Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (503)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (155.52 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích hình
hộp đã cho là 1728. Khi đó, các kích thước của hình hộp là√

D. 8, 16, 32.
A. 2, 4, 8.
B. 6, 12, 24.
C. 2 3, 4 3, 38.
Câu 2. Khối đa diện đều loại {4; 3} có số cạnh
A. 30.
B. 12.

C. 10.

D. 20.

Câu 3. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối bát diện đều.

C. Khối 12 mặt đều.

D. Khối 20 mặt đều.



Câu 4. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−∞; 0) và (1; +∞). B. (−∞; −1) và (0; +∞). C. (−1; 0).
D. (0; 1).
Câu 5. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = [2; 1].
B. D = R.
2

C. D = R \ {1; 2}.

D. D = (−2; 1).

Câu 6. √
Thể tích của tứ diện đều cạnh
√ bằng a


3
3
a 2
a 2
a3 2
a3 2
A.
.
B.
.
C.
.

D.
.
12
6
4
2
log2 240 log2 15

+ log2 1 bằng
Câu 7. [1-c] Giá trị biểu thức
log3,75 2 log60 2
A. −8.
B. 4.
C. 1.
D. 3.
!
x+1
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
Câu 8. [3] Cho hàm số f (x) = ln 2017 − ln
x
2016
2017
4035
.
B.
.
C.
.
D. 2017.
A.

2018
2017
2018
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 9. Cho hình chóp S .ABC có BAC
Thể tích√khối chóp S .ABC là


3

a3 3
a3 3
2
a
A.
.
B.
.
C. 2a2 2.
.
D.
12
24
24
tan x + m
Câu 10. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1
 π

0; .
4
A. (1; +∞).
B. (−∞; 0] ∪ (1; +∞). C. (−∞; −1) ∪ (1; +∞). D. [0; +∞).
Câu 11. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = 10.
B. P = 21.
C. P = −10.
D. P = −21.
2
x − 12x + 35
Câu 12. Tính lim
x→5
25 − 5x
2
2
A. − .
B. .
C. −∞.
D. +∞.
5
5
x2 − 3x + 3
Câu 13. Hàm số y =
đạt cực đại tại
x−2
A. x = 3.
B. x = 0.
C. x = 2.
D. x = 1.

Câu 14. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của

A. Tăng lên n lần.
B. Tăng lên (n − 1) lần. C. Giảm đi n lần.
D. Không thay đổi.
Trang 1/10 Mã đề 1


Câu 15. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n lần.
B. 3n3 lần.
C. n3 lần.
D. n2 lần.
Câu 16. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 1134 m.
B. 1202 m.
C. 6510 m.
D. 2400 m.
Câu 17. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối √
chóp S .ABMN là



3
2a3 3
5a3 3
a3 3

4a 3
A.
.
B.
.
C.
.
D.
.
3
3
3
2
Câu 18. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. 2020.
B. 13.
C. log2 13.
D. log2 2020.
Câu 19. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2
A. 2e.
B. 2e + 1.
C. .
e

D. 3.

Câu 20. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; −3; −3).

B. A0 (−3; 3; 3).
C. A0 (−3; 3; 1).
D. A0 (−3; −3; 3).
Câu 21. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Chỉ có (I) đúng.

B. Cả hai câu trên đúng. C. Cả hai câu trên sai.


Câu 22. [12215d] Tìm m để phương trình 4 x+
3
3
B. 0 < m ≤ .
A. 0 ≤ m ≤ .
4
4

1−x2

Câu 23. Khối đa diện loại {3; 4} có tên gọi là gì?

