Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn tập toán thptqg 2 (52)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (147.5 KB, 12 trang )

Free LATEX

BÀI TẬP TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút
Mã đề thi 1

Câu 1. Hàm số nào sau đây khơng có cực trị
x−2
A. y =
.
B. y = x3 − 3x.
2x + 1

1
C. y = x4 − 2x + 1.
D. y = x + .
x


Câu 2. Phần thực √
và phần ảo của số phức
√ z = 2 − 1 − 3i lần lượt l√

A. Phần thực là 2 −√1, phần ảo là − √3.
B. Phần thực là √2, phần ảo là 1 − √3.
D. Phần thực là 2 − 1, phần ảo là 3.
C. Phần thực là 1 − 2, phần ảo là − 3.


Câu 3. Giá√trị cực đại của hàm số y √
= x3 − 3x2 − 3x + 2

A. 3 − 4 2.
B. 3 + 4 2.
C. −3 + 4 2.


4n2 + 1 − n + 2
Câu 4. Tính lim
bằng
2n − 3
3
A. 2.
B. .
C. 1.
2
Câu 5. Bát diện đều thuộc loại
A. {4; 3}.
B. {5; 3}.
C. {3; 3}.


D. −3 − 4 2.

D. +∞.
D. {3; 4}.

Câu 6. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó là:
A. 27cm3 .

B. 46cm3 .
C. 72cm3 .
D. 64cm3 .
Câu 7.
các số phức z thỏa mãn hệ thức |z − 1 + 3i| = 3. Tìm min |z − 1 − i|.
√ [4-1245d] Trong tất cả √
A. 10.
B. 2.
C. 1.
D. 2.
1 + 2 + ··· + n
Câu 8. [3-1132d] Cho dãy số (un ) với un =
. Mệnh đề nào sau đây đúng?
n2 + 1
1
A. Dãy số un khơng có giới hạn khi n → +∞.
B. lim un = .
2
C. lim un = 0.
D. lim un = 1.
Câu 9. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45√◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD là
10a3 3
A.
.
B. 20a3 .
C. 10a3 .
D. 40a3 .
3
Câu 10. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?

A. 4 mặt.
B. 6 mặt.
C. 3 mặt.
D. 9 mặt.
!
3n + 2
2
Câu 11. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 3.
B. 2.
C. 4.
D. 5.
log 2x

Câu 12. [3-1229d] Đạo hàm của hàm số y =
x2
1 − 2 log 2x
1
1 − 4 ln 2x
1 − 2 ln 2x
0
0
0
A. y0 =
.
B.
y

=
.
C.
y
=
.
D.
y
=
.
x3
2x3 ln 10
2x3 ln 10
x3 ln 10
Câu 13. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M,
√ N, P bằng



20 3
14 3
A.
.
B. 8 3.
C.
.
D. 6 3.
3

3
Trang 1/10 Mã đề 1


Câu 14. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
B. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
C. Cả ba câu trên đều sai.
D. F(x) = G(x) trên khoảng (a; b).
Câu 15. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ông muốn hoàn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ơng A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng không đổi trong thời gian ơng A hồn nợ.
100.1, 03
100.(1, 01)3
triệu.
B. m =
triệu.
A. m =
3
3
3
(1, 01)
120.(1, 12)3
C. m =
triệu.
D. m =
triệu.

(1, 01)3 − 1
(1, 12)3 − 1
Câu 16. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình chóp.
B. Hình lăng trụ.
C. Hình lập phương.

