Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (618)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (152.31 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (−∞; 2).
B. (0; 2).

C. (0; +∞).

D. (−∞; 0) và (2; +∞).

C. −∞.

D. 3.

3

x −1
Câu 2. Tính lim
x→1 x − 1
A. +∞.
B. 0.
2
3
7n − 2n + 1


Câu 3. Tính lim 3
3n + 2n2 + 1
7
A. .
B. 0.
3

2
D. - .
3
tan x + m
Câu 4. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1
 π
0; .
4
A. (−∞; −1) ∪ (1; +∞). B. (−∞; 0] ∪ (1; +∞). C. [0; +∞).
D. (1; +∞).
C. 1.

Câu 5. [1] Đạo hàm của làm số y = log x là
1
1
ln 10
1
A. y0 =
.
B.
.

C. y0 =
.
D. y0 = .
x ln 10
10 ln x
x
x
3
2
Câu 6. Cho hàm số y = −x + 3x − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (−∞; 2).
B. Hàm số nghịch biến trên khoảng (0; 2).
C. Hàm số đồng biến trên khoảng (0; +∞).
D. Hàm số đồng biến trên khoảng (0; 2).
Câu 7. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 8 năm.
B. 10 năm.
C. 9 năm.
D. 7 năm.
Câu 8. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 3).
B. (1; 3; 2).
C. (2; 4; 6).
D. (2; 4; 4).
Câu 9. Cho hình chóp S .ABC có đáy ABC là tam giác vng cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là

a3
a3
a3
.
B.
.
C.
.
D. a3 .
A.
24
12
6

x2 + 3x + 5
Câu 10. Tính giới hạn lim
x→−∞
4x − 1
1
1
A. 1.
B. − .
C. 0.
D. .
4
4
d = 120◦ .
Câu 11. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a

A. 4a.
B. 2a.
C. 3a.
D.
.
2
Câu 12. Trong các khẳng định sau, khẳng định nào sai?
A. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
B. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
Trang 1/10 Mã đề 1


C. Z
F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
u0 (x)
D.
dx = log |u(x)| + C.
u(x)
Câu 13. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 − 2e
1 + 2e
1 + 2e
.
B. m =
.
C. m =
.
A. m =
4e + 2

4e + 2
4 − 2e
!4x
!2−x
2
3
Câu 14. Tập các số x thỏa mãn


3 # 2
"
!
#
2
2
2
A.
; +∞ .
B. −∞; .
C. −∞; .
5
3
5

D. m =

1 − 2e
.
4 − 2e


"

!
2
D. − ; +∞ .
3

Câu 15. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 160 cm2 .
B. 1200 cm2 .
C. 160 cm2 .
D. 120 cm2 .
1
Câu 16. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 2 ≤ m ≤ 3.
B. 0 < m ≤ 1.
C. 0 ≤ m ≤ 1.
D. 2 < m ≤ 3.

Câu 17. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.


√ tích khối chóp S .ABC3 √
3
a 6
a3 6

a3 2
a 6
.
B.
.
C.
.
D.
.
A.
6
18
36
6
Câu 18. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (−∞; 1).
B. (2; +∞).
C. (0; 2).
D. R.
[ = 60◦ , S A ⊥ (ABCD).
Câu 19. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng√ khoảng cách từ A đến cạnh
√chóp S .ABCD là
√ S C là a. Thể tích khối
3
3
3

a 2
a 3

a 2
A.
.
B.
.
C.
.
D. a3 3.
4
6
12
Câu 20. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất của hàm số. Khi đó tổng

√M + m

A. 16.
B. 7 3.
C. 8 2.
D. 8 3.
3
2
Câu 21. Giá
√ trị cực đại của hàm số y√= x − 3x − 3x + 2


A. 3 + 4 2.
B. 3 − 4 2.
C. −3 − 4 2.
D. −3 + 4 2.

1
Câu 22. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 luôn đồng biến trên
3

một đoạn có độ dài bằng 24.
A. −3 ≤ m ≤ 4.
B. m = −3, m = 4.
C. m = 4.
D. m = −3.
2
Câu 23. Tính
√ mơ đun của số phức z√4biết (1 + 2i)z = 3 + 4i. √
A. |z| = 2 5.
B. |z| = 5.
C. |z| = 5.

