Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (503)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (153.43 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. m ≥ 3.
B. −3 ≤ m ≤ 3.
C. −2 ≤ m ≤ 2.
D. m ≤ 3.
Câu 2. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
3
.
B. a .
C.
.
D.
.
A.
12
24
6


2
Câu 3. Tính mơ đun của số phức z biết
√ (1 + 2i)z = 3 + 4i.

A. |z| = 5.
B. |z| = 5.
C. |z| = 2 5.

√4
D. |z| = 5.
q
Câu 4. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23 x+ log23 x + 1+4m−1 = 0
√ i
h
có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 1].
B. m ∈ [0; 2].
C. m ∈ [0; 4].
D. m ∈ [−1; 0].
Câu 5. [2] Tổng các nghiệm của phương trình 2 x +2x = 82−x là
A. −5.
B. 6.
C. 5.
2

D. −6.

Câu 6. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có một.

B. Khơng có.
C. Có hai.
D. Có một hoặc hai.
Câu 7. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Một khối chóp tam giác, một khối chóp ngữ giác.
B. Một khối chóp tam giác, một khối chóp tứ giác.
C. Hai khối chóp tam giác.
D. Hai khối chóp tứ giác.

Câu 8. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 63.
B. 62.
C. Vô số.
D. 64.
x−1
Câu 9. [3-1214d] Cho hàm số y =
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác
B thuộc (C), đoạn thẳng AB
√ đều ABI có hai đỉnh A, √
√ có độ dài bằng
A. 6.
B. 2 3.
C. 2 2.
D. 2.
Câu 10. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 14.
B. ln 12.

C. ln 4.
D. ln 10.
Câu 11. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 5 mặt.
C. 3 mặt.
Câu 12. [3-12214d] Với giá trị nào của m thì phương trình
A. 2 < m ≤ 3.

1
3|x−2|

D. 4 mặt.

= m − 2 có nghiệm

B. 0 ≤ m ≤ 1.
C. 2 ≤ m ≤ 3.
D. 0 < m ≤ 1.
2mx + 1
1
Câu 13. Giá trị lớn nhất của hàm số y =
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
A. 1.
B. 0.
C. −5.
D. −2.
Trang 1/10 Mã đề 1



Câu 14. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối √
chóp S .ABMN là



3
5a3 3
4a3 3
a3 3
2a 3
.
B.
.
C.
.
D.
.
A.
3
3
3
2

Câu 15. [1] Biết log6 a = 2 thì log6 a bằng
A. 36.
B. 6.

C. 4.
D. 108.
Câu 16. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. [6, 5; +∞).
B. (−∞; 6, 5).
C. (4; 6, 5].

D. (4; +∞).

Câu 17. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất khơng thay đổi?
A. 102.423.000.
B. 102.424.000.
C. 102.016.000.
D. 102.016.000.
Câu 18. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
B. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
C. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
D. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
Câu 19. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2
A. .
B. 3.
C. 2e.
D. 2e + 1.
e
Câu 20. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?

A. 5 đỉnh, 9 cạnh, 6 mặt. B. 6 đỉnh, 9 cạnh, 6 mặt. C. 6 đỉnh, 6 cạnh, 6 mặt. D. 6 đỉnh, 9 cạnh, 5 mặt.
Câu 21. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (0; −2).
B. (1; −3).
C. (−1; −7).

D. (2; 2).
tan x + m
Câu 22. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1
 π
0; .
4
A. (1; +∞).
B. [0; +∞).
C. (−∞; −1) ∪ (1; +∞). D. (−∞; 0] ∪ (1; +∞).
7n2 − 2n3 + 1
Câu 23. Tính lim 3
3n + 2n2 + 1
7
2
B. - .
C. 0.
D.
A. .
3
3
Câu 24. Tính diện tích hình phẳng giới hạn bởi các đường y = xe x , y = 0, x = 1.
1

3
A. .
B. .
C. 1.
D.
2
2

x2 + 3x + 5
Câu 25. Tính giới hạn lim
x→−∞
4x − 1
1
A. 1.
B. 0.
C. .
D.
4
1
Câu 26. Hàm số y = x + có giá trị cực đại là
x
A. 2.
B. −2.
C. 1.
D.