D. Hình tam giác.

Câu 17. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (−∞; 0).
B. Hàm số đồng biến trên khoảng (1; 2).
C. Hàm số nghịch biến trên khoảng (1; +∞).
D. Hàm số nghịch biến trên khoảng (0; 1).
Câu 18. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 2.
B. y(−2) = −18.
C. y(−2) = 6.
D. y(−2) = 22.
Câu 19. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp
√ là 1728. Khi đó, các kích thước của hình hộp là
√ đã cho
B. 2, 4, 8.
C. 6, 12, 24.
D. 8, 16, 32.
A. 2 3, 4 3, 38.
Câu 20. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng

vng góc
√ tích khối chóp S .ABC
√là
√ với đáy và S C = a 3. 3Thể

3
3
a 3
2a 6
a 6
a3 3
A.
.
B.
.
C.
.
D.
.
2
9
12
4
Câu 21. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 4.
B. V = 3.
C. V = 5.
D. V = 6.
Câu 22. Phát biểu nào sau đây là sai?

A. lim un = c (un = c là hằng số).
1
C. lim = 0.
n

B. lim qn = 0 (|q| > 1).
1
D. lim k = 0.
n

Câu 23. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 10 năm.
B. 8 năm.
C. 9 năm.
D. 7 năm.
!
x+1
Câu 24. [3] Cho hàm số f (x) = ln 2017 − ln
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
2016
4035
2017
A. 2017.
B.
.
C.
.

D.
.
2017
2018
2018
Trang 2/10 Mã đề 1


Câu 25. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 27 lần.
B. Tăng gấp 18 lần.
C. Tăng gấp 3 lần.
D. Tăng gấp 9 lần.
Câu 26. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, biết S H ⊥ (ABCD). Thể √
tích khối chóp S .ABCD là√
4a3 3
2a3 3
a3
a3
.
B.
.
C.
.
D.
.
A.
6

3
3
3
Câu 27. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối bát diện đều. C. Khối tứ diện đều.
D. Khối lập phương.
Câu 28. Khối đa diện đều loại {3; 5} có số mặt
A. 8.
B. 20.

C. 30.

D. 12.

x3 −3x+3

Câu 29. [2-c] Giá trị lớn nhất của hàm số f (x) = e
trên đoạn [0; 2] là
A. e3 .
B. e.
C. e2 .

D. e5 .

Câu 30. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 9.
B. 13.
C. 0.


D. Không tồn tại.

Câu 31. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {3; 4}.
B. {3; 5}.
C. {4; 3}.

D. {5; 3}.

Câu 32. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với đáy
một góc 60◦ . Thể tích√khối chóp S .ABCD là



a3 3
a3 3
2a3 3
3
.
B.
.
C. a 3.
.
D.
A.
3
3
6
Câu 33. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm

1
1
1
1
A. m ≥ .
B. m > .
C. m ≤ .
D. m < .
4
4
4
4
√3
4
2
Câu 34. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 : a bằng
5
2
7
5
B. a 8 .
C. a 3 .
D. a 3 .
A. a 3 .
Câu 35. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. (−∞; +∞).
B. [−1; 2).
C. (1; 2).

D. [1; 2].


Câu 36. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. (−∞; −3].
B. [−1; 3].
C. [1; +∞).
D. [−3; 1].
Câu 37. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Khơng có.
B. Có hai.
C. Có vơ số.
D. Có một.
Câu 38. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
1
1
ab
ab
A. √
.
B. √
.
C. √
.
D. 2
.
a + b2
a2 + b2
a2 + b2

2 a2 + b2

Câu 39. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã

√ cho là


πa3 3
πa3 3
πa3 6
πa3 3
A. V =
.
B. V =
.
C. V =
.
D. V =
.
6
3
6
2
Câu 40. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là 4, phần ảo là 1.
B. Phần thực là −1, phần ảo là 4.
C. Phần thực là −1, phần ảo là −4.
D. Phần thực là 4, phần ảo là −1.
Trang 3/10 Mã đề 1



1

Câu 41. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = (1; +∞).
B. D = (−∞; 1).
C. D = R.
1
Câu 42. [1] Giá trị của biểu thức log √3
bằng
10
1
A. −3.
B. .
C. 3.
3
log2 240 log2 15

+ log2 1 bằng
Câu 43. [1-c] Giá trị biểu thức
log3,75 2 log60 2
A. −8.
B. 3.
C. 1.

