1 = 0. Tính P =√z4 + 2z3 − z

−1 − i 3
−1 + i 3
A. P = 2i.
B. P = 2.
C. P =
.
D. P =
.
2
2
Câu 73. [1] Tính lim
A.

1
.
2

1 − n2
bằng?
2n2 + 1
1
B. .
3


1
C. − .
2

D. 0.

Câu 74. [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc là mơn Tốn. Mơn thi này dưới hình thức
trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng. Mỗi câu trả lời đúng
được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm. Bạn An học kém mơn Tốn nên quyết định chọn
ngẫu nhiên hết 50 câu trả lời. Xác suất để bạn An đạt 4 điểm mơn Tốn là
C 20 .(3)30
C 40 .(3)10
C 20 .(3)20
C 10 .(3)40
A. 50 50 .
B. 50 50 .
C. 50 50 .
D. 50 50 .
4
4
4
4
Trang 6/10 Mã đề 1


Câu 75. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Đường phân giác góc phần tư thứ nhất.
B. Trục thực.
C. Trục ảo.
D. Hai đường phân giác y = x và y = −x của các góc tọa độ.

x−1
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác đều ABI có hai đỉnh A,√B thuộc (C), đoạn thẳng AB
√ có độ dài bằng

C. 2 2.
D. 2 3.
A. 2.
B. 6.
Câu 76. [3-1214d] Cho hàm số y =

Câu 77. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Ba mặt.
B. Hai mặt.
C. Năm mặt.

D. Bốn mặt.

Câu 78. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m > 0.
B. m > −1.
C. m ≥ 0.

D. m > 1.

Câu 79. Trong các mệnh đề dưới đây, mệnh đề nào!sai?
un
A. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.

vn
!
un
= −∞.
B. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
v
n
!
un
= +∞.
C. Nếu lim un = a > 0 và lim vn = 0 thì lim
vn
D. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
Câu 80. Trong các khẳng định sau, khẳng định nào sai?
A. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
B. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.

C. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
D. Cả ba đáp án trên.
2

2

sin x
Câu 81.
+ 2cos x lần
√ [3-c] Giá trị nhỏ nhất và giá√trị lớn nhất của hàm số f (x) = 2
√ lượt là
A. 2 và 3.
B. 2 và 2 2.

C. 2 và 3.
D. 2 2 và 3.

Câu 82. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối bát diện đều.

C. Khối 20 mặt đều.

D. Khối tứ diện đều.

Câu 83. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 20.
B. 24.
C. 3, 55.
D. 15, 36.
Câu 84. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp
√ đã cho
√ là 1728. Khi đó, các kích thước của hình hộp là
A. 2 3, 4 3, 38.
B. 6, 12, 24.
C. 2, 4, 8.
D. 8, 16, 32.
Câu 85. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 4).
B. (2; 4; 3).

C. (1; 3; 2).
D. (2; 4; 6).
x2 − 9
Câu 86. Tính lim
x→3 x − 3
A. 6.
B. +∞.
x2 +x−2

Câu 87. [1] Tập xác định của hàm số y = 4
A. D = [2; 1].
B. D = R \ {1; 2}.

C. −3.

D. 3.

C. D = (−2; 1).

D. D = R.



Trang 7/10 Mã đề 1


x+1
Câu 88. Tính lim
bằng
x→−∞ 6x − 2

1
1
A. .
B. .
3
6

C.

1
.
2

D. 1.


Câu 89. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã

√ cho là


πa3 3
πa3 3
πa3 3
πa3 6
A. V =
.
B. V =
.

C. V =
.
D. V =
.
6
3
2
6
Câu 90. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 22.
B. y(−2) = 6.
C. y(−2) = −18.
D. y(−2) = 2.
Câu 91. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 3.
B. 1.
C. 2.
D. Vô nghiệm.
Câu 92. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1

A. 5.

B. 9.

C. 0.
4
3


Câu 93. [1-c] Cho a là số thực dương .Giá trị của biểu thức a :
5
7
2
A. a 3 .
B. a 8 .
C. a 3 .

