TỐN PDF LATEX
TRẮC NGHIỆM ƠN THI MƠN TỐN THPT
(Đề thi có 10 trang)
Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
Câu 1. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 3ac
3b + 2ac
3b + 2ac
3b + 3ac
.
B.
.
C.
.
D.
.
A.
c+2
c+1
c+3
c+2
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 2. Cho hình chóp S .ABC có BAC
Thể tích√khối chóp S .ABC là
√
√
√
a3 3
a3 2
a3 3
2
A.
.
B.
.
C. 2a 2.
D.
.
12
24
24
Câu 3. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có một.
B. Khơng có.
C. Có hai.
D. Có vơ số.
Câu 4. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
7
5
A. .
B. 9.
C. .
D. 6.
2
2
Câu 5. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng lên?
A. 2n2 lần.
B. n3 lần.
C. 2n3 lần.
D. n3 lần.
2
Câu 6. Tính
√ mơ đun của số phức z biết (1 + 2i)z = 3 + 4i.
√
A. |z| = 5.
B. |z| = 5.
C. |z| = 2 5.
D. |z| =
Câu 7. Biểu thức nào sau đây khơng
có nghĩa
√
−3
−1
A. 0 .
B.
−1.
C. (−1)−1 .
√
D. (− 2)0 .
Câu 8. Tứ diện đều thuộc loại
A. {3; 4}.
B. {5; 3}.
C. {4; 3}.
D. {3; 3}.
Câu 9. Khối đa diện đều loại {3; 3} có số cạnh
A. 6.
B. 4.
C. 5.
D. 8.
Câu 10. Phát biểu nào sau đây là sai?
1
A. lim = 0.
n
C. lim qn = 0 (|q| > 1).
√4
5.
B. lim un = c (un = c là hằng số).
1
D. lim k = 0.
n
Câu 11. Cho
Z hai hàm yZ = f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
A. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
B. Nếu
f 0 (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
C. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
Z
Z
0
D. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f (x)dx =
g0 (x)dx.
2x + 1
x→+∞ x + 1
1
B. .
2
Câu 12. Tính giới hạn lim
A. −1.
C. 2.
D. 1.
Trang 1/10 Mã đề 1
Câu 13. Tính lim
A. +∞.
2n − 3
bằng
+ 3n + 1
B. 0.
2n2
C. 1.
D. −∞.
Câu 14. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
x+1 y−5
z
d:
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng
2
2
−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (2; 1; 6).
B. ~u = (1; 0; 2).
C. ~u = (2; 2; −1).
D. ~u = (3; 4; −4).
1
Câu 15. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. −2 ≤ m ≤ −1.
B. (−∞; −2] ∪ [−1; +∞). C. −2 < m < −1.
D. (−∞; −2) ∪ (−1; +∞).
!4x
!2−x
2
3
Câu 16. Tập các số x thỏa mãn
≤
là
#
" 3
! 2
"
!
#
2
2
2
2
B. − ; +∞ .
C.
; +∞ .
D. −∞; .
A. −∞; .
3
3
5
5
Câu 17. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 20, 128 triệu đồng. B. 50, 7 triệu đồng.
C. 3, 5 triệu đồng.
D. 70, 128 triệu đồng.
Câu 18. Khối đa diện đều loại {3; 4} có số đỉnh
A. 8.
B. 10.
C. 6.
D. 4.
Câu 19. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc√với đáy và S C = a 3. √
Thể tích khối chóp S .ABC√là
√
a3 3
a3 3
a3 6
2a3 6
.
B.
.
C.
.
D.
.
A.
9
4
2
12
Câu 20. [1] Cho a > 0, a , 1. Giá trị của biểu thức log 1a a2 bằng
1
1
A. .
B. 2.
C. − .
D. −2.
2
2
a
1
Câu 21. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
A. 1.
B. 2.
C. 4.
D. 7.
2
2
Câu 22. [3-c]
số f (x) = 2sin x + 2cos x √
lần lượt là
√ Giá trị nhỏ nhất và giá trị lớn nhất của hàm √
B. 2 và 3.
C. 2 2 và 3.
D. 2 và 3.
A. 2 và 2 2.
Câu 23. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất
√ của hàm số. Khi đó tổng
√M + m
√
A. 8 2.
B. 8 3.
C. 16.
D. 7 3.
Câu 24. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
D. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
Câu 25. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. 1.