D. |z| = 5.

Câu 24. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Một hình chóp tam giác và một hình chóp tứ giác.
B. Một hình chóp tứ giác và một hình chóp ngũ giác.
C. Hai hình chóp tam giác.
D. Hai hình chóp tứ giác.

Câu 25. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của khối chóp S .ABCD là




a3
a3 3
a3 3
3
A.
.
B. a 3.
C.
.
D.
.
4
12
3
Trang 2/10 Mã đề 1


Câu 26. Khối đa diện đều loại {5; 3} có số đỉnh
A. 8.
B. 12.

C. 30.

D. 20.

Câu 27. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 20, 128 triệu đồng. B. 50, 7 triệu đồng.
C. 70, 128 triệu đồng. D. 3, 5 triệu đồng.

Câu 28. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
1637
23
1728
1079
.
B.
.
C.
.
D.
.
A.
4913
4913
68
4913
Câu 29.
Z Cho hàm số f (x),Zg(x) liên tụcZtrên R. Trong cácZmệnh đề sau, mệnh
Z đề nào sai?
A.
Z
C.

( f (x) − g(x))dx =
f (x)dx − g(x)dx.
Z
Z
f (x)g(x)dx =

f (x)dx g(x)dx.

k f (x)dx = f

B.
Z
D.

f (x)dx, k ∈ R, k , 0.
Z
Z
( f (x) + g(x))dx =
f (x)dx + g(x)dx.

1
Câu 30. [3-12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 < m ≤ 1.
B. 2 < m ≤ 3.
C. 2 ≤ m ≤ 3.
D. 0 ≤ m ≤ 1.
Câu 31. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
.
A. 12.
B. 18.
C. 27.
D.
2

1 − xy
Câu 32. [12210d] Xét các số thực dương x, y thỏa mãn log3
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
x + 2y
Pmin của P = x√+ y.



9 11 − 19
18 11 − 29
2 11 − 3
9 11 + 19
. B. Pmin =
. C. Pmin =
. D. Pmin =
.
A. Pmin =
9
9
21
3
Z 3
x
a
a
Câu 33. Cho I =
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá

d
d

0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = 28.
B. P = −2.
C. P = 16.
D. P = 4.
Câu 34. [2]√Tìm m để giá trị nhỏ nhất√của hàm số y = 2x3 + (m2 + 1)2 x trên [0; 1] bằng 2
B. m = ± 3.
C. m = ±1.
D. m = ±3.
A. m = ± 2.
9x
Câu 35. [2-c] Cho hàm số f (x) = x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9 +3
1
A. .
B. 1.
C. −1.
D. 2.
2
[ = 60◦ , S O
Câu 36. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a.√Khoảng cách từ A đến (S
√ BC) bằng

a 57
2a 57
a 57

A.
.
B.
.
C.
.
D. a 57.
17
19
19
Câu 37. Cho hình chóp S .ABCD có √
đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết S H ⊥ (ABCD), S A =√a 5. Thể tích khối chóp √
S .ABCD là
3
3
3
2a
4a 3
2a 3
4a3
A.
.
B.
.
C.
.
D.
.
3

3
3
3
1
Câu 38. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. (−∞; −2] ∪ [−1; +∞). B. −2 ≤ m ≤ −1.
C. −2 < m < −1.
D. (−∞; −2) ∪ (−1; +∞).
Trang 3/10 Mã đề 1


Câu 39. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = 21.
B. P = 10.
C. P = −10.
D. P = −21.
Câu 40. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√

a3 5
a3 3
a3 5
a3 5
A.
.
B.
.
C.

.
D.
.
6
4
12
12
Câu 41. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 + 1; m = 1.
B. M = e−2 + 2; m = 1.
C. M = e−2 − 2; m = 1.
D. M = e2 − 2; m = e−2 + 2.
Câu 42. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = 1 + ln x.
B. y0 = 1 − ln x.