A. Khối tứ diện đều.
B. Khối 12 mặt đều.



D. Chỉ có (II) đúng.

− 3m + 4 = 0 có nghiệm
9
C. 0 ≤ m ≤ .
D. m ≥ 0.
4

− 4.2 x+

1−x2

C. Khối lập phương.

D. Khối bát diện đều.

Câu 24. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của
phẳng (AIC) có diện√tích là
√ hình chóp S .ABCD với mặt

a2 7
a2 2

11a2
a2 5
A.
.
B.
.
C.
.
D.
.
8
4
32
16
2n + 1
Câu 25. Tính giới hạn lim
3n + 2
3
1
2
A. .
B. .
C. .
D. 0.
2
2
3
Câu 26.
đề nào sai? Z
Z Cho hàm số f (x),Zg(x) liên tụcZtrên R. Trong cácZmệnh đề sau, mệnh Z

A.
( f (x) + g(x))dx =
f (x)dx + g(x)dx.
B.
( f (x) − g(x))dx =
f (x)dx − g(x)dx.
Z
Z
Z
Z
Z
C.
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.
D.
f (x)g(x)dx =
f (x)dx g(x)dx.
Trang 2/10 Mã đề 1


Câu 27. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≥ 3.
B. m < 3.
C. m > 3.
D. m ≤ 3.
Câu 28. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. 2 nghiệm.
B. 1 nghiệm.
C. Vơ nghiệm.


D. 3 nghiệm.

Câu 29. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ
C đến đường thẳng BB0 bằng 2, khoảng

cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2 3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng
3


2 3
B.
.
C. 1.
D. 2.
A. 3.
3
Câu 30. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đơi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất khơng đổi và người đó khơng rút tiền ra?
A. 12 năm.
B. 10 năm.
C. 11 năm.
D. 13 năm.
 π

Câu 31. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là
2


2 π4
1 π3
3 π6
e .
e .
B. 1.
C. e .
D.
A.
2
2
2
Câu 32. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
11
9
A.
.
B. .
C. 7.
D. 5.
2
2
Câu 33. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3

a3
a3
A.
.
B.
.
C. a3 .
D.
.
12
6
24
1
Câu 34. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
0
y
A. xy = e − 1.
B. xy = −e + 1.
C. xy0 = −ey − 1.
D. xy0 = ey + 1.
Câu 35. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
1
A. −e.
B. − .

C. − .
D. − 2 .
e
2e
e
2
1−n
Câu 36. [1] Tính lim 2
bằng?
2n + 1
1
1
1
A. .
B. .
C. − .
D. 0.
2
3
2

Câu 37. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 63.
B. 64.
C. 62.
D. Vơ số.
Câu 38. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m > 0.
B. m < 0.

C. m , 0.

D. m = 0.

Câu 39. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|




12 17
B. 5.
C.
.
D. 34.
A. 68.
17
Trang 3/10 Mã đề 1


2

Câu 40. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
1
1
2
A. √ .
B.
.
C. 3 .

3
2e
e
2 e

D.

1
.
e2

Câu 41. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó khơng rút tiền ra?
A. 10 năm.
B. 14 năm.
C. 12 năm.
D. 11 năm.
Câu 42. Khối đa diện đều loại {3; 5} có số cạnh
A. 8.
B. 20.

C. 30.

D. 12.

Câu 43. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (0; 1).
B. Hàm số nghịch biến trên khoảng (1; +∞).

C. Hàm số nghịch biến trên khoảng (−∞; 0).
D. Hàm số đồng biến trên khoảng (1; 2).
Câu 44. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√
a3 5
a3 5
a3 3
.
B.
.
C.
.
A.
12
6
12
log 2x
Câu 45. [3-1229d] Đạo hàm của hàm số y =

x2
1 − 2 log 2x
1 − 4 ln 2x
1 − 2 ln 2x
.
B. y0 =
.
.
C. y0 =
A. y0 = 3
3

x ln 10
x
2x3 ln 10
log 2x
Câu 46. [1229d] Đạo hàm của hàm số y =

x2
1 − 4 ln 2x
1 − 2 ln 2x
1
A. y0 =
.
B. y0 = 3
.
C. y0 = 3
.
3
2x ln 10
x ln 10
2x ln 10
Câu 47. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 − 2e
1 + 2e
1 + 2e
.
B. m =
.
C. m =
.
A. m =

4e + 2
4e + 2
4 − 2e

= 2a và tam giác S AD vuông

a3 5
D.
.
4

D. y0 =

2x3

1
.
ln 10

D. y0 =

1 − 2 log 2x
.
x3

D. m =

1 − 2e
.
4 − 2e


Câu 48. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai
quyển sách cùng một mơn nằm cạnh nhau là
2
1
9
1
A. .
B.
.
C.
.
D. .
5
10
10
5

Câu 49. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã

√ cho là


3
πa 3
πa3 3
πa3 6
πa3 3
A. V =

.
B. V =
.
C. V =
.
D. V =
.
2
3
6
6
Câu 50. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Hai cạnh.
B. Năm cạnh.
C. Ba cạnh.

