Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (618)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (151.64 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

1
Câu 1. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 2 < m ≤ 3.
B. 2 ≤ m ≤ 3.
C. 0 ≤ m ≤ 1.
D. 0 < m ≤ 1.
Câu 2. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R \ {0}.
B. D = (0; +∞).

C. D = R.

D. D = R \ {1}.

Câu 3. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng




a 6


A. a 3.
.
B. 2a 6.
C. a 6.
D.
2
Câu 4. [2] Tìm m để giá trị lớn nhất của hàm số y = 2x3 + (m2 √
+ 1)2 x trên [0; 1] bằng 8 √
A. m = ±3.
B. m = ±1.
C. m = ± 3.
D. m = ± 2.
Câu 5. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số mặt của khối chóp bằng 2n+1.
B. Số đỉnh của khối chóp bằng 2n + 1.
C. Số mặt của khối chóp bằng số cạnh của khối chóp.
D. Số cạnh của khối chóp bằng 2n.
1
Câu 6. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. −2 < m < −1.
B. (−∞; −2] ∪ [−1; +∞). C. (−∞; −2) ∪ (−1; +∞). D. −2 ≤ m ≤ −1.
3

Câu 7. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e5 .
B. e2 .
C. e3 .
2


D. e.
2

sin x
Câu 8. [3-c]
+ 2cos x lần lượt là
√ Giá trị nhỏ nhất và√giá trị lớn nhất của hàm số
√ f (x) = 2
A. 2 và 2 2.
B. 2 và 3.
C. 2 2 và 3.
D. 2 và 3.
2
2
2
1 + 2 + ··· + n
Câu 9. [3-1133d] Tính lim
n3
2
1
C. .
D. +∞.
A. 0.
B. .
3
3

Câu 10. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.

B. 6 mặt.
C. 5 mặt.

Câu 11. [1] Biết log6 a = 2 thì log6 a bằng
A. 108.
B. 36.
C. 6.
Câu 12. Khối đa diện đều loại {3; 5} có số cạnh
A. 20.
B. 8.

C. 30.

D. 4 mặt.
D. 4.
D. 12.

Câu 13. Mệnh đề nào sau đây sai?
A. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
B. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
!0
Z
C.
f (x)dx = f (x).
Z
D. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
f (x)dx = F(x) + C.
Trang 1/10 Mã đề 1



n−1
Câu 14. Tính lim 2
n +2
A. 0.
B. 2.

C. 3.

D. 1.

Câu 15. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 x ) = 2 − x bằng
A. 2.
B. 3.
C. 7.
D. 1.
Câu 16. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m > 0.
B. m > 1.
C. m > −1.

D. m ≥ 0.

Câu 17. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
B. V = 3S h.
C. V = S h.
A. V = S h.
2

1

D. V = S h.
3

Câu 18. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. 3.
B. 0.
C. −3.
D. −6.
Câu 19. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 13.
B. 0.
C. Khơng tồn tại.

D. 9.

Câu 20.
bằng 1 là:
√ Thể tích của khối lăng trụ tam giác đều có cạnh √
3
3
3
.
B. .
C.
.
A.
12
4
2



3
D.
.
4

Câu 21. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ
C đến đường thẳng BB0 bằng 2, khoảng

cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2 3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng
3


2 3
A.
.
B. 2.
C. 1.
D. 3.
3
Câu 22. Cho hàm số y = x3 − 2x2 + x + 1. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (1; +∞).
!
1
C. Hàm số nghịch biến trên khoảng ; 1 .
3


!
1
B. Hàm số đồng biến trên khoảng ; 1 .
3

!
1
D. Hàm số nghịch biến trên khoảng −∞; .
3

Câu 23. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 63.
B. 64.
C. 62.
D. Vô số.
Câu 24. Khối đa diện đều loại {5; 3} có số đỉnh
A. 8.
B. 12.

C. 30.

D. 20.

Câu 25. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e2 − 2; m = e−2 + 2.
B. M = e−2 + 1; m = 1.
−2
C. M = e + 2; m = 1.