√3

D. 7.
a2 bằng
5

D. a 3 .

Câu 94. Khối đa diện đều loại {5; 3} có số mặt
A. 8.
B. 12.

C. 30.

D. 20.

Câu 95.
có nghĩa
√ Biểu thức nào sau đây không
−3
−1
−1.

B. 0 .
A.


C. (− 2)0 .

D. (−1)−1 .

Câu 96. Trong khơng gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0) lần
lượt là hình chiếu
của B, C lên các cạnh AC, AB. Tọa độ hình chiếu
!
! của A lên BC là
!
8
7
5
A.
; 0; 0 .
B. (2; 0; 0).
C.
; 0; 0 .
D.
; 0; 0 .
3
3
3
Câu 97. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. −4.
B. −2.

C. 4.

D. 2.

Câu 98. [4-1245d] Trong tất cả√các số phức z thỏa mãn hệ
√ thức |z − 1 + 3i| = 3. Tìm min |z − 1 − i|.
A. 2.
B. 2.
C. 10.
D. 1.
Câu 99. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. 1.
B. e.
C. 4 − 2 ln 2.
D. −2 + 2 ln 2.
1
Câu 100. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 luôn đồng biến trên
3

một đoạn có độ dài bằng 24.
A. m = 4.
B. −3 ≤ m ≤ 4.
C. m = −3.
D. m = −3, m = 4.
d = 120◦ .
Câu 101. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
A.
.

B. 2a.
C. 3a.
D. 4a.
2
Câu 102. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 8π.
B. 32π.
C. V = 4π.
D. 16π.
Câu 103. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
Trang 8/10 Mã đề 1


(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Chỉ có (I) đúng.
B. Chỉ có (II) đúng.

C. Cả hai đều sai.

D. Cả hai đều đúng.

Câu 104. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
7
5
A. .
B. 9.

C. .
D. 6.
2
2
Câu 105. Hàm số nào sau đây khơng có cực trị
x−2
A. y = x4 − 2x + 1.
B. y =
.
2x + 1

1
C. y = x + .
x

D. y = x3 − 3x.

Câu 106. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
B. Số đỉnh của khối chóp bằng số mặt của khối chóp.
C. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
D. Số cạnh của khối chóp bằng số mặt của khối chóp.
Câu 107. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9
tháng thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không
thay đổi trong thời gian gửi.
A. 0, 5%.
B. 0, 8%.
C. 0, 7%.
D. 0, 6%.
Câu 108. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3.

Tính f (2) + f (4)?
A. 4.
B. 12.
C. 10.
D. 11.
Câu 109. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc
45◦ . Tính thể tích của khối chóp S√
.ABC theo a


3
3
a
a 15
a3 15
a3 5
.
B.
.
C.
.
D.
.
A.
3
25
5
25
2n2 − 1
Câu 110. Tính lim 6

3n + n4
2
A. .
B. 1.
3

C. 0.

D. 2.
!
3n + 2
2
+ a − 4a = 0. Tổng các phần tử
Câu 111. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
n+2
của S bằng
A. 2.
B. 5.
C. 3.
D. 4.
0 0 0 0
Câu 112.
a. Khoảng cách từ C đến √
AC 0 bằng
√ ABCD.A B C D cạnh √
√ [2] Cho hình lâp phương
a 3
a 6
a 6
a 6

A.
.
B.
.
C.
.
D.
.
2
7
3
2

Câu 113. Tính thể tích khối lập phương biết tổng diện tích√tất cả các mặt bằng 18.
D. 9.
A. 27.
B. 8.
C. 3 3.
Câu 114. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 20 mặt.
B. 12 đỉnh, 30 cạnh, 20 mặt.
C. 20 đỉnh, 30 cạnh, 12 mặt.
D. 12 đỉnh, 30 cạnh, 12 mặt.
Câu 115. Khối chóp ngũ giác có số cạnh là
A. 10 cạnh.
B. 9 cạnh.