B. e2016 .
C. 22016 .
D. 0.
Trang 2/10 Mã đề 1
x−3 x−2 x−1
x
+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; 2).
B. (2; +∞).
C. [2; +∞).
D. (−∞; 2].
Câu 26. [4-1213d] Cho hai hàm số y =
Câu 27. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 2.
B. 1.
C. 3.
D. 0.
2
2
2
1 + 2 + ··· + n
Câu 28. [3-1133d] Tính lim
n3
2
1
A. .
B. 0.
C. .
D. +∞.
3
3
1
Câu 29. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
0
y
A. xy = −e − 1.
B. xy = e + 1.
C. xy0 = ey − 1.
D. xy0 = −ey + 1.
Câu 30. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vng
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√
√
a3 5
a3 5
a3 5
a3 3
A.
.
B.
.
C.
.
D.
.
6
4
12
12
Câu 31. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là −3, phần ảo là −4.
B. Phần thực là 3, phần ảo là 4.
C. Phần thực là 3, phần ảo là −4.
D. Phần thực là −3, phần ảo là 4.
Câu 32. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 10 mặt.
C. 4 mặt.
D. 8 mặt.
Câu 33. [1] Tập nghiệm của phương trình log2 (x − 6x + 7) = log2 (x − 3) là
A. {2}.
B. {5}.
C. {3}.
D. {5; 2}.
2
Câu 34. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≤ 3.
B. m > 3.
C. m < 3.
D. m ≥ 3.
Câu 35. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp
√ là 1728. Khi đó, các kích thước của hình hộp là
√ đã cho
A. 2 3, 4 3, 38.
B. 2, 4, 8.
C. 6, 12, 24.
D. 8, 16, 32.
Câu 36. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với √
đáy một góc 60◦ . Thể tích khối
√ chóp S .ABCD là
√
3
3
3
√
2a 3
a
3
a 3
.
B.
.
C. a3 3.
D.
.
A.
3
3
6
1 − 2n
Câu 37. [1] Tính lim
bằng?
3n + 1
1
2
2
A. .
B. − .
C. .
D. 1.
3
3
3
Câu 38. [2]√Tìm m để giá trị lớn nhất√của hàm số y = 2x3 + (m2 + 1)2 x trên [0; 1] bằng 8
A. m = ± 3.
B. m = ± 2.
C. m = ±1.
D. m = ±3.
2mx + 1
1
Câu 39. Giá trị lớn nhất của hàm số y =
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
A. −2.
B. 1.
C. −5.
D. 0.
!2x−1
!2−x
3
3
Câu 40. Tập các số x thỏa mãn
≤
là
5
5
A. (+∞; −∞).
B. [3; +∞).
C. (−∞; 1].
D. [1; +∞).
Trang 3/10 Mã đề 1
Câu 41. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng S B và AD bằng
√
√
√
a 2
a 2
A.
.
B.
.
C. a 2.
D. a 3.
2
3
Câu 42. Khối đa diện đều loại {4; 3} có số cạnh
A. 30.
B. 10.
2n + 1
Câu 43. Tính giới hạn lim
3n + 2
2
B. 0.
A. .
3
C. 20.
C.
D. 12.
1
.
2
D.
3
.
2
Câu 44. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 6 mặt.
C. 4 mặt.
D. 9 mặt.
Câu 45. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
A. a
α+β
α
β
= a .a .
Z
Câu 46. Cho
A. 3.
α α
1
2
α
B. a b = (ab) .
αβ
C. a
α β
= (a ) .
ln(x + 1)
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
x2
B. 0.
C. −3.
α
aα
D. β = a β .
a
D. 1.
Câu 47. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m > 3.
B. m < 3.
C. m ≥ 3.
D. m ≤ 3.
t
9
Câu 48. [4] Xét hàm số f (t) = t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
9 + m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. 1.
B. 0.
C. 2.
D. Vô số.
x−1 y z+1
= =
và
Câu 49. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình
2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. 2x + y − z = 0.