D. Bốn cạnh.

9t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
9t + m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. 1.
B. 2.
C. Vô số.
D. 0.

Câu 51. [4] Xét hàm số f (t) =

Câu 52. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?

x→+∞
x→+∞
f (x) a
A. lim [ f (x) + g(x)] = a + b.
B. lim
= .
x→+∞
x→+∞ g(x)
b
C. lim [ f (x)g(x)] = ab.
D. lim [ f (x) − g(x)] = a − b.
x→+∞

x→+∞

Trang 4/10 Mã đề 1





x = 1 + 3t




Câu 53. [1232h] Trong không gian Oxyz, cho đường thẳng d : 
y = 1 + 4t . Gọi ∆ là đường thẳng đi qua





z = 1
điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương
 trình là











x
=
−1
+
2t
x
=
1
+
7t
x
=
1

+
3t
x = −1 + 2t
















A. 
.
C. 
D. 
y = −10 + 11t . B. 
y=1+t
y = 1 + 4t .
y = −10 + 11t .

















z = −6 − 5t
z = 1 + 5t
z = 1 − 5t
z = 6 − 5t
Câu 54. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 27 lần.
B. Tăng gấp 18 lần.
C. Tăng gấp 3 lần.
D. Tăng gấp 9 lần.
Câu 55. [3] Cho khối chóp S .ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
2a
8a
5a
a

B.
.
C.
.
D.
.
A. .
9
9
9
9

Câu 56. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by = ab.
Giá trị nhỏ nhất của biểu thức P = x + 2y thuộc tập nào dưới
!
"
!
" đây?
5
5
;3 .
D. 2; .
A. [3; 4).
B. (1; 2).
C.
2
2
x2 − 5x + 6
Câu 57. Tính giới hạn lim
x→2

x−2
A. 0.
B. −1.

C. 1.

D. 5.

Câu 58. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 4.
B. 0, 2.
C. 0, 3.
D. 0, 5.
Câu 59. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất khơng thay đổi?
A. 102.424.000.
B. 102.423.000.
C. 102.016.000.
D. 102.016.000.
Câu 60. Khối đa diện đều loại {5; 3} có số cạnh
A. 20.
B. 30.

C. 8.

D. 12.


Câu 61. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 12 cạnh, 4 mặt.
B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 6 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
Câu 62. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R \ {1}.
B. D = (0; +∞).

C. D = R.

D. D = R \ {0}.

Câu 63. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 6.
B. 4.
C. 8.
D. 3.
Câu 64. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó không rút tiền
ra.
Trang 5/10 Mã đề 1


A. 210 triệu.

B. 212 triệu.


C. 216 triệu.

D. 220 triệu.
un
Câu 65. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. +∞.
B. 0.
C. 1.
D. −∞.
Câu 66. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Khơng có.
B. Có một.
C. Có vơ số.
D. Có hai.
2n + 1
Câu 67. Tìm giới hạn lim
n+1
A. 0.
B. 2.
C. 1.
D. 3.
cos n + sin n
Câu 68. Tính lim
n2 + 1
A. 1.
B. −∞.
C. 0.

D. +∞.
Câu 69. Khối đa diện đều loại {3; 4} có số cạnh
A. 8.
B. 10.
Câu 70. [2] Tổng các nghiệm của phương trình 3
A. 1 − log3 2.
B. 3 − log2 3.

C. 6.
x−1

x2

D. 12.

.2 = 8.4 là
C. 2 − log2 3.
x−2

D. 1 − log2 3.
[ = 60◦ , S O
Câu 71. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a. Khoảng cách từ A đến (S√BC) bằng


a 57
2a 57
a 57
A.

