TỐN PDF LATEX
TRẮC NGHIỆM ƠN THI MƠN TỐN THPT
(Đề thi có 10 trang)
Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
x−1
y
z+1
= =
và
2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. 2x + y − z = 0.
B. 2x − y + 2z − 1 = 0.
C. 10x − 7y + 13z + 3 = 0.
D. −x + 6y + 4z + 5 = 0.
Câu 1. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình
Câu 2. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. (1; 2).
B. [1; 2].
C. [−1; 2).
D. (−∞; +∞).
Câu 3. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 6 mặt.
C. 5 mặt.
D. 3 mặt.
Câu 4. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối 20 mặt đều.
D. Khối bát diện đều.
C. Khối tứ diện đều.
d = 300 .
Câu 5. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vng tại A. BC = 2a, ABC
Độ dài cạnh bên CC 0 = 3a. Thể tích V √của khối lăng trụ đã cho.
√
√
3a3 3
a3 3
3
3
.
C. V = 6a .
D. V =
.
A. V = 3a 3.
B. V =
2
2
Câu 6. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số đồng biến trên khoảng (0; +∞).
B. Hàm số nghịch biến trên khoảng (0; 2).
C. Hàm số nghịch biến trên khoảng (−∞; 2).
D. Hàm số đồng biến trên khoảng (0; 2).
Câu 7. Khối đa diện đều loại {3; 5} có số cạnh
A. 12.
B. 8.
C. 20.
D. 30.
Câu 8. Trong các khẳng định sau, khẳng định nào sai?
A. Z
F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
u0 (x)
dx = log |u(x)| + C.
B.
u(x)
C. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
D. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
Câu 9. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M, N, P bằng
√
√
√
√
14 3
20 3
B.
D.
A. 8 3.
.
C. 6 3.
.
3
3
Câu 10. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Hai khối chóp tam giác.
B. Một khối chóp tam giác, một khối chóp tứ giác.
C. Một khối chóp tam giác, một khối chóp ngữ giác.
D. Hai khối chóp tứ giác.
[ = 60◦ , S O
Câu 11. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a.
√ Khoảng cách từ A đến (S BC) bằng
√
√
a 57
a 57
2a 57
A.
.
B.
.
C. a 57.
D.
.
17
19
19
Trang 1/10 Mã đề 1
Câu 12. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp đã cho là 1728. Khi đó,√các kích
√ thước của hình hộp là
A. 8, 16, 32.
B. 2 3, 4 3, 38.
C. 6, 12, 24.
D. 2, 4, 8.
Câu 13. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng
√
√
√
√
a 6
B. 2a 6.
C. a 3.
D.
.
A. a 6.
2
5
Câu 14. Tính lim
n+3
A. 2.
B. 3.
C. 1.
D. 0.
1
a
, với a, b ∈ Z. Giá trị của a + b là
Câu 15. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
4 b ln 3
A. 2.
B. 1.
C. 4.
D. 7.
cos n + sin n
Câu 16. Tính lim
n2 + 1
A. 1.
B. −∞.
C. 0.
D. +∞.
Câu 17. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình lập phương.
B. Hình lăng trụ.
C. Hình chóp.
D. Hình tam giác.
Câu 18. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 4 đỉnh, 12 cạnh, 4 mặt.
C. 6 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
d = 60◦ . Đường chéo
Câu 19. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vuông tại A, AC = a, ACB
0
0 0
0 0
◦
BC của mặt bên (BCC B ) tạo với mặt phẳng (AA C C) một góc 30 . Thể tích của khối lăng trụ ABC.A0 B0C 0
là
√
√
√
√
2a3 6
a3 6
4a3 6
.
B.
.
C.
.
D. a3 6.
A.
3
3
3
Câu 20. Khối đa diện đều loại {3; 3} có số mặt
A. 2.
B. 4.
C. 5.
D. 3.
Câu 21. [1] Đạo hàm của hàm số y = 2 x là
A. y0 = 2 x . ln x.
B. y0 = 2 x . ln 2.
C. y0 =
1
.
ln 2
Câu 22. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = R.