B. 10x − 7y + 13z + 3 = 0.
C. −x + 6y + 4z + 5 = 0.
D. 2x − y + 2z − 1 = 0.
Câu 50. [4-1246d] Trong tất cả các số phức z thỏa mãn |z√− i| = 1. Tìm giá trị lớn nhất
√ của |z|
A. 1.
B. 2.
C. 3.
D. 5.
Câu 51. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Ba mặt.
B. Hai mặt.
C. Bốn mặt.
Câu 52. Tìm giới hạn lim
A. 0.
2n + 1
n+1
B. 1.
D. Một mặt.
C. 2.
D. 3.
d = 120◦ .
Câu 53. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
A. 2a.
B.
.
C. 3a.
D. 4a.
2
Câu 54.
Z Cho hàm số f (x),Zg(x) liên tụcZtrên R. Trong cácZmệnh đề sau, mệnh
Z đề nào sai?
( f (x) + g(x))dx =
A.
Z
C.
( f (x) − g(x))dx =
f (x)dx +
Z
g(x)dx.
f (x)dx −
k f (x)dx = f
B.
Z
Z
g(x)dx.
D.
f (x)g(x)dx =
Z
f (x)dx, k ∈ R, k , 0.
Z
f (x)dx g(x)dx.
Trang 4/10 Mã đề 1
Câu 55. Nếu không sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Bốn tứ diện đều và một hình chóp tam giác đều.
B. Một tứ diện đều và bốn hình chóp tam giác đều.
C. Năm hình chóp tam giác đều, khơng có tứ diện đều.
D. Năm tứ diện đều.
2n2 − 1
Câu 56. Tính lim 6
3n + n4
2
A. .
B. 1.
C. 0.
D. 2.
3
Câu 57. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 4.
B. 3.
C. 1.
D. 2.
x+2
Câu 58. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. Vơ số.
B. 3.
C. 2.
D. 1.
Câu 59. [3] Cho khối chóp S .ABC có đáy là tam giác vng tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
a
5a
8a
2a
A. .
B.
.
C.
.
D.
.
9
9
9
9
log2 240 log2 15
Câu 60. [1-c] Giá trị biểu thức
−
+ log2 1 bằng
log3,75 2 log60 2
A. 4.
B. −8.
C. 3.
D. 1.
x=t
Câu 61. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d :
y = −1 và hai mặt phẳng (P), (Q)
z = −t
lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I
thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).
9
9
A. (x + 3)2 + (y + 1)2 + (z − 3)2 = .
B. (x − 3)2 + (y + 1)2 + (z + 3)2 = .
4
4
9
9
2
2
2
2
2
2
C. (x − 3) + (y − 1) + (z − 3) = .
D. (x + 3) + (y + 1) + (z + 3) = .
4
4
2
2x
Câu 62. [2-c] Giá trị nhỏ nhất của hàm số y = (x − 2)e trên đoạn [−1; 2] là
A. 2e4 .
B. −2e2 .
C. −e2 .
D. 2e2 .
Câu 63. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
11
9
A.
.
B. 7.
C. .
D. 5.
2
2
Câu 64. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2
A. 2e + 1.
B. 3.
C. 2e.
D. .
e
Trang 5/10 Mã đề 1
Câu 65. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối lập phương.
B. Khối bát diện đều.
C. Khối tứ diện.
D. Khối lăng trụ tam giác.
Câu 66. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
B. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
C. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
D. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
Câu 67. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
ab
1
ab
1
A. √
.
B. √
.
C. 2
.
D. √
.
2
a +b
a2 + b2
2 a2 + b2
a2 + b2
Câu 68. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [−3; 1].
B. (−∞; −3].
C. [1; +∞).
D. [−1; 3].
Câu 69. Khối đa diện đều loại {5; 3} có số đỉnh
A. 12.
B. 8.
C. 30.
D. 20.
Câu 70. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 16π.
B. 8π.
C. V = 4π.
D. 32π.
d = 60◦ . Đường chéo
Câu 71. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vuông tại A, AC = a, ACB
BC 0 của mặt bên (BCC 0 B0 ) tạo với mặt phẳng (AA0C 0C) một góc 30◦ . Thể tích của khối lăng trụ ABC.A0 B0C 0
là
√
√
√
√
4a3 6
a3 6
2a3 6
.
