Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (816)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (152.88 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 11 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 − 2; m = 1.
B. M = e2 − 2; m = e−2 + 2.
C. M = e−2 + 2; m = 1.
D. M = e−2 + 1; m = 1.
Câu 2. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
ln 2
1
A.
.
B. 2.
C. .
2
2

D. 1.

Câu 3. Khẳng định nào sau đây đúng?
A. Hình lăng trụ tứ giác đều là hình lập phương.
B. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
C. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
D. Hình lăng trụ đứng là hình lăng trụ đều.


Câu 4. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 2.

B. 3.

C. 4.

1
1
1
+
+ ··· +
1 1+2
1 + 2 + ··· + n
5
B. .
C. 2.
2

1
3|x−1|

= 3m − 2 có nghiệm duy

D. 1.
!

Câu 5. [3-1131d] Tính lim
A.


3
.
2

D. +∞.

Câu 6. [2] Ơng A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ơng muốn hồn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng khơng đổi trong thời gian ơng A hồn nợ.
100.1, 03
(1, 01)3
A. m =
triệu.
B. m =
triệu.
3
(1, 01)3 − 1
120.(1, 12)3
100.(1, 01)3
C. m =
triệu.
D.
m
=
triệu.
(1, 12)3 − 1
3

Câu 7. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối bát diện đều.

C. Khối lập phương.

D. Khối tứ diện đều.

Câu 8. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối tứ diện.
B. Khối bát diện đều.
C. Khối lập phương.
D. Khối lăng trụ tam giác.
Câu 9. [12221d] Tính tổng tất cả các nghiệm của phương trình x + 1 = 2 log2 (2 x + 3) − log2 (2020 − 21−x )
A. log2 2020.
B. log2 13.
C. 2020.
D. 13.
Câu 10.! Dãy số nào sau đây có giới
!n hạn là 0?
n
5
4
A.
.
B.
.
3
e


!n
1
C.
.
3

!n
5
D. − .
3

2

Câu 11. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 1 − log2 3.
B. 3 − log2 3.
C. 1 − log3 2.

D. 2 − log2 3.
Trang 1/11 Mã đề 1


d = 120◦ .
Câu 12. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
.
C. 4a.
D. 2a.
A. 3a.

B.
2
Câu 13. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).

Hai mặt bên
√ (S BC) và (S AD) cùng
√hợp với đáy một góc 303 .√Thể tích khối chóp S .ABCD
√ là
3
3
4a 3
8a 3
8a 3
a3 3
A.
.
B.
.
C.
.
D.
.
9
3
9
9
Câu 14. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 4.
B. 0, 5.

C. 0, 3.
D. 0, 2.
Câu 15. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối tứ diện đều.

C. Khối 20 mặt đều.

D. Khối bát diện đều.

2

1−n
bằng?
Câu 16. [1] Tính lim 2
2n + 1
1
1
1
A. .
B. .
C. − .
D. 0.
2
3
2
Câu 17. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 8 lần.
B. Tăng gấp 4 lần.

C. Tăng gấp 6 lần.
D. Tăng gấp đơi.
log(mx)
= 2 có nghiệm thực duy nhất
Câu 18. [1226d] Tìm tham số thực m để phương trình
log(x + 1)
A. m < 0 ∨ m = 4.
B. m < 0.
C. m < 0 ∨ m > 4.
D. m ≤ 0.
Câu 19. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 8 mặt.
B. 9 mặt.
C. 6 mặt.

D. 7 mặt.

Câu 20. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai
quyển sách cùng một mơn nằm cạnh nhau là
1
2
1
9
.
B. .
C. .
D.
.
A.
10

5
5
10
Câu 21. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Hai đường phân giác y = x và y = −x của các góc tọa độ.
B. Trục ảo.
C. Trục thực.
D. Đường phân giác góc phần tư thứ nhất.
Câu 22. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
1
ab
ab
1
.
D. √
A. √
.
B. √
.
C. 2
.
2
a +b
a2 + b2
2 a2 + b2
a2 + b2
Câu 23. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. [1; 2].
B. (−∞; +∞).