1.

3
.

2

1
− .
4

−1.

Câu 27. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ơng ta muốn
hồn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hồn nợ
Trang 2/10 Mã đề 1


liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 2, 20 triệu đồng.
B. 2, 25 triệu đồng.
C. 3, 03 triệu đồng.
D. 2, 22 triệu đồng.
n−1
Câu 28. Tính lim 2
n +2
A. 0.
B. 2.

C. 1.

D. 3.


Z

f (x)dx = F(x) +C ⇒

Z

f (u)dx = F(u) +C.

f (x)dx = F(x) + C ⇒

Z

f (t)dt = F(t) + C.

Câu 29.
! định nào sau đây là sai?
Z Các khẳng
0

A.
Z
C.

f (x)dx = f (x).
Z
k f (x)dx = k
f (x)dx, k là hằng số.

B.
Z

D.

Câu 30. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. 1 − sin 2x.
B. 1 + 2 sin 2x.
C. −1 + 2 sin 2x.

D. −1 + sin x cos x.

Câu 31. [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc là mơn Tốn. Mơn thi này dưới hình thức
trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng. Mỗi câu trả lời đúng
được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm. Bạn An học kém mơn Tốn nên quyết định chọn
ngẫu nhiên hết 50 câu trả lời. Xác suất để bạn An đạt 4 điểm mơn Tốn là
20
10
40
20
C50
C50
C50
.(3)20
.(3)40
.(3)10
C50
.(3)30
.
B.
.
C.
.

D.
.
A.
450
450
450
450
Câu 32. [1] Đạo hàm của hàm số y = 2 x là
1
1
.
B. y0 = 2 x . ln 2.
C. y0 = x
.
D. y0 = 2 x . ln x.
A. y0 =
ln 2
2 . ln x
Câu 33. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −15.
B. −9.
C. −12.
D. −5.
Câu 34. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 3.
B. 12.
C. 10.
2
2

2
1 + 2 + ··· + n
Câu 35. [3-1133d] Tính lim
n3
2
1
A. .
B. .
C. 0.
3
3
Câu 36. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối lập phương.
C. Khối bát diện đều.

D. 27.

D. +∞.
D. Khối 12 mặt đều.

[ = 60◦ , S O
Câu 37. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a.
√ Khoảng cách từ O đến (S BC) bằng


a 57
a 57

2a 57
A.
.
B.
.
C. a 57.
D.
.
17
19
19
2−n
Câu 38. Giá trị của giới hạn lim
bằng
n+1
A. −1.
B. 0.
C. 2.
D. 1.
q
Câu 39. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23 x+ log23 x + 1+4m−1 =
√ i
h
0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 4].
B. m ∈ [−1; 0].
C. m ∈ [0; 2].
D. m ∈ [0; 1].
Câu 40. Khối đa diện đều loại {3; 5} có số cạnh
A. 30.

B. 8.

C. 20.

D. 12.
Trang 3/10 Mã đề 1


Câu 41. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
2

A. −1.

B. 6.

C. 4.
0

0

Z

6

3

3x + 1

. Tính


1

f (x)dx.
0

D. 2.

0

Câu 42. [3-1122h] Cho hình lăng trụ ABC.A B C có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
BC là
. Khi đó thể tích khối lăng trụ là
4




a3 3
a3 3
a3 3
a3 3
A.
.
B.
.
C.

.
D.
.
24
6
12
36
Câu 43. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {3; 4}.
B. {4; 3}.
C. {3; 5}.
D. {5; 3}.
3a
, hình chiếu vng
Câu 44. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng

a
a
a 2
2a
A. .
B. .
C.
.
D.
.
4

3
3
3


Câu 45. Phần thực√và phần ảo của số √
phức z = 2 − 1 − 3i lần lượt √l

3.
B. Phần thực là 2, √
phần ảo là 1 − √
3.
A. Phần thực là √2 − 1, phần ảo là √
C. Phần thực là 2 − 1, phần ảo là − 3.
D. Phần thực là 1 − 2, phần ảo là − 3.
[ = 60◦ , S O
Câu 46. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc với mặt đáy và S O = a.√Khoảng cách từ A đến (S
√ BC) bằng


a 57
a 57
2a 57
A. a 57.
.
C.
.
D.
.