B. D = (−2; 1).
C. D = [2; 1].
D. y0 =
1
2 x . ln
x
.
2
D. D = R \ {1; 2}.
Câu 23. Cho số phức z thỏa mãn |z + 3| = 5 và |z − 2i| = |z − 2√− 2i|. Tính |z|.
√
D. |z| = 17.
A. |z| = 10.
B. |z| = 17.
C. |z| = 10.
Câu 24. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {3; 4}.
B. {3; 5}.
C. {4; 3}.
D. {5; 3}.
Câu 25. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể√tích của khối chóp S .ABC theo a
√
√
a3 15
a3
a3 5
a3 15
A.
.
B.
.
C.
.
D.
.
5
3
25
25
Câu 26. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
5
7
A. 9.
B. 6.
C. .
D. .
2
2
Câu 27. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = ln x − 1.
B. y0 = x + ln x.
C. y0 = 1 − ln x.
D. y0 = 1 + ln x.
Trang 2/10 Mã đề 1
Câu 28. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của
nó
A. Tăng lên (n − 1) lần. B. Không thay đổi.
C. Tăng lên n lần.
D. Giảm đi n lần.
Câu 29. Trong không gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0) lần
lượt là hình chiếu
của B, C lên các cạnh! AC, AB. Tọa độ hình chiếu của A lên BC là
!
!
5
7
8
; 0; 0 .
B.
; 0; 0 .
C. (2; 0; 0).
D.
; 0; 0 .
A.
3
3
3
9x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9x + 3
1
B. 2.
C. .
D. 1.
2
Câu 30. [2-c] Cho hàm số f (x) =
A. −1.
Câu 31. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 10 năm.
B. 7 năm.
C. 9 năm.
D. 8 năm.
Câu 32. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
9
3
D. .
A. 1.
B. 3.
C. .
2
2
√
√
4n2 + 1 − n + 2
Câu 33. Tính lim
bằng
2n − 3
3
A. 1.
B. +∞.
C. .
D. 2.
2
Câu 34. Khối đa diện đều loại {3; 5} có số đỉnh
A. 20.
B. 8.
C. 30.
Câu 35. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2
A. .
B. 2e + 1.
C. 2e.
e
x2 − 5x + 6
Câu 36. Tính giới hạn lim
x→2
x−2
A. 0.
B. 5.
C. 1.
3
2
Câu 37. Giá
√ trị cực đại của hàm số y =
√ x − 3x − 3x + 2
√
A. 3 − 4 2.
B. −3 − 4 2.
C. −3 + 4 2.
D. 12.
D. 3.
D. −1.
√
D. 3 + 4 2.
Câu 38. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính quãng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 16 m.
B. 24 m.
C. 12 m.
D. 8 m.
Câu 39. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {3}.
B. {5; 2}.
C. {5}.
D. {2}.
Câu 40. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (0; −2).
B. (1; −3).
C. (2; 2).
D. (−1; −7).
Câu 41. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 6 mặt.
C. 8 mặt.
D. 10 mặt.
Câu 42. Hàm số y = x +
A. −2.
1
có giá trị cực đại là
x
B. −1.
C. 2.
D. 1.
Trang 3/10 Mã đề 1
Câu 43. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 8.
B. 6.
C. 3.
D. 4.
Câu 44. Phát biểu nào sau đây là sai?
1
B. lim un = c (Với un = c là hằng số).
A. lim k = 0 với k > 1.
n
1
C. lim √ = 0.
D. lim qn = 1 với |q| > 1.
n
Câu 45. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối chóp S .ABCD là
√
√
√
a3 15
a3 5
a3 6
3
A.
.
B. a 6.
C.
.
D.
.
3
3
3
2
Câu 46. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 6.
B. 5.
C. 8.
D. 7.
x=t
Câu 47. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d :
y = −1 và hai mặt phẳng (P), (Q)
z = −t
lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I
thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).