C. [−1; 2).
D. (1; 2).
Câu 24. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M,
√ N, P bằng



14 3
20 3
A.
.
B. 6 3.
C. 8 3.
D.
.
3
3
Câu 25. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. 3 nghiệm.
B. 1 nghiệm.
C. Vô nghiệm.
D. 2 nghiệm.
Trang 2/11 Mã đề 1


1
Câu 26. Hàm số y = x + có giá trị cực đại là
x

A. 2.
B. −2.

C. 1.

D. −1.

Câu 27. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng



3a
3a 58
a 38
3a 38
A.
.
B.
.
C.
.
D.
.
29
29
29
29



Câu 28.
Tìm
giá
trị
lớn
nhất
của
hàm
số
y
=
x
+
3
+
6√− x


A. 3 2.
B. 3.
C. 2 3.
D. 2 + 3.
Câu 29. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của

A. Tăng lên n lần.
B. Không thay đổi.
C. Giảm đi n lần.
D. Tăng lên (n − 1) lần.
Câu 30. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng

3b + 3ac
3b + 3ac
3b + 2ac
3b + 2ac
A.
.
B.
.
C.
.
D.
.
c+2
c+1
c+2
c+3
Câu 31. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Bát diện đều.
B. Thập nhị diện đều. C. Tứ diện đều.
D. Nhị thập diện đều.


Câu 32. Phần thực và √
phần ảo của số phức
√ z = 2 − 1 − 3i lần lượt √l

A. Phần thực là 1√− 2, phần ảo là −√ 3.
B. Phần thực là √2, phần ảo là 1 − √
3.
C. Phần thực là 2 − 1, phần ảo là 3.

D. Phần thực là 2 − 1, phần ảo là − 3.
Câu 33. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {5; 2}.
B. {2}.
C. {3}.
D. {5}.
Câu 34. Khối đa diện đều loại {3; 3} có số mặt
A. 4.
B. 2.

C. 3.

Câu 35. [1] Tập
! xác định của hàm số y! = log3 (2x + 1) là
!
1
1
1
A. − ; +∞ .
; +∞ .
B. −∞; .
C.
2
2
2

D. 5.
!
1
D. −∞; − .

2

Câu 36. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m < 0.
B. m = 0.
C. m , 0.
D. m > 0.
√3
Câu 37. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga a bằng
1
1
A. .
B. − .
C. −3.
D. 3.
3
3
Câu 38. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối √
chóp S .ABMN là



3
2a 3
5a3 3
a3 3
4a3 3
A.

.
B.
.
C.
.
D.
.
3
3
2
3
Câu 39. Cho hình chóp S .ABCD có √
đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết S H ⊥ (ABCD), S A = a 5. Thể tích khối chóp √
S .ABCD là

3
3
3
4a
2a
4a 3
2a3 3
A.
.
B.
.
C.
.
D.

.
3
3
3
3
Câu 40. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 12 mặt.
B. 20 đỉnh, 30 cạnh, 20 mặt.
C. 12 đỉnh, 30 cạnh, 20 mặt.
D. 20 đỉnh, 30 cạnh, 12 mặt.
Trang 3/11 Mã đề 1


3a
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng

a
a
a 2
2a
.
B. .
C. .
D.
.
A.
3

3
4
3
Câu 42. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. −1 + sin x cos x.
B. −1 + 2 sin 2x.
C. 1 − sin 2x.
D. 1 + 2 sin 2x.
Câu 41. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =

Câu 43. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất khơng thay đổi?
A. 17 tháng.
B. 15 tháng.
C. 18 tháng.
D. 16 tháng.
Câu 44. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 2.
B. 1.
C. 3.
D. Vô nghiệm.
Câu 45. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 1.