.
B. a 57.
C.
.
D.
.
17
19
19
Câu 72. Phát biểu nào sau đây là sai?
1
A. lim un = c (un = c là hằng số).
B. lim = 0.
n
1
n
C. lim q = 0 (|q| > 1).
D. lim k = 0.
n
Z 2
ln(x + 1)
Câu 73. Cho
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
x2
1
A. 1.
B. 0.
C. 3.
D. −3.
Câu 74. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .

Tính thể√tích của khối chóp S .ABC theo a


a3
a3 15
a3 15
a3 5
A.
.
B.
.
C.
.
D.
.
25
3
5
25
Câu 75. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối lập phương.
B. Khối tứ diện đều.
C. Khối 12 mặt đều.
D. Khối bát diện đều.
Câu 76. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M, N, P bằng





20 3
14 3
A. 6 3.
B. 8 3.
C.
.
D.
.
3
3
x−2 x−1
x
x+1
Câu 77. [4-1212d] Cho hai hàm số y =
+
+
+
và y = |x + 1| − x − m (m là tham
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. [−3; +∞).
B. (−∞; −3].
C. (−3; +∞).
D. (−∞; −3).
Câu 78.
bằng 1 là:

√ Thể tích của khối lăng√trụ tam giác đều có cạnh √
3
3
3
A.
.
B.
.
C.
.
2
4
12

D.

3
.
4
Trang 6/10 Mã đề 1


log(mx)
= 2 có nghiệm thực duy nhất
log(x + 1)
C. m < 0 ∨ m > 4.
D. m < 0.

Câu 79. [1226d] Tìm tham số thực m để phương trình
A. m < 0 ∨ m = 4.


B. m ≤ 0.

Câu 80. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là 3, phần ảo là 4.
B. Phần thực là −3, phần ảo là 4.
C. Phần thực là −3, phần ảo là −4.
D. Phần thực là 3, phần ảo là −4.
Câu 81. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim+ f (x) = f (a) và lim+ f (x) = f (b).
B. lim− f (x) = f (a) và lim+ f (x) = f (b).
x→a
x→a
x→b
x→b
C. lim+ f (x) = f (a) và lim− f (x) = f (b).
D. lim− f (x) = f (a) và lim− f (x) = f (b).
x→a

x→b

Câu 82.! Dãy số nào sau đây có giới
!n hạn là 0?
n
4
1
A.
.
B.

.
e
3

x→a

x→b

!n
5
C.
.
3

!n
5
D. − .
3

3
2
Câu 83. Giá
√ x − 3x − 3x + 2

√ trị cực đại của hàm số y =
B. −3 − 4 2.
C. 3 − 4 2.
A. 3 + 4 2.



D. −3 + 4 2.

Câu 84. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. −3 ≤ m ≤ 3.
B. m ≥ 3.
C. −2 ≤ m ≤ 2.
D. m ≤ 3.
Câu 85. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
ab
1
ab
1
A. 2
.
B. √
.
C. √
.
D. √
.
2
a +b
a2 + b2
a2 + b2
2 a2 + b2
Câu 86. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng
√ góc với đáy, S C = a3 √3. Thể tích khối chóp S .ABCD là

3
a 3
a3
a 3
.
B.
.
C. a3 .
D.
.
A.
9
3
3
2

2

Câu 87. [3-c]
và giá trị lớn nhất của hàm số f (x) = 2sin x + 2cos x lần
√ Giá trị nhỏ nhất √
√ lượt là
A. 2 và 2 2.
B. 2 và 3.
C. 2 và 3.
D. 2 2 và 3.
Câu 88. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 84cm3 .
B. 48cm3 .

C. 64cm3 .
D. 91cm3 .
1
Câu 89. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 3.
B. 2.
C. 1.
D. 4.
Câu 90. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1
B. V = S h.
C. V = S h.
D. V = 3S h.
A. V = S h.
3
2
ln2 x
m
Câu 91. [3] Biết rằng giá trị lớn nhất của hàm số y =
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
x
e
số tự nhiên. Tính S = m2 + 2n3
A. S = 22.
B. S = 135.
C. S = 32.
D. S = 24.