9
9
A. (x − 3)2 + (y − 1)2 + (z − 3)2 = .
B. (x − 3)2 + (y + 1)2 + (z + 3)2 = .
4
4
9
9
2
2
2
2
2
2
C. (x + 3) + (y + 1) + (z + 3) = .
D. (x + 3) + (y + 1) + (z − 3) = .
4
4
Câu 48. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối tứ diện.
B. Khối lập phương.
C. Khối bát diện đều.
D. Khối lăng trụ tam giác.
tan x + m
Câu 49. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1
π
0; .
4
A. (1; +∞).
B. (−∞; −1) ∪ (1; +∞). C. (−∞; 0] ∪ (1; +∞). D. [0; +∞).
Câu 50.
đề nào sai? Z
Z Cho hàm số f (x),Zg(x) liên tụcZtrên R. Trong cácZmệnh đề sau, mệnh Z
A.
( f (x) − g(x))dx =
f (x)dx − g(x)dx.
B.
( f (x) + g(x))dx =
f (x)dx + g(x)dx.
Z
Z
Z
Z
Z
C.
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.
D.
f (x)g(x)dx =
f (x)dx g(x)dx.
Câu 51. Trong các khẳng định sau, khẳng định nào sai?
A. Cả ba đáp án trên.
√
B. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
C. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
D. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
Câu 52. Khối đa diện đều loại {5; 3} có số mặt
A. 8.
B. 12.
C. 30.
D. 20.
Câu 53. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Đường phân giác góc phần tư thứ nhất.
B. Hai đường phân giác y = x và y = −x của các góc tọa độ.
C. Trục ảo.
D. Trục thực.
Trang 4/10 Mã đề 1
Câu 54. Tứ diện đều thuộc loại
A. {3; 3}.
B. {5; 3}.
C. {4; 3}.
D. {3; 4}.
x+1
Câu 55. Tính lim
bằng
x→+∞ 4x + 3
1
1
B. 1.
C. .
D. 3.
A. .
4
3
Câu 56. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α
aα
D. aα bα = (ab)α .
A. aα+β = aα .aβ .
B. aαβ = (aα )β .
C. β = a β .
a
Câu 57. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
x+1 y−5
z
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng
d:
2
2
−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (2; 1; 6).
B. ~u = (1; 0; 2).
C. ~u = (3; 4; −4).
D. ~u = (2; 2; −1).
Câu 58. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (II) và (III).
B. Cả ba mệnh đề.
C. (I) và (II).
D. (I) và (III).
1
Câu 59. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 ln đồng biến trên
3
√
một đoạn có độ dài bằng 24.
A. m = 4.
B. −3 ≤ m ≤ 4.
C. m = −3.
D. m = −3, m = 4.
Câu 60. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {5; 3}.
B. {3; 4}.
C. {3; 3}.
D. {4; 3}.
Câu 61. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vuông góc với ∆ và
AC = BD
√ = a. Khoảng cách từ A√đến mặt phẳng (BCD) bằng
√
√
a 2
a 2
.
B.
.
C. 2a 2.
D. a 2.
A.
2
4
1
Câu 62. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
0
y
A. xy = −e − 1.
B. xy = e + 1.
C. xy0 = ey − 1.
D. xy0 = −ey + 1.
Câu 63. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 3.
B. 0, 4.
C. 0, 5.
D. 0, 2.
Câu 64. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m < .
B. m ≤ .
C. m ≥ .
D. m > .
4
4
4
4
2
2
Câu 65. Tìm giá trị nhỏ nhất của hàm số y = (x − 2x + 3) − 7
A. −5.
B. −3.
C. Không tồn tại.
D. −7.
1
Câu 66. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = (−∞; 1).
B. D = R \ {1}.
C. D = (1; +∞).
D. D = R.
Trang 5/10 Mã đề 1
Câu 67. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC) một góc bằng 60◦ . Thể√tích khối chóp S .ABC là √
√
a3 3
a3 3
a3 3
a3
.
B.
.
C.
.
D.
.
A.
4
4
8
12
Câu 68. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 3ac
3b + 2ac
3b + 3ac
3b + 2ac
A.