B. 2.


C. 3.

D. 0.

Câu 46. [1] Cho a > 0, a , 1. Giá trị của biểu thức log a1 a2 bằng
1
1
A. .
B. 2.
C. − .
2
2

D. −2.

Câu 47. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by =
Giá trị
" nhỏ! nhất của biểu thức P" = x!+ 2y thuộc tập nào dưới đây?
5
5
B.
;3 .
C. [3; 4).
D. (1; 2).
A. 2; .
2
2

x2 + 3x + 5

Câu 48. Tính giới hạn lim
x→−∞
4x − 1
1
1
A. 0.
B. .
C. 1.
D. − .
4
4
2


ab.

2

sin x
Câu 49. [3-c] Giá trị nhỏ nhất √
và giá trị lớn nhất của hàm số f (x)
+ 2cos x lần
√ =2
√ lượt là
C. 2 và 2 2.
D. 2 2 và 3.
A. 2 và 3.
B. 2 và 3.

Câu 50. Khối chóp ngũ giác có số cạnh là

A. 12 cạnh.
B. 9 cạnh.

C. 11 cạnh.
D. 10 cạnh.
p
ln x
1
Câu 51. Gọi F(x) là một nguyên hàm của hàm y =
ln2 x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
1
1
8
8
A. .
B. .
C. .
D. .
3
9
3
9
x−2 x−1
x
x+1
Câu 52. [4-1212d] Cho hai hàm số y =
+
+

+
và y = |x + 1| − x − m (m là tham
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−3; +∞).
B. [−3; +∞).
C. (−∞; −3].
D. (−∞; −3).
Trang 4/11 Mã đề 1


!
3n + 2
2
Câu 53. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 3.
B. 2.
C. 5.
D. 4.
Câu 54. Trong các khẳng định sau, khẳng định nào sai?
A. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
B. Z
F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
u0 (x)

dx = log |u(x)| + C.
C.
u(x)
D. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
Câu 55. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 3 đỉnh, 3 cạnh, 3 mặt. B. 6 đỉnh, 6 cạnh, 4 mặt. C. 4 đỉnh, 8 cạnh, 4 mặt. D. 4 đỉnh, 6 cạnh, 4 mặt.
Câu 56. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (0; 2).
B. (2; +∞).
C. (−∞; 1).

D. R.

Câu 57. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng

√ góc với đáy, S C = a 3. Thể tích khối chóp S 3.ABCD là
3
3
a
a
3
a 3
.
B. a3 .
C.
.
D.

.
A.
3
3
9

Câu 58. [2] Phương trình log4 (x + 1)2 + 2 = log √2 4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
A. Vơ nghiệm.
B. 3 nghiệm.
C. 2 nghiệm.
D. 1 nghiệm.
x−1 y z+1
Câu 59. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình
= =

2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. 2x + y − z = 0.
B. 2x − y + 2z − 1 = 0.
C. 10x − 7y + 13z + 3 = 0.
D. −x + 6y + 4z + 5 = 0.
x+1
bằng
Câu 60. Tính lim
x→+∞ 4x + 3
1
1

A. .
B. .
C. 3.
D. 1.
3
4
Câu 61. [4-1246d] Trong tất cả√các số phức z thỏa mãn |z√− i| = 1. Tìm giá trị lớn nhất của |z|
A. 2.
B. 3.
C. 5.
D. 1.
log2 240 log2 15
Câu 62. [1-c] Giá trị biểu thức

+ log2 1 bằng
log3,75 2 log60 2
A. 1.
B. 4.
C. −8.
D. 3.
Câu 63.√Biểu thức nào sau đây khơng có nghĩa
A. (− 2)0 .
B. (−1)−1 .

C.


−1.

−3


Câu 64. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Bốn cạnh.
B. Ba cạnh.
C. Hai cạnh.

D. 0−1 .
D. Năm cạnh.

Câu 65. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|




12 17
A. 5.
B. 34.
C. 68.
D.
.
17
Câu 66. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1
1
A. .
B. 4.
C. .
D. .

4
2
8
Trang 5/11 Mã đề 1


Câu 67. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
D. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.