Câu 92. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
B. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngồi ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
C. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
D. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
Trang 7/10 Mã đề 1


!2x−1
!2−x
3
3
Câu 93. Tập các số x thỏa mãn


5
5
A. (+∞; −∞).
B. [3; +∞).
C. [1; +∞).

D. (−∞; 1].

Câu 94. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng

a
a
a 3
A. a.

B. .
C. .
D.
.
2
3
2
Câu 95. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
.
C. 18.
D. 27.
A. 12.
B.
2
1 − 2n
Câu 96. [1] Tính lim
bằng?
3n + 1
2
2
1
A. .
B. − .
C. .
D. 1.
3
3
3

Z 1
6
2
3
Câu 97. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
. Tính
f (x)dx.
0
3x + 1
A. 2.

B. −1.

C. 4.

5
bằng
Câu 98. [1] Cho a > 0, a , 1 .Giá trị của biểu thức a

1
A. 25.
B. 5.
C. .
5

D. 6.

log √a

D. 5.


! x3 −3mx2 +m
1
nghịch biến trên
Câu 99. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
π
khoảng (−∞; +∞)
A. m = 0.
B. m ∈ (0; +∞).
C. m ∈ R.
D. m , 0.
Câu 100. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 3.
B. 5.
C. 1.

D. 2.

Câu 101. Biểu thức nào sau đây√khơng có nghĩa
−3
−1.
A. 0−1 .
B.


D. (− 2)0 .

C. (−1)−1 .

Câu 102. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.

Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. V = 4π.
B. 8π.
C. 32π.
D. 16π.
Câu 103. Nếu không sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Bốn tứ diện đều và một hình chóp tam giác đều.
B. Năm tứ diện đều.
C. Năm hình chóp tam giác đều, khơng có tứ diện đều.
D. Một tứ diện đều và bốn hình chóp tam giác đều.
Câu 104. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 12.
B. ln 10.
C. ln 14.
D. ln 4.
Câu 105. Giá trị của lim (3x2 − 2x + 1)
x→1
A. 1.
B. +∞.

C. 3.

D. 2.

Câu 106. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 9 năm.
B. 8 năm.

C. 10 năm.
D. 7 năm.
Trang 8/10 Mã đề 1


Câu 107. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
A. f 0 (0) = ln 10.
Câu 108. Tính lim
A. 0.

B. f 0 (0) = 1.
7n2 − 2n3 + 1
3n3 + 2n2 + 1
2
B. - .
3

C. f 0 (0) = 10.

D. f 0 (0) =

C. 1.

D.

1
.
ln 10

7

.
3

 π π
Câu 109. Cho hàm số y = 3 sin x − 4 sin x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. −1.
B. 1.
C. 3.
D. 7.
3

Câu 110. Khối đa diện đều loại {3; 4} có số đỉnh
A. 4.
B. 8.

C. 10.

D. 6.

Câu 111. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số đồng biến trên khoảng (0; +∞).
B. Hàm số đồng biến trên khoảng (0; 2).
C. Hàm số nghịch biến trên khoảng (−∞; 2).
D. Hàm số nghịch biến trên khoảng (0; 2).
Câu 112. Bát diện đều thuộc loại
A. {4; 3}.
B. {3; 4}.

C. {5; 3}.


Câu 113. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 6 mặt.
C. 3 mặt.

D. {3; 3}.
D. 4 mặt.

Câu 114. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
9
3
A. .
B. 1.
C. .
D. 3.
2
2
Z 1
Câu 115. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
0

1
1
B. .
C. 0.
D. 1.
A. .

2
4
Câu 116. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3.
Tính f (2) + f (4)?
A. 12.
B. 4.
C. 10.
D. 11.
d = 60◦ . Đường chéo
Câu 117. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vuông tại A, AC = a, ACB
0
0 0
0 0

BC của mặt bên (BCC B ) tạo với mặt phẳng (AA C C) một góc 30 . Thể tích của khối lăng trụ ABC.A0 B0C 0





4a3 6
a3 6
2a3 6
.
B.
.
C.
.
D. a3 6.
A.