.
B.
.
C.
.
D.
.
c+2
c+2
c+1
c+3
q
2
Câu 69. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 = 0
√ i
h
có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 1].
B. m ∈ [−1; 0].
C. m ∈ [0; 2].
D. m ∈ [0; 4].
Câu 70. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 0.
B. 1.
C. 2.
D. 3.
2
x − 12x + 35
Câu 71. Tính lim
x→5
25 − 5x
2
2
A. .
B. −∞.
C. +∞.
D. − .
5
5
Câu 72. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).
√ là
√
√
√ Thể tích khối chóp S 3.ABC
a 2
a3 3
a3 3
a3 3
.
B.
.
C.
.
D.
.
A.
12
12
6
4
Câu 73. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD
√ là
3
10a 3
A. 10a3 .
B. 40a3 .
C.
.
D. 20a3 .
3
Câu 74. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 18 lần.
B. Tăng gấp 3 lần.
C. Tăng gấp 27 lần.
D. Tăng gấp 9 lần.
Câu 75. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
.
B.
.
C.
.
D. a3 .
A.
24
12
6
x+2
Câu 76. Tính lim
bằng?
x→2
x
A. 2.
B. 0.
C. 3.
D. 1.
Câu 77. Cho hình chóp S .ABCD có đáy ABCD là hình vuông cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với √
đáy một góc 60◦ . Thể tích khối
√ chóp S .ABCD là 3 √
√
a3 3
2a3 3
a 3
A.
.
B.
.
C.
.
D. a3 3.
3
3
6
Câu 78. Khối đa diện đều loại {3; 3} có số đỉnh
A. 3.
B. 4.
C. 5.
D. 2.
Câu 79. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [−3; 1].
B. (−∞; −3].
C. [−1; 3].
D. [1; +∞).
π π
Câu 80. Cho hàm số y = 3 sin x − 4 sin3 x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. −1.
B. 3.
C. 7.
D. 1.
Trang 6/10 Mã đề 1
√
a = 2 thì log6 a bằng
B. 108.
C. 4.
D. 6.
1
Câu 82. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. −2 ≤ m ≤ −1.
B. −2 < m < −1.
C. (−∞; −2) ∪ (−1; +∞). D. (−∞; −2] ∪ [−1; +∞).
Câu 81. [1] Biết log6
A. 36.
Câu 83. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (1; 3; 2).
B. (2; 4; 4).
C. (2; 4; 3).
D. (2; 4; 6).
√
Câu 84.
phức z = ( 2 + 3i)2
√ Xác định phần ảo của số √
A. 6 2.
B. −6 2.
C. −7.
D. 7.
2
Câu 85. [2] Tổng các nghiệm của phương trình 3 x −4x+5 = 9 là
A. 3.
B. 4.
C. 2.
D. 5.
Câu 86. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R \ {1}.
B. D = R.
D. D = R \ {0}.
C. D = (0; +∞).
Câu 87. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Cả hai đều sai.
B. Chỉ có (II) đúng.
C. Chỉ có (I) đúng.
D. Cả hai đều đúng.
Câu 88. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 27.
B. 3.
C. 10.
D. 12.
Câu 89.√Biểu thức nào sau đây √
khơng có nghĩa
−3
0
A. (− 2) .
B.
−1.
D. (−1)−1 .
C. 0−1 .
Câu 90. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vng
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√
√
a3 5
a3 5
a3 3
a3 5
.
B.
.
C.
.
D.
.
A.
4
6
12
12
Câu 91. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
B. Hàm số nghịch biến trên khoảng (−2; 1).
C. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
D. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
Câu 92. [1] Đạo hàm của làm số y = log x là
1
1
ln 10
A. y0 =
.
B. y0 =
.
C.
.
x
x ln 10
10 ln x
log2 240 log2 15
Câu 93. [1-c] Giá trị biểu thức
−
+ log2 1 bằng
log3,75 2 log60 2
A. −8.
B. 4.
C. 1.
1
D. y0 = .
x
D. 3.
Câu 94. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = 21.