D. D = R \ {1}.

1
D. − .

3

D. 4.

Câu 44. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 20 mặt.
B. 20 đỉnh, 30 cạnh, 12 mặt.
C. 12 đỉnh, 30 cạnh, 12 mặt.
D. 20 đỉnh, 30 cạnh, 20 mặt.
Câu 45. Khối lập phương thuộc loại
A. {3; 3}.
B. {3; 4}.

C. {4; 3}.

D. {5; 3}.

ln2 x
m
Câu 46. [3] Biết rằng giá trị lớn nhất của hàm số y =
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
x
e
số tự nhiên. Tính S = m2 + 2n3
A. S = 24.
B. S = 22.
C. S = 135.
D. S = 32.
0 0 0 0
0

Câu 47.√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
√ bằng
a 6
a 6
a 3
a 6
A.
.
B.
.
C.
.
D.
.
7
3
2
2

Câu 48. [1] Biết log6 a = 2 thì log6 a bằng
A. 6.
B. 4.
C. 108.
D. 36.

Câu 49. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
môđun z.





5 13
B. 2.
C.
A. 26.
.
D. 2 13.
13
12 + 22 + · · · + n2
Câu 50. [3-1133d] Tính lim
n3
1
2
A. .
B. .
3
3

C. 0.

Câu 51. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (−∞; 1).
B. (2; +∞).
C. R.

D. +∞.
D. (0; 2).

Câu 52. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách

giữa hai đường thẳng S B và AD bằng




a 2
a 2
A. a 3.
B. a 2.
C.
.
D.
.
3
2
Câu 53. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. −3.
B. −6.
C. 3.
D. 0.
Câu 54. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối lăng trụ tam giác.
B. Khối bát diện đều.
C. Khối lập phương.
D. Khối tứ diện.
Câu 55. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối lập phương.
B. Khối bát diện đều.

C. Khối tứ diện đều.


D. Khối 12 mặt đều.
Trang 4/10 Mã đề 1


Câu 56. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 22.
B. 23.
C. 21.
D. 24.
Câu 57. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 3.
B. Vô nghiệm.
C. 1.
D. 2.
x−3 x−2 x−1
x
+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (2; +∞).
B. (−∞; 2).

C. [2; +∞).
D. (−∞; 2].

Câu 58. [4-1213d] Cho hai hàm số y =

Câu 59. Trong các khẳng định sau, khẳng định nào sai?
A. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
B. Z
F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
u0 (x)
dx = log |u(x)| + C.
C.
u(x)
D. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
Câu 60.
√ [4-1246d] Trong tất cả các số phức z thỏa mãn |z − i| = 1. Tìm giá trị lớn nhất
√ của |z|
A. 5.
B. 2.
C. 1.
D. 3.
 π
Câu 61. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là
2


1 π
3 π6
2 π4

B. 1.
C.
D. e 3 .
A.
e .
e .
2
2
2
Câu 62. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối
√ chóp S .ABCD là


a3 2
a3 3
a3 3
a3 6
.
B.
.
C.
.
D.
.
A.
48
16
48
24

4x + 1
Câu 63. [1] Tính lim
bằng?
x→−∞ x + 1
A. −1.
B. −4.
C. 2.
D. 4.
d = 120◦ .
Câu 64. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
A. 4a.
B.
.
C. 2a.
D. 3a.
2
Câu 65. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 9 mặt.
C. 7 mặt.

D. 8 mặt.

Câu 66. Khối đa diện đều loại {3; 3} có số cạnh
A. 5.
B. 4.

C. 8.


D. 6.

Câu 67. Khối đa diện đều loại {3; 5} có số đỉnh
A. 12.
B. 30.

C. 8.

D. 20.

Câu 68. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 14.
B. ln 12.
C. ln 4.
D. ln 10.
n−1
Câu 69. Tính lim 2
n +2
A. 3.
B. 0.
C. 1.
D. 2.
Trang 5/10 Mã đề 1


1 − xy
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
x + 2y
Pmin của P = x√+ y.