B.
19
17
19
Câu 47. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng




a 6
A. a 3.
B. a 6.
C.
.
D. 2a 6.
2
2
Câu 48. Tìm giá trị nhỏ nhất của hàm số y = (x − 2x + 3)2 − 7
A. −7.
B. −3.
C. −5.
D. Không tồn tại.
Câu 49.
đề nào sau đây
Z [1233d-2] Mệnh Z
Z sai?
[ f (x) + g(x)]dx =

A.

Z
B.

[ f (x) − g(x)]dx =

f (x)dx +

Z

g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z

f (x)dx −

g(x)dx, với mọi f (x), g(x) liên tục trên R.

Z

f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
D.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
C.

Câu 50. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {5}.
B. {5; 2}.
C. {3}.

D. {2}.
Câu 51. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng

A. 5.
B. 5.
C. 25.


1
.
5
Câu 52. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 27 lần.
B. Tăng gấp 3 lần.
C. Tăng gấp 18 lần.
D. Tăng gấp 9 lần.
D.

Trang 4/10 Mã đề 1


Câu 53. Cho I =

Z

3

x



dx =

0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = 16.
B. P = −2.

a
a
+ b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá
d
d

C. P = 4.
D. P = 28.
a
1
Câu 54. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
A. 4.
B. 7.
C. 2.
D. 1.

Câu 55. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.

D. 4 đỉnh, 12 cạnh, 4 mặt.
Câu 56. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. Vô nghiệm.
B. 2.
C. 3.
D. 1.
Câu 57.√Thể tích của tứ diện đều √
cạnh bằng a
3
3
a 2
a 2
.
B.
.
A.
2
12




a3 2
C.
.
4



a3 2

D.
.
6

Câu 58. [12215d] Tìm m để phương trình 4 x+ 1−x − 4.2 x+ 1−x − 3m + 4 = 0 có nghiệm
3
3
9
A. m ≥ 0.
B. 0 < m ≤ .
C. 0 ≤ m ≤ .
D. 0 ≤ m ≤ .
4
4
4
Câu 59. Trong không gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0) lần
lượt là hình chiếu
của B, C lên các cạnh! AC, AB. Tọa độ hình chiếu của A lên BC là
!
!
7
8
5
A.
; 0; 0 .
; 0; 0 .
; 0; 0 .
B.
C. (2; 0; 0).
D.

3
3
3
2

Câu 60. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. −7, 2.
B. 7, 2.
C. 72.
Câu 61. Khối đa diện đều loại {5; 3} có số đỉnh
A. 20.
B. 30.

2

D. 0, 8.

C. 8.

D. 12.

Câu 62. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 62.
B. 63.
C. Vô số.
D. 64.
Câu 63. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. −3.
B. −6.

C. 0.
D. 3.
!
3n + 2
2
+ a − 4a = 0. Tổng các phần tử
Câu 64. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
n+2
của S bằng
A. 3.
B. 4.
C. 5.
D. 2.
Câu 65.
đề nào sai? Z
Z Cho hàm sốZf (x), g(x) liên tục trên R. Trong cácZmệnh đề sau, mệnh Z
A.
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.
B.
( f (x) − g(x))dx =
f (x)dx − g(x)dx.
Z
Z
Z
Z
Z
Z
C.
( f (x) + g(x))dx =

f (x)dx + g(x)dx.
D.
f (x)g(x)dx =
f (x)dx g(x)dx.
Câu 66. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 3.
B. V = 5.
C. V = 4.
D. V = 6.
9t
Câu 67. [4] Xét hàm số f (t) = t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
9 + m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. Vô số.
B. 0.
C. 2.
D. 1.
Trang 5/10 Mã đề 1


2

Câu 68. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 1 − log3 2.
B. 2 − log2 3.
C. 1 − log2 3.

D. 3 − log2 3.


Câu 69. Khối chóp ngũ giác có số cạnh là
A. 9 cạnh.
B. 11 cạnh.