3
3
3
Câu 118. Dãy số nào sau đây có giới hạn là 0?
n2 − 3n
n2 − 2
n2 + n + 1
1 − 2n
A. un =
.
B.
u
=
.
C.
u
=
.
D. un =
.
n
n
2
2
2
n
5n − 3n
(n + 1)
5n + n2
x2 − 9

Câu 119. Tính lim
x→3 x − 3
A. −3.
B. 3.

C. 6.

D. +∞.

Câu 120. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng




a 6
A. a 3.
B.
.
C. 2a 6.
D. a 6.
2
3
2
x
Câu 121. [2]
√ Tìm m để giá trị lớn nhất
√ của hàm số y = 2x + (m + 1)2 trên [0; 1] bằng 8
A. m = ± 2.
B. m = ± 3.

C. m = ±3.
D. m = ±1.
Trang 9/10 Mã đề 1


x+1
Câu 122. Tính lim
bằng
x→+∞ 4x + 3
1
A. .
B. 3.
4

C.

1
.
3

D. 1.

log(mx)
= 2 có nghiệm thực duy nhất
log(x + 1)
C. m ≤ 0.
D. m < 0 ∨ m = 4.

Câu 123. [3-1226d] Tìm tham số thực m để phương trình
A. m < 0.


B. m < 0 ∨ m > 4.

Câu 124. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
1
ln 2
A. 1.
B. .
C.
.
D. 2.
2
2
Câu 125. Dãy số nào sau đây có giới hạn khác 0?
1
n+1
sin n
1
D. .
A.
.
B.
.
C. √ .
n
n
n
n

x2 + 3x + 5

Câu 126. Tính giới hạn lim
x→−∞
4x − 1
1
1
A. 1.
B. .
C. 0.
D. − .
4
4
Câu 127. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 8 đỉnh, 12 cạnh, 8 mặt.
C. 4 đỉnh, 12 cạnh, 4 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
2x + 1
Câu 128. Tính giới hạn lim
x→+∞ x + 1
1
A. −1.
B. .
C. 1.
D. 2.
2
Câu 129. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác S AB đều và nằm trong mặt
Thể tích khối chóp

√ S .ABCD là

√ phẳng vng góc với 3(ABCD).
3
3

a 2
a 3
a 3
.
C.
.
D.
.
B.
A. a3 3.
2
2
4
Câu 130. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 − 2; m = 1.
B. M = e−2 + 1; m = 1.
C. M = e−2 + 2; m = 1.
D. M = e2 − 2; m = e−2 + 2.
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1

1.

B

3.
5.

2.
C

B

4.

B

C

6. A

7. A

C

8.

9.

D


10. A

11.

D

12.

13.

D

14.

C

16.

C
C

15.

C

17.

D

18.


19.

D

20.

21.

B

B

22. A

23.

D

25.

B

24. A
26.

C

27. A


D

28. A
D

29.

30. A

31. A

32.

33. A

34. A

B

35.

C

36.

C

37.

C


38.

C

39.

C

40.

41.

D

D

42.

C

43. A

44.

C

45. A

46.


B

47.

B

48.

C

49.

B

50.

C

51.

B

52.

53.

D

55.

57.

54. A

C
B

59. A

56.

C

58.

C

60.

61.

B

62.

C

63.

B


D

64.

65.

B

66.

67.

B

68.
1

C
B
D
C


69.

D

71.


C
D

73.

C

72.

C
D

74.

75. A
77.

70.

76. A
B

79. A
81.

C
D

83.
85.


B

80.

B

82.

B

84. A
D

86.

C

87.

78.

D

88.

89.

C


90. A

91.

C

92.

93.

C

94. A

95.

C

96.

97.

C

98. A

C
B
B


99. A

100.

D

101. A

103.

D

105.

D

C

104.
106. A
108.

107. A
B

110.
112.

D
B


109.

B

111.

B

114.

115. A

C

116. A

117.

D

119.

C

121. A

118.

D


120.

D

122. A

123.

124.

D

125. A

126.

D

127. A

128.

D

129.

D

B


130. A

2



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×