B.
.
C.
.
D. a3 6.
A.
3
3
3
Câu 72. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 212 triệu.
B. 216 triệu.
C. 210 triệu.
D. 220 triệu.
Câu 73. Tính lim
x→2
A. 2.
x+2
bằng?
x
B. 3.
C. 1.
D. 0.
x
x+1
x−2 x−1
+
+
+
và y = |x + 1| − x − m (m là tham
Câu 74. [4-1212d] Cho hai hàm số y =
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; −3).
B. (−3; +∞).
C. (−∞; −3].
D. [−3; +∞).
Câu 75. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 1.
B. Vô nghiệm.
C. 3.
D. 2.
Câu 76. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 10.
B. ln 14.
C. ln 12.
D. ln 4.
Câu 77. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 x ) = 2 − x bằng
A. 2.
B. 1.
C. 3.
D. 7.
Trang 6/10 Mã đề 1
Câu 78. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
. Khi đó thể tích khối lăng trụ là
BC là
4
√
√
√
√
a3 3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
6
36
12
24
Câu 79. Khối chóp ngũ giác có số cạnh là
A. 12 cạnh.
B. 9 cạnh.
C. 10 cạnh.
D. 11 cạnh.
1
Câu 80. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 luôn đồng biến trên
3
√
một đoạn có độ dài bằng 24.
A. m = −3, m = 4.
B. m = 4.
C. −3 ≤ m ≤ 4.
D. m = −3.
Câu 81. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (−∞; 0) và (2; +∞). B. (0; +∞).
C. (−∞; 2).
D. (0; 2).
Câu 82. Cho
√ số phức z thỏa mãn |z + 3| = 5 và |z − 2i| = |z − 2√− 2i|. Tính |z|.
A. |z| = 10.
B. |z| = 10.
C. |z| = 17.
D. |z| = 17.
x2 − 3x + 3
đạt cực đại tại
Câu 83. Hàm số y =
x−2
A. x = 0.
B. x = 3.
C. x = 2.
2
3
7n − 2n + 1
Câu 84. Tính lim 3
3n + 2n2 + 1
7
B. 0.
C. 1.
A. .
3
Câu 85. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số đỉnh của khối chóp bằng 2n + 1.
B. Số mặt của khối chóp bằng 2n+1.
C. Số cạnh của khối chóp bằng 2n.
D. Số mặt của khối chóp bằng số cạnh của khối chóp.
D. x = 1.
2
D. - .
3
1
Câu 86. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = R.
B. D = (−∞; 1).
C. D = R \ {1}.
Câu 87. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
A. − 2 .
C. −e.
B. − .
e
e
Câu 88. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối lập phương.
C. Khối bát diện đều.
x2 +x−2
Câu 89. [1] Tập xác định của hàm số y = 4
A. D = (−2; 1).
B. D = R \ {1; 2}.
C. D = R.
Câu 91.
Z Trong các khẳng định sau, khẳng định nào sai? Z
dx = x + C, C là hằng số.
Z
C.
1
dx = ln |x| + C, C là hằng số.
x
D. −
1
.
2e
D. Khối tứ diện đều.
là
D. D = [2; 1].
log 2x
Câu 90. [3-1229d] Đạo hàm của hàm số y =
là
x2
1 − 2 log 2x
1 − 2 ln 2x
1 − 4 ln 2x
A. y0 =
.
B. y0 = 3
.
C. y0 =
.
3
x
x ln 10
2x3 ln 10
A.
D. D = (1; +∞).
B.
Z
D.
D. y0 =
2x3
1
.
ln 10
0dx = C, C là hằng số.
xα dx =
xα+1
+ C, C là hằng số.
α+1
Trang 7/10 Mã đề 1
Câu 92. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Bốn mặt.
B. Ba mặt.
C. Năm mặt.
D. Hai mặt.
d = 30◦ , biết S BC là tam giác đều
Câu 93. [3] Cho hình chóp S .ABC có đáy là tam giác vuông tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
.
B.