D. 12 cạnh.

C. 10 cạnh.

x+2
Câu 70. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. 3.
B. 2.
C. Vơ số.
D. 1.
x+1
bằng
Câu 71. Tính lim
x→−∞ 6x − 2
1
1
1
A. .
B. 1.
C. .
D. .
2

3
6
8
Câu 72. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 81.
B. 64.
C. 96.
D. 82.
Câu 73. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng
hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD


√ là
a3 3
4a3 3
8a3 3
8a3 3
.
B.
.
C.
.
D.
.
A.
3
9

9
9
Câu 74. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1
1
A. .
B. .
C. .
D. 4.
8
2
4

Câu 75. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng



3a 58
3a
a 38
3a 38
A.
.
B.
.
C.
.

D.
.
29
29
29
29
Câu 76. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m ≥ .
B. m < .
C. m > .
D. m ≤ .
4
4
4
4
Câu 77. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. −2e2 .
B. −e2 .
C. 2e4 .
D. 2e2 .
x−1 y z+1
Câu 78. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình
= =

2
1

−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. 10x − 7y + 13z + 3 = 0.
B. 2x + y − z = 0.
C. −x + 6y + 4z + 5 = 0.
D. 2x − y + 2z − 1 = 0.
Câu 79.
√ [4-1245d] Trong tất cả√các số phức z thỏa mãn hệ thức |z − 1 + 3i| = 3. Tìm min |z − 1 − i|.
A. 10.
B. 2.
C. 1.
D. 2.
[ = 60◦ , S A ⊥ (ABCD).
Câu 80. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng khoảng cách từ A đến cạnh
√ S C là a. Thể tích khối

√chóp S .ABCD là
3
3

a
2
a
3
a3 2
3
A. a 3.
B.

.
C.
.
D.
.
4
6
12
Câu 81. Khối đa diện đều loại {3; 3} có số mặt
A. 5.
B. 3.

C. 2.

D. 4.
Trang 6/10 Mã đề 1


!
x+1
Câu 82. [3] Cho hàm số f (x) = ln 2017 − ln
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
4035
2016
2017
A. 2017.
B.
.
C.

.
D.
.
2018
2017
2018
Câu 83. Dãy! số nào có giới hạn bằng 0?
n
6
A. un =
.
B. un = n2 − 4n.
5

!n
−2
C. un =
.
3

Câu 84. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
C. V = S h.
A. V = 3S h.
B. V = S h.
3

D. un =

n3 − 3n

.
n+1

1
D. V = S h.
2

Câu 85. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α

A. aαβ = (aα )β .
B. aα bα = (ab)α .
C. β = a β .
D. aα+β = aα .aβ .
a
x2 − 5x + 6
Câu 86. Tính giới hạn lim
x→2
x−2
A. −1.
B. 0.
C. 5.
D. 1.
2n2 − 1
Câu 87. Tính lim 6
3n + n4
2
A. 1.
B. 2.
C. 0.

D. .
3
Câu 88. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 1202 m.
B. 2400 m.
C. 6510 m.
D. 1134 m.

3
4
Câu 89. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 : a2 bằng
5
2
5
7
A. a 8 .
B. a 3 .
C. a 3 .
D. a 3 .
Câu 90. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|




12 17
.
A. 68.
B. 34.

C. 5.
D.
17
Câu 91. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Một hình chóp tam giác và một hình chóp tứ giác.
B. Hai hình chóp tứ giác.
C. Một hình chóp tứ giác và một hình chóp ngũ giác.
D. Hai hình chóp tam giác.
Câu 92. Tính thể tích khối lập phương
biết tổng diện tích tất cả các mặt bằng 18.

A. 9.
B. 3 3.
C. 27.
D. 8.
Câu 93. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n lần.
B. n2 lần.
C. 3n3 lần.
D. n3 lần.
ln x p 2
1
Câu 94. Gọi F(x) là một nguyên hàm của hàm y =
ln x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
1
8
1

8
A. .
B. .
C. .
D. .
9
9
3
3
Câu 95. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất
√ của hàm số. Khi đó tổng M + m


A. 8 2.
B. 16.
C. 7 3.
D. 8 3.
Trang 7/10 Mã đề 1


1
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
0
y
A. xy = e − 1.
B. xy = e + 1.