C. y0 = ln x − 1.

D. y0 = x + ln x.

Câu 43. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. 2n3 lần.
B. n3 lần.
C. 2n2 lần.
D. n3 lần.
Câu 44. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
1
A. f 0 (0) =
.

B. f 0 (0) = ln 10.
C. f 0 (0) = 10.
ln 10
Câu 45.
Z Trong các khẳng định sau, khẳng định nào sai? Z
dx = x + C, C là hằng số.

A.
Z
C.

0dx = C, C là hằng số.

B.
Z
D.

xα dx =

D. f 0 (0) = 1.
xα+1
+ C, C là hằng số.
α+1

1
dx = ln |x| + C, C là hằng số.
x

Câu 46. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (−1; −7).

B. (0; −2).
C. (2; 2).

D. (1; −3).

Câu 47. [4-1246d] Trong tất cả√các số phức z thỏa mãn |z√− i| = 1. Tìm giá trị lớn nhất của |z|
C. 5.
D. 2.
A. 1.
B. 3.
Câu 48. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
B. Cả ba câu trên đều sai.
C. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
D. F(x) = G(x) trên khoảng (a; b).
Câu 49. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng




a 6
A. 2a 6.
B. a 6.
C. a 3.
D.
.
2
Câu 50. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với

đáy (ABC)
một góc bằng 60◦ . Thể√tích khối chóp S .ABC là


a3 3
a3 3
a3
a3 3
A.
.
B.
.
C.
.
D.
.
4
12
4
8
Câu 51. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối lăng trụ tam giác.
B. Khối lập phương.
C. Khối tứ diện.
D. Khối bát diện đều.
Câu 52. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 9 mặt.
C. 8 mặt.


D. 7 mặt.
Trang 4/10 Mã đề 1


Câu 53. Khối đa diện đều nào sau đây có mặt không phải là tam giác đều?
A. Bát diện đều.
B. Nhị thập diện đều. C. Thập nhị diện đều.

D. Tứ diện đều.

Câu 54. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD
√ = a. Khoảng cách từ A√đến mặt phẳng (BCD) bằng


a 2
a 2
.
B.
.
C. a 2.
D. 2a 2.
A.
2
4
Câu 55. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
9
3

B. 3.
C. .
D. 1.
A. .
2
2
x2
Câu 56. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
A. M = e, m = .
B. M = , m = 0.
C. M = e, m = 1.
D. M = e, m = 0.
e
e
Câu 57. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của

A. Giảm đi n lần.
B. Tăng lên (n − 1) lần. C. Không thay đổi.
D. Tăng lên n lần.
log(mx)
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0 ∨ m = 4.
B. m ≤ 0.
C. m < 0 ∨ m > 4.
D. m < 0.
p

ln x
1
Câu 59. Gọi F(x) là một nguyên hàm của hàm y =
ln2 x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
1
8
8
1
A. .
B. .
C. .
D. .
3
3
9
9

Câu 58. [3-1226d] Tìm tham số thực m để phương trình

Câu 60. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 72cm3 .
B. 64cm3 .
C. 27cm3 .
D. 46cm3 .
Câu 61. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
11
9

.
B. 7.
C. .
D. 5.
A.
2
2
Câu 62. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Cả hai câu trên sai.

B. Cả hai câu trên đúng. C. Chỉ có (II) đúng.

Câu 63. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 2.
B. 1.
C. 3.
Câu 64. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
ln 2
1
A.

.
B. 1.
C. .
2
2
x−3
Câu 65. [1] Tính lim
bằng?
x→3 x + 3
A. −∞.
B. 1.
C. +∞.

D. Chỉ có (I) đúng.
D. Vơ nghiệm.
D. 2.

D. 0.
Trang 5/10 Mã đề 1


2

Câu 66. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
1
1
1
B. √ .
C. 3 .
A. 2 .

e
2e
2 e

D.

2
.
e3

Câu 67. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. Vô số.
B. 1.
C. 3.
D. 2.