B. P = −10.
C. P = −21.
D. P = 10.
Câu 95. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 3.
B. 0.
C. 1.
D. 2.
Trang 7/10 Mã đề 1
Câu 96. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S√B bằng
a 3
a
a
A.
.
B. .
C. .
D. a.
2
2
3
Câu 97. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 1.
B. 3.
C. 2.
D. Vô số.
Câu 98. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối
√
√ chóp S .ABCD là
√
3
3
a 3
a3 3
a3 6
a 2
.
B.
.
C.
.
D.
.
A.
16
24
48
48
Câu 99. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (−∞; 2).
B. (−∞; 0) và (2; +∞). C. (0; 2).
D. (0; +∞).
x+2
Câu 100. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. Vô số.
B. 3.
C. 2.
D. 1.
Câu 101.
√ Thể tích của khối lăng
√ trụ tam giác đều có cạnh bằng 1 là:
3
3
3
A.
.
B.
.
C. .
4
12
4
√
3
D.
.
2
Câu 102. Giá trị của lim (3x2 − 2x + 1)
x→1
A. 3.
B. +∞.
C. 1.
D. 2.
Câu 103. Phát biểu nào sau đây là sai?
1
A. lim qn = 0 (|q| > 1).
B. lim k = 0.
n
1
D. lim un = c (un = c là hằng số).
C. lim = 0.
n
Câu 104. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
1
ab
1
ab
A. √
.
B. √
.
C. 2
.
D. √
.
2
a +b
a2 + b2
2 a2 + b2
a2 + b2
Câu 105. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt
Thể tích khối chóp S .ABCD là
√ phẳng vng góc với 3(ABCD).
√
√
a3 3
a 3
a3 2
A.
.
B.
.
C.
.
D. a3 3.
2
4
2
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥
Câu 106. Cho hình chóp S .ABC có BAC
(ABC). Thể
√ tích khối chóp S .ABC
√là
√
3
3
√
a 2
a 3
a3 3
A.
.
B.
.
C.
.
D. 2a2 2.
24
24
12
√
Câu 107. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by = ab.
Giá trị
" nhỏ! nhất của biểu thức P = x + 2y thuộc tập nào dưới đây?
"
!
5
5
A. 2; .
B. (1; 2).
C. [3; 4).
D.
;3 .
2
2
Câu 108. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
9
11
A. 7.
B. .
C.
.
D. 5.
2
2
Trang 8/10 Mã đề 1
Câu 109. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (II) sai.
B. Câu (I) sai.
C. Câu (III) sai.
D. Khơng có câu nào
sai.
Câu 110.
[1233d-2] MệnhZđề nào sau đây
Z
Z sai?
A.
Z
B.
[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
Z
f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
Z
D.
[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
C.
√
Câu 111. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga 3 a bằng
1
1
B. 3.
C. −3.
D. − .
A. .
3
3
!
5 − 12x
Câu 112. [2] Phương trình log x 4 log2
= 2 có bao nhiêu nghiệm thực?
12x − 8
A. 1.
B. 2.
C. 3.
D. Vô nghiệm.
Câu 113. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối 20 mặt đều.
B. Khối 12 mặt đều.
C. Khối tứ diện đều.
D. Khối bát diện đều.
9t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao
9t + m2
cho f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. Vô số.
B. 0.
C. 2.
D. 1.
Câu 114. [4] Xét hàm số f (t) =
Câu 115. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất khơng đổi và người đó khơng rút tiền ra?
A. 10 năm.
B. 11 năm.
C. 13 năm.
D. 12 năm.
Câu 116. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 12 mặt.
B. 20 đỉnh, 30 cạnh, 20 mặt.
C. 20 đỉnh, 30 cạnh, 12 mặt.
D. 12 đỉnh, 30 cạnh, 20 mặt.
Câu 117. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối 12 mặt đều.
C. Khối tứ diện đều.
D. Khối lập phương.
Câu 118.
√ Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18.