D. M = e−2 − 2; m = 1.


Câu 26. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã

√ cho là


3
πa 3
πa3 3
πa3 6
πa3 3
A. V =
.
B. V =
.
C. V =
.
D. V =
.
6
3
6
2
Câu 27. Khối lập phương thuộc loại
A. {3; 3}.
B. {3; 4}.
C. {5; 3}.

D. {4; 3}.
Câu 28. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
ln 2
A. 1.
B. 2.
C.
.
2

D.

1
.
2
Trang 2/10 Mã đề 1


x+2
Câu 29. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. 2.
B. 3.
C. Vô số.
D. 1.
1 − xy
Câu 30. [12210d] Xét các số thực dương x, y thỏa mãn log3
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
x + 2y

Pmin của P = x√+ y.



9 11 − 19
9 11 + 19
18 11 − 29
2 11 − 3
A. Pmin =
. B. Pmin =
. C. Pmin =
. D. Pmin =
.
9
9
21
3
Câu 31. [1] Hàm số nào đồng biến trên khoảng (0; +∞)?

B. y = loga x trong đó a = 3 − 2.
A. y = log π4 x.
C. y = log 14 x.
D. y = log √2 x.
Câu 32. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối bát diện đều.
−2x2

Câu 33. [2-c] Giá trị lớn nhất của hàm số y = xe
2

1
B. 3 .
A. √ .
e
2 e


Câu 34. [12215d] Tìm m để phương trình 4 x+
3
A. m ≥ 0.
B. 0 < m ≤ .
4
1 − 2n
Câu 35. [1] Tính lim
bằng?
3n + 1
2
2
A. .
B. − .
3
3

1−x2

Câu 36. Khối đa diện đều loại {4; 3} có số cạnh
A. 30.
B. 12.

C. Khối lập phương.


D. Khối 12 mặt đều.

trên đoạn [1; 2] là
1
C. 3 .
2e

D.



− 3m + 4 = 0 có nghiệm
9
3
C. 0 ≤ m ≤ .
D. 0 ≤ m ≤ .
4
4

− 4.2 x+

C.

1−x2

1
.
3


C. 10.

Câu 37. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 0, 8.
B. 7, 2.
C. 72.
Câu 38. Phát biểu nào sau đây là sai?
A. lim un = c (un = c là hằng số).
1
C. lim k = 0.
n
Câu 39. Tính lim
A. 1.

7n2 − 2n3 + 1
3n3 + 2n2 + 1
B. 0.

1
.
e2

D. 1.

D. 20.
D. −7, 2.

B. lim qn = 0 (|q| > 1).
1
D. lim = 0.

n

2
C. - .
3

D.

7
.
3

Câu 40. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(−4; 8).
B. A(4; 8).
C. A(4; −8).
D. A(−4; −8)(.
Câu 41. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
A. k = .
B. k = .
C. k = .
D. k = .
9
18

15
6
Câu 42. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Khơng có.
B. Có một.
C. Có vơ số.
D. Có hai.
Trang 3/10 Mã đề 1


Câu 43. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể√tích của khối chóp S .ABC theo a


a3 5
a3
a3 15
a3 15
A.
.
B.
.
C.
.
D.
.
25
3
25

5
Câu 44. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có nguyên hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (II) sai.

B. Khơng có câu nào C. Câu (I) sai.
sai.

D. Câu (III) sai.

Câu 45. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 22.
B. y(−2) = 2.
C. y(−2) = −18.
D. y(−2) = 6.
Câu 46. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
D. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.



x=t





Câu 47. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : 
y = −1 và hai mặt phẳng (P), (Q)




z = −t
lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I
thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).
9
9
A. (x + 3)2 + (y + 1)2 + (z + 3)2 = .
B. (x − 3)2 + (y − 1)2 + (z − 3)2 = .
4
4
9
9
2
2
2
2
2
2
C. (x + 3) + (y + 1) + (z − 3) = .
D. (x − 3) + (y + 1) + (z + 3) = .
4
4
Câu 48. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai

x−2 y−3 z+4
x+1 y−4 z−4
đường thẳng d :
=
=
và d0 :
=
=
2
3
−5
3
−2
−1
x y z−1
x−2 y−2 z−3
A.
=
=
.
B. = =
.
2
3
4
1 1
1
x−2 y+2 z−3
x y−2 z−3
C.