Câu 68. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 64.
B. 63.
C. Vô số.
D. 62.
Câu 69. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
A. lim [ f (x) + g(x)] = a + b.
B. lim [ f (x)g(x)] = ab.
x→+∞
x→+∞

f (x) a
C. lim
= .
D. lim [ f (x) − g(x)] = a − b.
x→+∞ g(x)
x→+∞
b
Câu 70. Khối đa diện đều loại {4; 3} có số đỉnh
A. 8.
B. 10.

C. 4.

D. 6.

Câu 71. Tìm m để hàm số y = mx + 3x + 12x + 2 đạt cực đại tại x = 2
A. m = −2.
B. m = 0.
C. m = −3.
x+1
bằng
Câu 72. Tính lim
x→+∞ 4x + 3
1
A. .
B. 1.
C. 3.
3
Câu 73. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
3


2

D. m = −1.

D.

1
.
4

(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 2.

B. 3.

C. 0.

D. 1.

2mx + 1
1
Câu 74. Giá trị lớn nhất của hàm số y =
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
A. 0.
B. −2.

C. −5.
D. 1.
Câu 75. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình lăng trụ.
B. Hình tam giác.
C. Hình chóp.

D. Hình lập phương.
0

Câu 76. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A B C D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; −3; 3).
B. A0 (−3; −3; −3).
C. A0 (−3; 3; 1).
D. A0 (−3; 3; 3).
Câu 77. Dãy số nào sau đây có giới hạn là 0?
n2 − 2
n2 − 3n
.
B.
u
=
.
A. un =
n
5n − 3n2
n2

C. un =


1 − 2n
.
5n + n2

0

0

D. un =

n2 + n + 1
.
(n + 1)2

Câu 78. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai ngun hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
Trang 6/10 Mã đề 1


A. Câu (I) sai.

B. Câu (II) sai.

C. Khơng có câu nào D. Câu (III) sai.
sai.



Câu 79. Xác định phần ảo của số phức z = ( 2 + 3i)2

A. 7.
B. −7.
C. −6 2.
x+1
bằng
Câu 80. Tính lim
x→−∞ 6x − 2
1
1
1
A. .
B. .
C. .
3
2
6


D. 6 2.

D. 1.

Câu 81. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim− f (x) = f (a) và lim− f (x) = f (b).
B. lim+ f (x) = f (a) và lim+ f (x) = f (b).
x→a


x→b

x→a

x→b

C. lim+ f (x) = f (a) và lim− f (x) = f (b).

Câu 82. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối bát diện đều.
Câu 83. Khối đa diện đều loại {5; 3} có số cạnh
A. 12.
B. 30.
5
Câu 84. Tính lim
n+3
A. 2.
B. 3.

x→a

x→b

x→a

x→b

D. lim− f (x) = f (a) và lim+ f (x) = f (b).


C. Khối tứ diện đều.

D. Khối lập phương.

C. 20.

D. 8.

C. 1.

D. 0.

C. 3.

D. +∞.

Câu 85. Giá trị của lim (3x2 − 2x + 1)
x→1

A. 1.

B. 2.

Câu 86. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 8 lần.
B. Tăng gấp 6 lần.
C. Tăng gấp đôi.
D. Tăng gấp 4 lần.

Câu 87. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
đến đường√thẳng BD0 bằng



b a2 + c2
c a2 + b2
a b2 + c2
abc b2 + c2
.
B. √
.
C. √
.
D. √
.
A. √
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
Câu 88. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d ⊥ P.
B. d nằm trên P.
C. d song song với (P).
D. d nằm trên P hoặc d ⊥ P.