Câu 68. [12215d] Tìm m để phương trình 4 x+ 1−x − 4.2 x+ 1−x − 3m + 4 = 0 có nghiệm
3
3
9
C. 0 < m ≤ .
D. 0 ≤ m ≤ .
A. m ≥ 0.
B. 0 ≤ m ≤ .
4
4
4
3
2
Câu 69. Cho hàm số y = x − 3x − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (−∞; 0).

B. Hàm số đồng biến trên khoảng (1; 2).
C. Hàm số nghịch biến trên khoảng (0; 1).
D. Hàm số nghịch biến trên khoảng (1; +∞).
2

2

Câu 70. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {3; 4}.
B. {4; 3}.
C. {3; 3}.
D. {5; 3}.
1
Câu 71. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
0
y
A. xy = −e − 1.
B. xy = e − 1.
C. xy0 = −ey + 1.
D. xy0 = ey + 1.
mx − 4
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
Câu 72. Tìm m để hàm số y =
x+m
A. 45.
B. 34.

C. 26.
D. 67.
d = 30◦ , biết S BC là tam giác đều
Câu 73. [3] Cho hình chóp S .ABC có đáy là tam giác vng tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
A.
.
B.
.
C.
.
D.
.
26
9
16
13
Câu 74. Khối đa diện đều loại {3; 5} có số đỉnh
A. 8.
B. 30.
C. 12.
D. 20.
Câu 75. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)

A. Không tồn tại.
B. 0.
C. 9.

D. 13.

Câu 76. Cho hàm số y = x + 3x . Mệnh đề nào sau đây là đúng?
A. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
B. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
C. Hàm số nghịch biến trên khoảng (−2; 1).
D. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
3

2

Câu 77. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 4 mặt.
C. 3 mặt.
D. 6 mặt.

Câu 78. [1] Biết log6 a = 2 thì log6 a bằng
A. 6.
B. 36.
C. 4.
D. 108.
Câu 79. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−∞; −1) và (0; +∞). B. (−1; 0).
C. (0; 1).
D. (−∞; 0) và (1; +∞).

Câu 80. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là −1, phần ảo là −4.
B. Phần thực là 4, phần ảo là −1.
C. Phần thực là 4, phần ảo là 1.
D. Phần thực là −1, phần ảo là 4.
Câu 81. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m ≥ 0.
B. m > 1.
C. m > −1.
x2 +x−2

Câu 82. [1] Tập xác định của hàm số y = 4
A. D = (−2; 1).
B. D = R \ {1; 2}.

D. m > 0.


C. D = R.

D. D = [2; 1].
Trang 6/11 Mã đề 1


Câu 83. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. −3 ≤ m ≤ 3.
B. −2 ≤ m ≤ 2.
C. m ≤ 3.
D. m ≥ 3.
Câu 84. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0

là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 24.
B. 3, 55.
C. 15, 36.
D. 20.
x−2
Câu 85. Tính lim
x→+∞ x + 3
2
A. 1.
B. − .
C. −3.
D. 2.
3
Câu 86. Khối đa diện đều loại {4; 3} có số cạnh
A. 30.
B. 20.
C. 12.
D. 10.
Câu 87. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 12 mặt.
B. 20 đỉnh, 30 cạnh, 20 mặt.
C. 20 đỉnh, 30 cạnh, 12 mặt.
D. 12 đỉnh, 30 cạnh, 20 mặt.
Câu 88. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối chóp S .ABCD là




a3 6
a3 5
a3 15
3
A.
.
B. a 6.
.
D.
.
C.
3
3
3
Câu 89. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể tích của khối chóp S .ABC√ theo a


a3
a3 5
a3 15
a3 15
A.
.
B.
.
C.
.
D.
.

3
25
5
25
Câu 90. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n3 lần.
B. n lần.
C. n2 lần.
D. 3n3 lần.
Câu 91. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Khơng có.
B. Có vơ số.
C. Có một.
D. Có hai.
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
B. xy = e + 1.
C. xy0 = −ey + 1.
D. xy0 = ey − 1.

Câu 92. [3-12217d] Cho hàm số y = ln
A. xy0 = −ey − 1.