=
=
.
D. =
=
.
2
2
2
2
3
−1
Câu 49. [3] Biết rằng giá trị lớn nhất của hàm số y =
số tự nhiên. Tính S = m2 + 2n3
A. S = 32.
B. S = 22.

ln2 x
m
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
x
e

C. S = 135.

D. S = 24.

Câu 50. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 20 mặt.
B. 12 đỉnh, 30 cạnh, 20 mặt.

C. 20 đỉnh, 30 cạnh, 12 mặt.
D. 12 đỉnh, 30 cạnh, 12 mặt.
Câu 51. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
A. − .
B. − .
C. −e.
e
2e

D. −

1
.
e2
Trang 4/10 Mã đề 1


Câu 52. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối lập phương.
B. Khối bát diện đều.
Câu 53. Tính lim
A. +∞.

x→3

Câu 54. Tính lim
x→2


A. 0.

x2 − 9
x−3

B. 6.

x+2
bằng?
x
B. 3.

C. Khối tứ diện đều.

D. Khối 12 mặt đều.

C. −3.

D. 3.

C. 1.

D. 2.

Câu 55. Hàm số nào sau đây khơng có cực trị
x−2
1
.
D. y = x + .
2x + 1

x
0
Câu 56. [2] Cho hàm số y = ln(2x + 1). Tìm m để y (e) = 2m + 1
1 + 2e
1 − 2e
1 − 2e
1 + 2e
.
B. m =
.
C. m =
.
D. m =
.
A. m =
4 − 2e
4e + 2
4 − 2e
4e + 2
Câu 57. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 120 cm2 .
B. 1200 cm2 .
C. 160 cm2 .
D. 160 cm2 .
x2
Câu 58. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1

A. M = , m = 0.
B. M = e, m = 1.
C. M = e, m = .
D. M = e, m = 0.
e
e
Câu 59. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
A. y = x4 − 2x + 1.

B. y = x3 − 3x.

C. y =

(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (I) và (III).

B. (II) và (III).

C. (I) và (II).

D. Cả ba mệnh đề.

Câu 60. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim+ f (x) = lim− f (x) = a.
B. lim+ f (x) = lim− f (x) = +∞.
x→a


x→a

C. f (x) có giới hạn hữu hạn khi x → a.

x→a

x→a

D. lim f (x) = f (a).
x→a

1
Câu 61. [3-12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 < m ≤ 1.
B. 0 ≤ m ≤ 1.
C. 2 ≤ m ≤ 3.
D. 2 < m ≤ 3.
x+1
Câu 62. Tính lim
bằng
x→−∞ 6x − 2
1
1
1
A. .
B. .
C. 1.
D. .

6
3
2
2
Câu 63. [3-1224d] Tìm tham số thực m để phương trình log3 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m ≤ .
B. m < .
C. m ≥ .
D. m > .
4
4
4
4
Câu 64. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 8 năm.
B. 7 năm.
C. 9 năm.
D. 10 năm.
Trang 5/10 Mã đề 1


Câu 65. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √

tích khối chóp S .ABC là √

3
3
a 6
a3 6
a3 6
a 3
.
B.
.
C.
.
D.
.
A.
24
48
24
8
!
3n + 2
2
Câu 66. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 4.
B. 2.
C. 3.

D. 5.
Câu 67. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
A. T = 4 + .
B. T = e + 3.
C. T = e + .
D. T = e + 1.
e
e
Câu 68. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối
√ chóp S .ABCD là

3
3

a 6
a3 15
a 5
3
.
B.
.
C. a 6.
D.
.
A.
3

3
3
Câu 69. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≤ 3.
B. m > 3.
C. m < 3.
D. m ≥ 3.
Câu 70. Hàm số f có nguyên hàm trên K nếu
A. f (x) liên tục trên K.
C. f (x) xác định trên K.