.
C.
.
D.
.
A.
9
26
16
13
q
2
Câu 94. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 = 0
√ i
h
có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 4].
B. m ∈ [−1; 0].
C. m ∈ [0; 2].
D. m ∈ [0; 1].
Câu 95. Khối đa diện đều loại {4; 3} có số mặt
A. 10.
B. 12.
C. 8.
D. 6.
2
Câu 96. [2] Tổng các nghiệm của phương trình 3 x −4x+5 = 9 là
A. 5.
B. 3.
C. 2.
D. 4.
Câu 97. Cho hàm số y = x3 − 2x2 + x + 1. !Mệnh đề nào dưới đây đúng?
!
1
1
B. Hàm số nghịch biến trên khoảng −∞; .
A. Hàm số nghịch biến trên khoảng ; 1 .
3!
3
1
C. Hàm số đồng biến trên khoảng ; 1 .
D. Hàm số nghịch biến trên khoảng (1; +∞).
3
Câu 98. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n3 lần.
B. 3n3 lần.
C. n2 lần.
D. n lần.
x+1
bằng
Câu 99. Tính lim
x→+∞ 4x + 3
1
1
A. .
B. 1.
C. .
D. 3.
4
3
Câu 100. [3] Biết rằng giá trị lớn nhất của hàm số y =
ln2 x
m
trên đoạn [1; e3 ] là M = n , trong đó n, m là
x
e
các số tự nhiên. Tính S = m2 + 2n3
A. S = 22.
B. S = 32.
C. S = 24.
D. S = 135.
Câu 101.
hạn là 0?
!n Dãy số nào sau đây có !giới
n
4
5
.
B.
.
A.
e
3
!n
5
C. − .
3
!n
1
D.
.
3
Câu 102.
[1233d-2] MệnhZđề nào sau đây
Z
Z sai?
[ f (x) − g(x)]dx =
A.
f (x)dx −
g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
Z
C.
[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
Z
D.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
B.
Câu 103. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by =
Giá trị nhỏ nhất của biểu thức P" = x!+ 2y thuộc tập nào dưới đây?
"
!
5
5
A. [3; 4).
B. 2; .
C. (1; 2).
D.
;3 .
2
2
√
ab.
Trang 8/10 Mã đề 1
[ = 60◦ , S O
Câu 104. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a.√Khoảng cách từ A đến (S
√ BC) bằng
√
a 57
2a 57
a 57
A.
.
B.
.
C.
.
D. a 57.
17
19
19
Câu 105. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối tứ diện đều.
C. Khối 12 mặt đều.
D. Khối 20 mặt đều.
Câu 106. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(4; 8).
B. A(−4; 8).
C. A(4; −8).
D. A(−4; −8)(.
Câu 107.
√ Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18.
B. 27.
C. 8.
D. 9.
A. 3 3.
Câu 108. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ơng muốn hồn
nợ ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ơng A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng không đổi trong thời gian ông A hoàn nợ.
120.(1, 12)3
100.1, 03
triệu.
B. m =
triệu.
A. m =
3
(1, 12)3 − 1
100.(1, 01)3
(1, 01)3
C. m =
triệu.
D. m =
triệu.
3
(1, 01)3 − 1
Câu 109. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 3.
B. 0.
C. 2.
D. 1.
Câu 110. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. 3 nghiệm.
B. 1 nghiệm.
C. Vô nghiệm.
D. 2 nghiệm.
Câu 111. Tính lim
x→5
x2 − 12x + 35
25 − 5x
B. +∞.
2
.
5
Câu 112. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
A. −∞.
C.
2
D. − .
5
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 1.
B. 0.
C. 2.
D. 3.
Câu 113. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Chỉ có (I) đúng.
B. Cả hai câu trên đúng. C. Cả hai câu trên sai.
D. Chỉ có (II) đúng.
Câu 114. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (0; 1).
B. Hàm số nghịch biến trên khoảng (1; +∞).
C. Hàm số đồng biến trên khoảng (1; 2).
D. Hàm số nghịch biến trên khoảng (−∞; 0).
Trang 9/10 Mã đề 1
Câu 115. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích
hình phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 2.