B. 27.
C. 9.
D. 8.
A. 3 3.
√
x2 + 3x + 5
Câu 119. Tính giới hạn lim
x→−∞
4x − 1
1
1
A. − .
B. 1.
C. 0.
D. .
4
4
Trang 9/10 Mã đề 1
[ = 60◦ , S A ⊥ (ABCD).
Câu 120. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng√ khoảng cách từ A đến cạnh S C là a. Thể tích khối√chóp S .ABCD là
√
√
a3 2
a3 3
a3 2
3
C.
A.
.
B. a 3.
.
D.
.
6
12
4
√
Câu 121. Thể tích của khối lập phương
có
cạnh
bằng
a
2
√
3
√
√
2a 2
.
C. 2a3 2.
A. V = a3 2.
B.
D. V = 2a3 .
3
Câu 122. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|
√
√
√
√
12 17
B. 5.
C. 68.
D.
.
A. 34.
17
!
!
!
4x
1
2
2016
Câu 123. [3] Cho hàm số f (x) = x
. Tính tổng T = f
+f
+ ··· + f
4 +2
2017
2017
2017
2016
A. T =
.
B. T = 2017.
C. T = 2016.
D. T = 1008.
2017
Câu 124. Nếu không sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Năm hình chóp tam giác đều, khơng có tứ diện đều.
B. Năm tứ diện đều.
C. Bốn tứ diện đều và một hình chóp tam giác đều.
D. Một tứ diện đều và bốn hình chóp tam giác đều.
Câu 125. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 2.
B. 1.
C. Vô nghiệm.
D. 3.
!2x−1
!2−x
3
3
≤
là
Câu 126. Tập các số x thỏa mãn
5
5
A. (−∞; 1].
B. [3; +∞).
C. (+∞; −∞).
D. [1; +∞).
Câu 127. Khối đa diện đều loại {3; 4} có số cạnh
A. 10.
B. 6.
C. 12.
D. 8.
1 − 2n
Câu 128. [1] Tính lim
bằng?
3n + 1
1
2
2
A. 1.
B. .
C. − .
D. .
3
3
3
Câu 129. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung
điểm cạnh AB, biết S H ⊥ (ABCD).√Thể tích khối chóp S .ABCD
√ là
3
3
3
a
2a 3
4a 3
a3
A.
.
B.
.
C.
.
D.
.
6
3
3
3
1
Câu 130. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 ≤ m ≤ 1.
B. 0 < m ≤ 1.
C. 2 ≤ m ≤ 3.
D. 2 < m ≤ 3.
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 10/10 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
D
2.
C
3. A
4.
B
5.
D
6.
7.
D
8.
B
10.
B
9.
C
D
11.
C
12.
14.
13. A
15.
D
16.
17.
D
18. A
19.
D
20.
21.
D
B
23.
D
C
B
22. A
C
24.
B
25.
D
26.
D
27.
D
28.
D
30.
D
29. A
31.
C
32.
33. A
D
35.
34.
D
36.
D
37.
C
38. A
39.
C
40. A
41.
42. A
B
43.
C
45.
47.
D
44.
D
46.
D
48. A
B
50.
49. A
51.
B
52.
53.
B
54. A
55. A
57.
C
B
59.
D
D
B
56.
C
58.
C
60. A
61. A
62.
63. A
64.
65.
C
66.
67.
C
68. A
1
C
B
C
69.
70. A
B
71. A
72. A
73.
75.
D
76. A
B
77. A
78.
79. A
80.
81.
C
74.
D
82. A
C
D
83.
B
84. A
85.
B
86.
B
87.
B
88.
B
C
89.
91.
D
92.
93. A
95.
B
C
94.
96.
B
97.
99.
C
90.
C
B
D
98.
C
100.
C
101. A
102.
D
103. A
104.
D
105.
C
106. A
107.
D
108.
B
109.
D
110.
B
111. A
113.
112. A
B
114.
C
C
115.
D
116.
117.
D
118. A
119. A
121.
C
123.
D
125. A
120.
D
122.
D
124.
D
126.
D
127.
C
128.
129.
C
130.
2
C
D