B. f (x) có giá trị lớn nhất trên K.
D. f (x) có giá trị nhỏ nhất trên K.

Câu 71. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 84cm3 .
B. 48cm3 .
C. 64cm3 .
D. 91cm3 .
Câu 72. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
1
A. f 0 (0) =
.
B. f 0 (0) = ln 10.
C. f 0 (0) = 1.
D. f 0 (0) = 10.
ln 10
9x

Câu 73. [2-c] Cho hàm số f (x) = x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9 +3
1
A. 1.
B. −1.
C. 2.
D. .
2
Câu 74. Khối đa diện đều loại {3; 4} có số đỉnh
A. 8.
B. 6.
C. 10.
D. 4.
1
Câu 75. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 1.
B. 4.
C. 2.
D. 3.
Câu 76. Khối đa diện đều loại {3; 3} có số đỉnh
A. 5.
B. 4.

C. 3.

D. 2.


Câu 77. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vuông góc
với (S BC).

√ Thể tích khối chóp S 3.ABC
√ là

3
a 3
a 3
a3 3
a3 2
A.
.
B.
.
C.
.
D.
.
4
12
6
12
Câu 78. Khối đa diện đều loại {3; 4} có số mặt
A. 6.
B. 8.
C. 10.
D. 12.
Trang 6/10 Mã đề 1



Câu 79. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. 2n2 lần.
B. n3 lần.
C. n3 lần.
D. 2n3 lần.

Câu 80. √
Thể tích của khối lập phương có cạnh bằng a 2
3


2a 2
.
B. 2a3 2.
C. V = 2a3 .
D. V = a3 2.
A.
3

Câu 81. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.
√ tích khối chóp S .ABC3 √


3
a 2
a 6

a3 6
a3 6
A.
.
B.
.
C.
.
D.
.
6
6
18
36
x−1
Câu 82. [3-1214d] Cho hàm số y =
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác
B thuộc (C), đoạn thẳng √
AB có độ dài bằng
√ đều ABI có hai đỉnh A, √
B. 2 3.
C. 6.
D. 2.
A. 2 2.
Câu 83. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. −1.
B. 1.
C. 2.


D. 6.

d = 120◦ .
Câu 84. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
.
A. 2a.
B. 3a.
C. 4a.
D.
2
Câu 85. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 3.
B. 2.
C. 1.
D. Vô nghiệm.
Câu 86.
√ [4-1245d] Trong tất cả√các số phức z thỏa mãn hệ thức |z − 1 + 3i| = 3. Tìm min |z − 1 − i|.
A. 2.
B. 10.
C. 1.
D. 2.
mx − 4
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
Câu 87. Tìm m để hàm số y =
x+m
A. 34.
B. 26.

C. 67.
D. 45.
Câu 88. [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc là mơn Tốn. Mơn thi này dưới hình thức
trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng. Mỗi câu trả lời đúng
được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm. Bạn An học kém mơn Tốn nên quyết định chọn
ngẫu nhiên hết 50 câu trả lời. Xác suất để bạn An đạt 4 điểm mơn Tốn là
40
20
20
10
C50
.(3)10
C50
.(3)30
C50
.(3)20
C50
.(3)40
A.
.
B.
.
C.
.
D.
.
450
450
450
450

Câu 89. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Trục thực.
B. Đường phân giác góc phần tư thứ nhất.
C. Trục ảo.
D. Hai đường phân giác y = x và y = −x của các góc tọa độ.
Câu 90. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 27 lần.
B. Tăng gấp 18 lần.
C. Tăng gấp 9 lần.
D. Tăng gấp 3 lần.
Câu 91. Dãy số nào sau đây có giới hạn là 0?
n2 − 2
n2 − 3n
1 − 2n
n2 + n + 1
A. un =
.
B.
u
=
.
C.
u
=
.
D.
u
=
.

n
n
n
5n − 3n2
n2
5n + n2
(n + 1)2
2mx + 1
1
Câu 92. Giá trị lớn nhất của hàm số y =
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
A. −5.
B. −2.
C. 0.
D. 1.
Trang 7/10 Mã đề 1


Câu 93.
f (x), g(x) liên
Z Cho hàm số Z
Z tục trên R. Trong cácZmệnh đề sau, mệnh
Z đề nào sai?
A.
f (x)g(x)dx =
f (x)dx g(x)dx.
B.
k f (x)dx = f

f (x)dx, k ∈ R, k , 0.
Z
Z
Z
Z
Z
Z
C.
( f (x) − g(x))dx =
f (x)dx − g(x)dx.
D.
( f (x) + g(x))dx =
f (x)dx + g(x)dx.
Câu 94.