C. xy0 = −ey + 1.
D. xy0 = −ey − 1.



x = 1 + 3t




Câu 97. [1232h] Trong không gian Oxyz, cho đường thẳng d : 
y = 1 + 4t . Gọi ∆ là đường thẳng đi qua




z = 1
điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương
 trình là












x
=
−1
+
2t
x
=
−1
+
2t
x
=
1
+
3t
x = 1 + 7t

















A. 
D. 
.
y = −10 + 11t . B. 
y = −10 + 11t . C. 
y = 1 + 4t .
y=1+t
















z = −6 − 5t
z = 6 − 5t
z = 1 − 5t
z = 1 + 5t

π
Câu 98. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3

trị của biểu thức T = a + b 3.


C. T = 2.
D. T = 3 3 + 1.
A. T = 4.
B. T = 2 3.

Câu 99. Thể tích của khối lập phương

cạnh
bằng
a
2

3


2a
2
A. V = 2a3 .
B.
.
C. 2a3 2.
D. V = a3 2.
3

Câu 100. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng
√ góc với đáy, S C = a3 √3. Thể tích khối chóp S 3.ABCD là
a 3
a
a3 3
.
B.
.
C.
.
D. a3 .
A.
9
3
3
x+2
Câu 101. Tính lim
bằng?
x→2
x
A. 1.
B. 3.
C. 2.
D. 0.
0 0 0
d = 300 .
Câu 102. Cho khối lăng trụ đứng ABC.A B C có đáy ABC là tam giác vuông tại A. BC = 2a, ABC
Độ dài cạnh bên CC 0 = 3a. Thể tích V của

√ khối lăng trụ đã cho.

3

3a 3
a3 3
3
3
A. V = 6a .
B. V =
.
C. V = 3a 3.
D. V =
.
2
2
Câu 103. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(4; −8).
B. A(−4; 8).
C. A(4; 8).
D. A(−4; −8)(.
Câu 96. [3-12217d] Cho hàm số y = ln

Câu 104. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
ln 2
.
C. 2.
A. 1.
B.
2

Câu 105. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?

D.

1
.
2

(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 2.

B. 0.

C. 1.

Câu 106. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {3; 3}.
B. {5; 3}.
C. {3; 4}.

D. 3.
D. {4; 3}.

Câu 107. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là −3, phần ảo là −4.
B. Phần thực là 3, phần ảo là 4.
C. Phần thực là 3, phần ảo là −4.
D. Phần thực là −3, phần ảo là 4.

Trang 8/10 Mã đề 1


Câu 108. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
A. T = e + 1.
B. T = 4 + .
C. T = e + 3.
D. T = e + .
e
e
2
Câu 109. Giá trị của lim(2x − 3x + 1) là
x→1

A. 1.

B. 2.

C. +∞.

D. 0.

Câu 110. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có vơ số.
B. Có một.
C. Có hai.

D. Khơng có.
Câu 111. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số đồng biến trên khoảng (0; 2).
B. Hàm số đồng biến trên khoảng (0; +∞).
C. Hàm số nghịch biến trên khoảng (−∞; 2).
D. Hàm số nghịch biến trên khoảng (0; 2).
2

Câu 112. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
1
1
2
B. √ .
A. 2 .
C. 3 .
e
e
2 e

D.

1
.
2e3

Câu 113. [2] Cho hình chóp S .ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng
cách giữa hai đường thẳng BD và√S C bằng




a 6
a 6
a 6
A. a 6.
B.
.
C.
.
D.
.
3
6
2
Câu 114. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 20 mặt.
B. 12 đỉnh, 30 cạnh, 20 mặt.
C. 12 đỉnh, 30 cạnh, 12 mặt.
D. 20 đỉnh, 30 cạnh, 12 mặt.
Câu 115. Bát diện đều thuộc loại
A. {3; 4}.
B. {4; 3}.