C. 12 cạnh.

D. 11 cạnh.

Trang 9/10 Mã đề 1


log 2x

Câu 116. [3-1229d] Đạo hàm của hàm số y =
x2
1
1 − 2 log 2x
1 − 4 ln 2x
A. y0 = 3
.
B. y0 =
.
C. y0 =
.
3
2x ln 10
x
2x3 ln 10
2n − 3
Câu 117. Tính lim 2
bằng
2n + 3n + 1
A. +∞.
B. −∞.
C. 0.

D. y0 =


1 − 2 ln 2x
.
x3 ln 10

D. 1.

Câu 118. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x + x − y − 12 = 0. Tìm giá trị nhỏ nhất của
P = xy + x + 2y + 17
A. −15.
B. −12.
C. −5.
D. −9.
2

Câu 119. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = 10.
B. P = −21.
C. P = −10.
D. P = 21.
Câu 120. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (0; 2).
B. (−∞; 0) và (2; +∞). C. (−∞; 2).
D. (0; +∞).
a
1
Câu 121. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
A. 1.
B. 2.

C. 7.
D. 4.
Câu 122. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
A. T = 4 + .
B. T = e + .
C. T = e + 3.
D. T = e + 1.
e
e

Câu 123. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh
bên S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng



3a 58
3a
a 38
3a 38
.
B.
.
C.
.
D.
.

A.
29
29
29
29
Câu 124. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α

A. β = a β .
B. aα+β = aα .aβ .
C. aαβ = (aα )β .
D. aα bα = (ab)α .
a
Câu 125. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 120 cm2 .
B. 1200 cm2 .
C. 160 cm2 .
D. 160 cm2 .
Câu 126. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 12.
B. ln 14.
C. ln 10.
D. ln 4.
1
Câu 127. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 1.
B. 4.

C. 2.
D. 3.
1
Câu 128. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (−∞; 3).
B. (1; 3).
C. (1; +∞).
D. (−∞; 1) và (3; +∞).
Câu 129.
hạn là 0?
!n Dãy số nào sau đây có !giới
!n
!n
n
5
1
4
5
A.
.
B.
.
C.
.
D. − .
3
3
e
3

d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥
Câu 130. Cho hình chóp S .ABC có BAC
(ABC). Thể
√là
√ tích khối chóp S .ABC


a3 3
a3 2
a3 3
2
A.
.
B.
.
C. 2a 2.
D.
.
24
24
12
- - - - - - - - - - HẾT- - - - - - - - - Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A


2. A
D

3.

4.

D
D

5.

B

6.

7.

B

8.

9.

B

10.
D

13.


14.

C

15.

B

12.

C

11.

C
D
B

16.

C

17.

D

18.

C


19.

D

20.

C

21.

D

22. A

23.

24. A

B

25.

D
C

27.

28.


29.

D

30.

31.

D

32.

33.

C

26.
B

C
D

34.

B

35.

D


C

36.

37. A

D

38.

39.

D

C

40. A

41.

C

42. A

43.

C

44.


D

45.

C

46.

D

47.

D

48.

C
C

49.

C

50.

51.

C

52.


53. A

54.

55. A

56. A

57. A

58. A

59. A

60. A

61. A

62. A

B
D

63.

D

64.


65.

D

66.

D

68.

D

67.

B
1

C


70.

C

69.
71. A

72.
C


73.
75.

78.

D
B

80.

C

81.

D

82. A

83.

D

84.

85.

D

86. A


87.

D

88.

C
B
B

90.

B

91.

C

76.

77. A

89.

B

74.
D

79.


D

C

93. A

C

92.

B

94.

B

95.

B

96. A

97.

B

98.

D


99.

B

100.

D

101. A

103.

B

104. A

105.

B

106.

B

107.

108.

B


109.

110.

C

111.

112.

C

113.

114.

C

115. A

116.

D
B

119.

120.


B

121.
C

123.

124. A
126.

D
C
C
B
C
B

125.
B

128.
130.

B

117.

118.
122.


C

C

127. A
D

129.

B

2

B



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×