[3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23
√ i
h
3

q
x+ log23 x + 1+4m−1 =

0 có ít nhất một nghiệm thuộc đoạn 1; 3
A. m ∈ [0; 1].
B. m ∈ [−1; 0].

C. m ∈ [0; 4].
D. m ∈ [0; 2].
p

ln x
1
Câu 95. Gọi F(x) là một nguyên hàm của hàm y =
ln2 x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
8
8
1
1
B. .
C. .
D. .
A. .
3
3
9
9
0 0 0 0
Câu 96. [2] Cho hình hộp chữ nhật ABCD.A B C D có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
1
ab
ab
1
.
B. √
.
C. 2
.

A. √
.
D.

a + b2
a2 + b2
2 a2 + b2
a2 + b2
x+3
Câu 97. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng
x−m
(0; +∞)?
A. 3.
B. 1.
C. Vô số.
D. 2.
! x3 −3mx2 +m
1
Câu 98. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
nghịch biến trên
π
khoảng (−∞; +∞)
A. m = 0.
B. m ∈ R.
C. m , 0.
D. m ∈ (0; +∞).
Câu 99. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai
quyển sách cùng một môn nằm cạnh nhau là
9

1
2
1
B.
.
C.
.
D. .
A. .
5
10
10
5
0
Câu 100. Cho hai đường thẳng phân biệt d và d đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có một hoặc hai.
B. Khơng có.
C. Có một.
D. Có hai.
[ = 60◦ , S O
Câu 101. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a.
√ Khoảng cách từ O đến (S BC) bằng


a 57
a 57
2a 57

A.
.
B.
.
C. a 57.
D.
.
17
19
19
Câu 102. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 10 cạnh, 6 mặt.
B. 8 đỉnh, 12 cạnh, 8 mặt.
C. 6 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 6 mặt.
Câu 103. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
x+1 y−5
z
d:
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng
2
2
−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (2; 2; −1).
B. ~u = (2; 1; 6).
C. ~u = (1; 0; 2).
D. ~u = (3; 4; −4).

Câu 104. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {3; 5}.
B. {4; 3}.
C. {5; 3}.

D. {3; 4}.

Câu 105. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 2.
B. 1.
C. 3.

D. 0.
Trang 8/10 Mã đề 1


Câu 106. Nếu không sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Một tứ diện đều và bốn hình chóp tam giác đều.
B. Bốn tứ diện đều và một hình chóp tam giác đều.
C. Năm tứ diện đều.
D. Năm hình chóp tam giác đều, khơng có tứ diện đều.
Câu 107. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 9 mặt.
C. 8 mặt.

D. 7 mặt.

Câu 108. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +

log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 6).
B. (2; 4; 3).
C. (2; 4; 4).
D. (1; 3; 2).
Câu 109. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng
cách giữa

√ hai đường thẳng BD và√S C bằng

a 6
a 6
a 6
.
B.
.
C.
.
D. a 6.
A.
2
3
6
2x + 1
Câu 110. Tính giới hạn lim
x→+∞ x + 1
1
A. 2.
B. −1.
C. 1.

D. .
2
Câu 111. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt
√ S .ABCD là
√ phẳng vng góc với (ABCD). Thể tích khối chóp
3
3
3

a 3
a 3
a 2
.
B.
.
C. a3 3.
.
A.
D.
2
4
2
Câu 112. Khối đa diện đều loại {5; 3} có số cạnh
A. 12.
B. 8.
C. 20.
D. 30.
Câu 113. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Bốn mặt.