Câu 89. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga 3 a bằng
1
1

A. −3.
B. − .
C. .
D. 3.
3
3
Câu 90. Khối đa diện đều loại {3; 4} có số mặt
A. 6.
B. 8.

C. 12.

Câu 91. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2
A. .
B. 3.
C. 2e.
e

D. 10.
D. 2e + 1.

Câu 92. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1

A. 7.

B. 9.

Câu 93. Khối đa diện đều loại {4; 3} có số cạnh

A. 12.
B. 10.

C. 0.

D. 5.

C. 20.

D. 30.
Trang 7/10 Mã đề 1


Câu 94. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3. Tính
f (2) + f (4)?
A. 12.
B. 10.
C. 11.
D. 4.
Câu 95. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1
1
B. .
C. 4.
D. .
A. .
4
8
2


Câu 96. Thể tích của khối lập phương
√ có cạnh bằng a 2
3


2a 2
A. V = 2a3 .
B.
.
C. V = a3 2.
D. 2a3 2.
3
3a
Câu 97. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng

2a
a
a 2
a
A.
.
B. .
C.
.
D. .

3
3
3
4
2n2 − 1
Câu 98. Tính lim 6
3n + n4
2
A. .
B. 1.
3

C. 0.

D. 2.

Câu 99. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng góc với đáy, S C = a √3. Thể tích khối chóp S .ABCD


3
3
a 3
a 3
a3
A. a3 .
B.
.
C.

.
D.
.
3
9
3
x−2 x−1
x
x+1
Câu 100. [4-1212d] Cho hai hàm số y =
+
+
+
và y = |x + 1| − x − m (m là tham
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−3; +∞).
B. [−3; +∞).
C. (−∞; −3].
D. (−∞; −3).
Câu 101. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối bát diện đều.

C. Khối 20 mặt đều.

D. Khối tứ diện đều.


Câu 102. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
D. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
Câu 103. [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc là mơn Tốn. Mơn thi này dưới hình thức
trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng. Mỗi câu trả lời đúng
được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm. Bạn An học kém mơn Tốn nên quyết định chọn
ngẫu nhiên hết 50 câu trả lời. Xác suất để bạn An đạt 4 điểm mơn Tốn là
C 20 .(3)30
C 20 .(3)20
C 10 .(3)40
C 40 .(3)10
A. 50 50 .
B. 50 50 .
C. 50 50 .
D. 50 50 .
4
4
4
4
Câu 104. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất không thay đổi?
A. 102.016.000.
B. 102.423.000.
C. 102.016.000.
D. 102.424.000.

Trang 8/10 Mã đề 1


Câu 105. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
. Khi đó thể tích khối lăng trụ là
BC là
4




a3 3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
24
36
6

12
Câu 106. Khối chóp ngũ giác có số cạnh là
A. 9 cạnh.
B. 11 cạnh.

C. 10 cạnh.
!
x+1
Câu 107. [3] Cho hàm số f (x) = ln 2017 − ln
. Tính tổng S = f 0 (1) +
x
2017
4035
2016
A.
.
B.
.
C.
.
2018
2018
2017
!x
1
1−x

Câu 108. [2] Tổng các nghiệm của phương trình 3 = 2 +
9
A. − log2 3.

B. log2 3.
C. − log3 2.
Câu 109. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. [1; 2].
B. (−∞; +∞).
C. [−1; 2).

D. 12 cạnh.
f 0 (2) + · · · + f 0 (2017)
D. 2017.

D. 1 − log2 3.
D. (1; 2).

d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥
Câu 110. Cho hình chóp S .ABC có BAC
(ABC). Thể


√ tích khối chóp S .ABC là

a3 2
a3 3
a3 3
2
.
B. 2a 2.
.
D.

.
C.
A.
12
24
24
Câu 111. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m < .
B. m ≤ .
C. m > .
D. m ≥ .
4
4
4
4
Câu 112. Khối đa diện đều loại {4; 3} có số mặt
A. 8.
B. 12.
cos n + sin n
Câu 113. Tính lim
n2 + 1
A. 0.
B. 1.

C. 6.


D. 10.

C. +∞.

x

D. −∞.
!

!

4
1
2
2016
Câu 114. [3] Cho hàm số f (x) = x
. Tính tổng T = f
+f
+ ··· + f
4 +2
2017
2017
2017
2016
A. T = 1008.
B. T =
.
C. T = 2016.
D. T = 2017.
2017

Câu 115. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
A. − .
B. − 2 .
C. −e.
e
e

D. −

!