2n2 − 1
Câu 93. Tính lim 6
3n + n4

2
A. .
B. 0.
3

C. 2.

D. 1.

Câu 94. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 4.
B. V = 6.
C. V = 5.
D. V = 3.
Câu 95. Phát biểu nào sau đây là sai?
A. lim un = c (Với un = c là hằng số).
C. lim qn = 1 với |q| > 1.
Câu 96. Hàm số f có nguyên hàm trên K nếu
A. f (x) xác định trên K.
C. f (x) có giá trị nhỏ nhất trên K.

1
B. lim √ = 0.
n
1
D. lim k = 0 với k > 1.
n
B. f (x) có giá trị lớn nhất trên K.
D. f (x) liên tục trên K.

Trang 7/11 Mã đề 1


Câu 97. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Một mặt.
B. Hai mặt.
C. Bốn mặt.

D. Ba mặt.

Câu 98. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 9 lần.
B. Tăng gấp 3 lần.
C. Tăng gấp 18 lần.
D. Tăng gấp 27 lần.
Câu 99. Hàm số y =
A. x = 2.

x2 − 3x + 3
đạt cực đại tại
x−2
B. x = 3.

C. x = 1.

D. x = 0.

Câu 100. Trong các khẳng định sau, khẳng định nào sai?
A. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.


B. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
C. Cả ba đáp án trên.
D. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
Câu 101. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Một hình chóp tam giác và một hình chóp tứ giác.
B. Hai hình chóp tam giác.
C. Hai hình chóp tứ giác.
D. Một hình chóp tứ giác và một hình chóp ngũ giác.
Câu 102. √
Tính mơ đun của số phức √
z biết (1 + 2i)z2 = 3 + 4i.
4
B. |z| = 5.
C. |z| = 5.
A. |z| = 5.


D. |z| = 2 5.

Câu 103. [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc là mơn Tốn. Mơn thi này dưới hình thức
trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng. Mỗi câu trả lời đúng
được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm. Bạn An học kém mơn Tốn nên quyết định chọn
ngẫu nhiên hết 50 câu trả lời. Xác suất để bạn An đạt 4 điểm mơn Tốn là
C 40 .(3)10
C 20 .(3)20
C 20 .(3)30
C 10 .(3)40
B. 50 50 .

C. 50 50 .
D. 50 50 .
A. 50 50 .
4
4
4
4
2
Câu 104. Giá trị của lim (3x − 2x + 1)
x→1
A. 1.
B. 2.
C. +∞.
D. 3.
Câu 105. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất không đổi và người đó khơng rút tiền ra?
A. 10 năm.
B. 11 năm.
C. 13 năm.
D. 12 năm.
Câu 106. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 2.

B. 4.


C. 3.

D. 1.

Câu 107. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
.
A. 18.
B. 27.
C. 12.
D.
2
Trang 8/11 Mã đề 1


Câu 108. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 10 cạnh, 6 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 6 mặt.
Câu 109. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng

1
A. 25.
B. 5.
C. .
5



D. 5.

q
Câu 110. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23 x + log23 x + 1 + 4m −
√ i
h
1 = 0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [−1; 0].
B. m ∈ [0; 1].
C. m ∈ [0; 2].
D. m ∈ [0; 4].
Câu 111. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD
√ = a. Khoảng cách từ A đến mặt phẳng (BCD) bằng



a 2
a 2
A.
.
B. 2a 2.
C.
.
D. a 2.
2
4
Câu 112.

Trong các khẳng định sau, khẳng định nào sai?Z
Z
dx = x + C, C là hằng số.

A.
Z
C.

xα dx =

xα+1
+ C, C là hằng số.
α+1

1
dx = ln |x| + C, C là hằng số.
Z x
D.
0dx = C, C là hằng số.
B.

Câu 113. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim
A. 0.

B. −∞.

C. +∞.

un
bằng

vn
D. 1.

Câu 114. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 3.
B. 2.
C. 1.