B. Năm mặt.
C. Hai mặt.
D. Ba mặt.
log(mx)
Câu 114. [3-1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0 ∨ m = 4.
B. m < 0.
C. m ≤ 0.
D. m < 0 ∨ m > 4.
Câu 115. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
9
5
13
23
A. −
.
B.
.
C. − .
D.
.
100
25
16
100
1
Câu 116. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy

3
nhất?
A. 2.
B. 1.
C. 4.
D. 3.
Câu 117. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (−∞; 6, 5).
B. (4; +∞).
C. (4; 6, 5].
1 − n2
Câu 118. [1] Tính lim 2
bằng?
2n + 1
1
1
A. .
B. 0.
C. .
3
2

D. [6, 5; +∞).

1
D. − .
2


Câu 119. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể

tích của khối chóp S .ABCD là √


a3
a3 3
a3 3
3
A.
.
B.
.
C. a 3.
D.
.
4
12
3
Trang 9/10 Mã đề 1


Câu 120. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 0.
B. 3.
C. 1.

D. 2.

Câu 121. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
1079

1728
1637
23
A.
.
B.
.
C.
.
D.
.
4913
4913
4913
68
Câu 122. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = −1.
B. m = −2.
C. m = 0.
D. m = −3.
Câu 123. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với
đáy một góc 45◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD là

10a3 3
3
3
3
A. 10a .
B. 20a .
C. 40a .

D.
.
3


4n2 + 1 − n + 2
bằng
Câu 124. Tính lim
2n − 3
3
A. 2.
B. .
C. 1.
D. +∞.
2


Câu 125. √Tìm giá trị lớn nhất của hàm số y = x + 3 + √6 − x

A. 2 + 3.
B. 3.
C. 3 2.
D. 2 3.
Câu 126. Khối đa diện đều loại {3; 5} có số mặt
A. 30.
B. 20.

C. 8.

D. 12.


x2

Câu 127. [2] Tổng các nghiệm của phương trình 3 x−1 .2 = 8.4 x−2 là
A. 1 − log3 2.
B. 1 − log2 3.
C. 3 − log2 3.
D. 2 − log2 3.
!
5 − 12x
= 2 có bao nhiêu nghiệm thực?
Câu 128. [2] Phương trình log x 4 log2
12x − 8
A. 3.
B. 2.
C. Vô nghiệm.
D. 1.
Câu 129.
√cạnh bằng a


√ Thể tích của tứ diện đều
a3 2
a3 2
a3 2
a3 2
.
B.
.
C.

.
D.
.
A.
6
12
2
4
Câu 130. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 8 mặt.
C. 4 đỉnh, 12 cạnh, 4 mặt.
D. 8 đỉnh, 12 cạnh, 6 mặt.
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A
3.

C
D

5.
7. A
9.


C

2.
4.

D

6.

D
C

8.
10.

B

11.

D

D
C

12.

13. A

14. A


15. A

16.

C

18.

C

17.

D

19.

B

20.

21.

B

22.

23.

D

C

24.

C

D

25.

D

26.

B

27.

D

28.

B

30.

29. A
31.

D


32.

33.

D

34.

35.

B

37.

D

39.

C

42.

D

D
C
D

36.


B

38.

B

40.

B

43.

C
C

44.

B

45.

46.

B

47.

48.


B

49. A

50.

B

51.

B

53.

B

52.

C

54.

D

55.

56.

D


57.

58.

D

59.

60.

D

61.

62. A

C
D
C
D

63. A
65.

C

64.
66. A
68.


D

67.
69.

B
1

C
B
D


70. A

71.

C

72.

B

73. A

74.

B

75. A


76.

B

77.

B

78.

B

79.

B

80.

B

81.

82.

B

83.
D


84.

D
C

85.

86.

C

87. A

88.

C

89.

90. A

D
C

91.

92.
94.

C


93. A

C

95.

B

C

96. A

97. A

98. A

99.

B

100. A

101.

B

D

102.


103.

104. A

105.

106. A

107.

108. A

109.

110. A

111. A

112.

D
B
D

D
C

119.


D

121.
B

124.
128.

C

117.

120. A

126.

B

115. A

118.
122.

D

113.

114. A
116.


C

123.
C

C
B

125.

C

127.

B
D

129.

130. A

2

D
B



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×