B. 0, 5.
C. 0, 4.
D. 0, 3.
Câu 116. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m < .
B. m > .
C. m ≥ .
D. m ≤ .
4
4
4
4
3
Câu 117. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 160 cm2 .
B. 160 cm2 .
C. 120 cm2 .
D. 1200 cm2 .
Câu 118. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng
cách giữa
√
√ hai đường thẳng BD và√S C bằng
√
a 6
a 6
a 6
D.
A.
.
B.
.
C. a 6.
.
3
6
2
Câu 119. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 3 đỉnh, 3 cạnh, 3 mặt. B. 4 đỉnh, 8 cạnh, 4 mặt. C. 6 đỉnh, 6 cạnh, 4 mặt. D. 4 đỉnh, 6 cạnh, 4 mặt.
Câu 120. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim− f (x) = f (a) và lim+ f (x) = f (b).
B. lim+ f (x) = f (a) và lim− f (x) = f (b).
x→a
x→a
x→b
x→b
C. lim− f (x) = f (a) và lim− f (x) = f (b).
D. lim+ f (x) = f (a) và lim+ f (x) = f (b).
x→a
x→b
x→a
Câu 121. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 5.
B. 3.
C. 1.
x→b
D. 2.
Câu 122. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng
√
a 3
a
a
B. a.
C.
.
D. .
A. .
2
2
3
1
Câu 123. [3-12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 2 < m ≤ 3.
B. 0 ≤ m ≤ 1.
C. 2 ≤ m ≤ 3.
D. 0 < m ≤ 1.
Câu 124. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (−∞; 1).
B. R.
C. (2; +∞).
D. (0; 2).
x2 −3x+8
Câu 125. [2] Tổng các nghiệm của phương trình 3
= 92x−1 là
A. 8.
B. 7.
C. 6.
D. 5.
Câu 126. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. −2 + 2 ln 2.
B. 1.
C. 4 − 2 ln 2.
D. e.
Câu 127. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 2.
B. 1.
C. 3.
D. Vô nghiệm.
Câu 128. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d nằm trên P hoặc d ⊥ P.
B. d ⊥ P.
C. d nằm trên P.
D. d song song với (P).
Câu 129. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. Cả ba câu trên đều sai.
B. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
C. F(x) = G(x) trên khoảng (a; b).
D. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
Trang 10/10 Mã đề 1
Câu 130. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung
điểm cạnh√AB, biết S H ⊥ (ABCD). Thể tích khối chóp S .ABCD là
√
a3
a3
4a3 3
2a3 3
.
B.
.
C.
.
D.
.
A.
3
6
3
3
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 11/10 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A
2.
3.
C
B
4. A
6.
D
7. A
8.
D
9. A
10.
C
11. A
12.
C
5.
B
14.
B
15. A
16.
B
17. A
18.
13.
B
19.
D
20.
21.
D
22.
23.
C
D
C
24.
C
D
25.
D
26.
C
27.
D
28.
C
30.
C
29.
C
31.
33.
D
34.
B
C
35.
37.
32. A
36. A
38.
B
39.
D
D
B
40.
D
41. A
42.
D
43. A
44. A
45.
D
47.
49.
C
B
51.
46.
C
48.
C
50.
B
52.
C
C
53.
B
54.
55.
B
56.
C
57.
B
58.
C
59.
61.
60.
C
D
B
62.
B
63.
C
64.
65.
C
66.
67. A
68. A
1
C
B
D
69.
71.
D
72. A
73. A
C
74.
76.
D
75. A
77. A
B
78.
79.
C
80. A
81. A
82. A
83.
84.
D
85.
86.
D
87.
88.
C
D
C
D
89.
C
C
90.
B
91.
D
92.
B
93.
D
94.
B
95.
D
D
96.
97. A
98. A
100.
99. A
B
102.
104.
D
101.
D
103.
D
105.
B
106. A
C
107. A
108.
D
109.
110.
D
111.
112.
113.
C
B
C
B
D
115.
114. A
D
116.
117. A
118.
B
119.
D
120.
B
121.
D
122.
B
123. A
124.
D
125.
B
126.
D
127.
B
129.
B
128. A
130.
D
2