D. 0.

Câu 115. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Cả hai đều sai.
B. Cả hai đều đúng.

C. Chỉ có (I) đúng.

D. Chỉ có (II) đúng.

Câu 116. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S√B bằng
a 3
a
a
A.
.
B. a.
C. .

D. .
2
3
2
 π π
3
Câu 117. Cho hàm số y = 3 sin x − 4 sin x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. 3.
B. −1.
C. 7.
D. 1.
Câu 118. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của
P = xy + x + 2y + 17
A. −9.
B. −12.
C. −5.
D. −15.
Câu 119. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (2; 2).
B. (−1; −7).
C. (1; −3).

D. (0; −2).

Câu 120. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối bát diện đều. B. Khối 20 mặt đều.

D. Khối tứ diện đều.


C. Khối 12 mặt đều.

Trang 9/11 Mã đề 1


tan x + m
Câu 121. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1
 π
0; .
4
A. (−∞; −1) ∪ (1; +∞). B. [0; +∞).
C. (1; +∞).
D. (−∞; 0] ∪ (1; +∞).
Câu 122. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 2.
B. Vô nghiệm.
C. 3.
D. 1.
x
9
Câu 123. [2-c] Cho hàm số f (x) = x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9 +3
1
A. −1.
B. 1.
C. .
D. 2.

2
Câu 124. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
C. T = e + 1.
D. T = e + .
A. T = e + 3.
B. T = 4 + .
e
e
0 0 0
Câu 125. [3-1122h] Cho hình lăng trụ ABC.A B C có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
BC là
. Khi đó thể tích khối lăng trụ là
4




a3 3
a3 3
a3 3
a3 3
A.
.

B.
.
C.
.
D.
.
36
6
12
24
Câu 126. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. 4 − 2 ln 2.
B. e.
C. −2 + 2 ln 2.
D. 1.
Câu 127. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai ngun hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (I) sai.

B. Câu (II) sai.

D. Khơng có câu nào
sai.
π
Câu 128. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3


trị của biểu thức T = a + b 3.


A. T = 4.
B. T = 2.
C. T = 2 3.
D. T = 3 3 + 1.
Câu 129. [1] Giá trị của biểu thức 9log3 12 bằng
A. 2.
B. 4.

C. Câu (III) sai.

C. 24.

Câu 130. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (4; +∞).
B. (4; 6, 5].
C. [6, 5; +∞).

D. 144.
D. (−∞; 6, 5).

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/11 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ

Mã đề thi 1
1. A

2.

3.

C

4.

5.

C

6.

7.
9.

D

D
B

8. A

B

C


10.

11.

D

13.

B

12.
14.

C

15. A

16.

C

17. A

18. A

19.

C


B

20. A

B

22.

21. A
23.

B

25.

D

24.

B

26.

B

27.

C

28. A


29.

C

30. A

31.

D

32.

B

33.

D

D

34. A

35. A

36.

C

37. A


38.

C

39. A

40.

41. A

42.

B

44.

B

43.

D

D

45.

B

46.


D

47.

B

48.

D
D

49.

D

50.

51.

D

52.

C

53.

D


54.

C

55.

D

56. A

57.

C

58.

59.

C

60.

61. A

C
B

62.

63.


D

64.

65.

D

66. A

67.

D

68.
1

C
B
D


71.

B

72.
D


73.
75.

B
C
D

76.
C

78.

B

81.

D

74.

B

77.
79.

70.

C

69.


80.

C
B

82.

C

83. A

84.

C

85. A

86.

C

C

87.

D

88. A


89.

D

90. A

91.

D

92.

93.

B

D

94. A

95.

C

96.

D

97.


C

98.

D

99.

C

100.

101.

B

102. A
C

103.

B

104.
D

105.

B


106.

107. A

108.

109. A

110. A

111. A

112.

113. A

114.

C
D
C
D

115.

D

116.

B


117.

D

118.

B

119.

D

120.

B

121.
123.
125.

122.

C

D

124. A

B


126.

C

127.

D

128. A

129.

D

130.

2

B
B



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×