1
.
2e

Câu 116. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim+ f (x) = lim− f (x) = +∞.
B. f (x) có giới hạn hữu hạn khi x → a.
x→a

x→a

x→a

x→a

C. lim+ f (x) = lim− f (x) = a.


Câu 117. Tính lim
x→3

A. 6.
2

Z
Câu 118. Cho
A. 0.

1

x2 − 9
x−3

B. 3.

D. lim f (x) = f (a).
x→a

C. −3.

D. +∞.

ln(x + 1)
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
x2
B. −3.
C. 1.
D. 3.

Trang 9/10 Mã đề 1


Câu 119. Phát biểu nào sau đây là sai?
A. lim un = c (Với un = c là hằng số).
1
C. lim √ = 0.
n

B. lim qn = 1 với |q| > 1.
1
D. lim k = 0 với k > 1.
n

Câu 120. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m > 0.
B. m > 1.
C. m > −1.

D. m ≥ 0.

Câu 121. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {5; 3}.
B. {3; 5}.
C. {4; 3}.

D. {3; 4}.

Câu 122. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by =
Giá trị nhỏ nhất của biểu thức P = x + 2y thuộc tập nào dưới

!
"
!
" đây?
5
5
;3 .
D. 2; .
A. [3; 4).
B. (1; 2).
C.
2
2


ab.

Câu 123. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
A. V = S h.
B. V = S h.
C. V = 3S h.
3

1
D. V = S h.
2
8
Câu 124. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x

A. 81.
B. 64.
C. 96.
D. 82.
Câu 125. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 4.
B. 3.
C. 8.
D. 6.
Câu 126. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngồi ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
B. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
C. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
D. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
Câu 127. Phát biểu nào sau đây là sai?
1
A. lim = 0.
n
C. lim un = c (un = c là hằng số).

1
= 0.
nk
D. lim qn = 0 (|q| > 1).

B. lim

Câu 128. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC

A. V = 6.
B. V = 3.
C. V = 4.
D. V = 5.

Câu 129. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã

√ cho là


πa3 3
πa3 6
πa3 3
πa3 3
A. V =
.
B. V =
.
C. V =
.
D. V =
.
2
6
6
3

Câu 130. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh
bên S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng

(S BD) √
bằng


a 38
3a 38
3a 58
3a
A.
.
B.
.
C.
.
D.
.
29
29
29
29
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.


D

2.

D

3.

D

4.

D

6.

D

5. A
7.
9.

C
B

10.

11.
13.


8.
D

B

15. A
17.

B
D

D

14.

D

16.

D

22.

D

29.

C
D


33.

B

30.

B

B

B
B

39.

D

40.

D

42. A

C
D
B

47.

C


36.
38.

43.

D

34.

D

D

44.

B

46.

B

48. A
50.

B

51.

C


52.

53.

C

54. A

55. A

56.

57. A

58. A

59.

C

60.

61.

C

62.

63.


D

28.

37.

49.

C

32.

B

41.

B

26.

27. A

45.

C

24.

B


25.

35.

12.

20. A

21.

31.

B

18.

19. A
23.

C

64.

B

65.

D


66. A

67.

D

68.
1

D
B
D
C
B
D
D


69.

70. A

C

71. A

72.

73. A


74. A

75.

76.

B

77.

C

79.

D

81.

C

80.

C

83.

B

84.


85.

B

86. A

87.
91.

D

78.
82.

C

B
D

88.

D

89.

D

C
B


D

90.

B

92.

B

93. A

94. A

95. A

96.

97. A

98.

C

100.

C

D


99.
101.
103.

C

102.

B

104.

B
D

105.

D

D

106.

107. A

C

108. A

109.


B

110.

111.

B

112.

113. A

D
C

114. A

115.

D

116.

117. A

118.

D
B


119.

B

120.

C

121.

B

122.

C

123. A
125.

124. A
B

126. A

127.

D

128.


C

129.

D

130.

C

2



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×