C. {3; 3}.

D. {5; 3}.

Câu 116. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng
(cả vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất không thay đổi?

A. 18 tháng.
B. 16 tháng.
C. 17 tháng.
D. 15 tháng.
Câu 117. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 4).
B. (1; 3; 2).
C. (2; 4; 3).
D. (2; 4; 6).
Câu 118.
Trong các khẳng định sau, khẳng định nào sai?Z
Z
xα+1
1
A.
xα dx =
+ C, C là hằng số.
B.
dx = ln |x| + C, C là hằng số.
α+1
Z
Z x
C.

0dx = C, C là hằng số.

D.

dx = x + C, C là hằng số.


Câu 119. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 21.
B. 22.
C. 23.
D. 24.
1
Câu 120. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 ≤ m ≤ 1.
B. 2 ≤ m ≤ 3.
C. 0 < m ≤ 1.
D. 2 < m ≤ 3.
Câu 121. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. Vô nghiệm.
B. 2.
C. 3.
D. 1.
Trang 9/10 Mã đề 1


Câu 122. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 1200 cm2 .
B. 160 cm2 .
C. 160 cm2 .
D. 120 cm2 .
Câu 123. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung

điểm cạnh AB, biết S H ⊥ (ABCD). Thể tích khối chóp S .ABCD
√ là

a3
a3
4a3 3
2a3 3
A.
.
B.
.
C.
.
D.
.
3
6
3
3
Câu 124. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. n3 lần.
B. 2n3 lần.
C. n3 lần.
D. 2n2 lần.
3

Câu 125. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e5 .
B. e2 .

C. e3 .
D. e.
Câu 126. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách √
từ C đến đường thẳng BB0 bằng 2, khoảng
cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2 3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng
3 √

2 3
.
D. 1.
B. 2.
C.
A. 3.
3
!2x−1
!2−x
3
3
Câu 127. Tập các số x thỏa mãn


5
5
A. [1; +∞).
B. (+∞; −∞).
C. [3; +∞).

D. (−∞; 1].
Câu 128. Cho hình chóp S .ABCD có đáy ABCD là hình thang vuông tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt phẳng vng góc với (ABCD).
Thể tích khối chóp

√ S .ABCD là
3
3
3

a 2
a 3
a 3
A.
.
B. a3 3.
C.
.
D.
.
2
4
2
Câu 129. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 8 lần.
B. Tăng gấp đôi.
C. Tăng gấp 4 lần.
D. Tăng gấp 6 lần.
Câu 130. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,

lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 210 triệu.
B. 216 triệu.
C. 220 triệu.
D. 212 triệu.
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

2. A

B
D

3.
5. A
7.

B

9.


B

6.

D

12. A
14.

B
C

C
C

B

18.

19.

B

20.

21. A

D


22. A
24.

B

25.

D

26.

27.

D

28. A

29.

B

30.

31.

B

32.

33.


C

C
B
C
B

34. A

35.

B

36. A

37.

B

38. A

39.

B

40. A

41.


C

42.

43.

C

44.

45.

C

46.

47.

D

16.

17.

23.

B

10. A
D


15.

D

8.

11.
13.

4.

C
D
B

48.

B

49.

D

D

50. A

51.


C

52. A

53.

C

54.

B

55.

C

56.

B

57.

B

58.

59.

B


60. A

61. A

62. A

63. A

64.

65.
67.

D

C

B

66.
68.

C
1

C
B


69.


70.

C

71.

D

72. A

73.

D

74.

B

D

78. A
C

79.
81.

80.

B


82.

D

83.

C

84.

85.

C

86. A

87.

C

88.

89.

C

76.

75. A

77.

B

D
B
C
D

90.

B

91.

D

92.

B

93.

D

94.

B

95.


B

96. A

97.

B

98. A

99.

C

100.

101.

C

102.

103.

C

104.

105. A


106.

C
B
C
B

107.

D

108.

C

109.

D

110.

C

111. A

112. A

113.


114.

C

115. A

116.

117.

D

B

118. A

119.

B

120.

121.

B

122.

123.


D

D
B

124. A

C

125. A

126.

127. A

128.

D

129. A

130.

D

2

B




Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×