2 11 − 3
18 11 − 29
9 11 + 19
9 11 − 19
A. Pmin =
.
B. Pmin =
. C. Pmin =
. D. Pmin =
.
3
21
9
9
Câu 71. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Hai hình chóp tam giác.
B. Hai hình chóp tứ giác.
C. Một hình chóp tứ giác và một hình chóp ngũ giác.
D. Một hình chóp tam giác và một hình chóp tứ giác.
Câu 70. [12210d] Xét các số thực dương x, y thỏa mãn log3

Câu 72. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
13
5
9

23
.
B.
.
C. − .
D.
.
A. −
100
100
16
25
Câu 73. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = [2; 1].
B. D = (−2; 1).
C. D = R \ {1; 2}.
2

D. D = R.

Câu 74. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−1; 0).
B. (−∞; −1) và (0; +∞). C. (0; 1).
D. (−∞; 0) và (1; +∞).
1
Câu 75. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y

0
y
A. xy = e − 1.
B. xy = −e − 1.
C. xy0 = ey + 1.
D. xy0 = −ey + 1.
Câu 76. Khối đa diện đều loại {3; 4} có số mặt
A. 8.
B. 12.

C. 10.

D. 6.

Câu 77. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 5 đỉnh, 9 cạnh, 6 mặt. B. 6 đỉnh, 9 cạnh, 5 mặt. C. 6 đỉnh, 9 cạnh, 6 mặt. D. 6 đỉnh, 6 cạnh, 6 mặt.
Câu 78. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
A. 12.
B. 18.
C.
.
D. 27.
2
Câu 79. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {3; 3}.
B. {5; 3}.
C. {4; 3}.
D. {3; 4}.

Câu 80. [1] Tập
! xác định của hàm số y! = log3 (2x + 1) là
!
1
1
1
A. − ; +∞ .
C. −∞; − .
B. −∞; .
2
2
2

!
1
D.
; +∞ .
2

Câu 81. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có một hoặc hai.
B. Khơng có.
C. Có một.
D. Có hai.
Câu 82. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ơng ta muốn
hồn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?

A. 2, 22 triệu đồng.
B. 3, 03 triệu đồng.
C. 2, 25 triệu đồng.
D. 2, 20 triệu đồng.
Câu 83. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 3 đỉnh, 3 cạnh, 3 mặt. B. 4 đỉnh, 8 cạnh, 4 mặt. C. 6 đỉnh, 6 cạnh, 4 mặt. D. 4 đỉnh, 6 cạnh, 4 mặt.
Trang 6/10 Mã đề 1


8
Câu 84. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 96.
B. 82.
C. 81.
D. 64.


Câu 85. [12215d] Tìm m để phương trình 4 x+
9
B. m ≥ 0.
A. 0 ≤ m ≤ .
4
Câu 86. Hàm số f có nguyên hàm trên K nếu
A. f (x) xác định trên K.
C. f (x) có giá trị nhỏ nhất trên K.

1−x2




− 3m + 4 = 0 có nghiệm
3
3
C. 0 ≤ m ≤ .
D. 0 < m ≤ .
4
4

− 4.2 x+

1−x2

B. f (x) liên tục trên K.
D. f (x) có giá trị lớn nhất trên K.

Câu 87. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 3).
B. (1; 3; 2).
C. (2; 4; 4).
D. (2; 4; 6).
d = 60◦ . Đường chéo
Câu 88. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vng tại A, AC = a, ACB
BC 0 của mặt bên (BCC 0 B0 ) tạo với mặt phẳng (AA0C 0C) một góc 30◦ . Thể tích của khối lăng trụ ABC.A0 B0C 0






4a3 6
a3 6
2a3 6
3
D.
A.
.
B.
.
C. a 6.
.
3
3
3
Câu 89. Cho hình chóp S .ABC có đáy ABC là tam giác vng cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
3
.
B. a .
C.
.
D.
.
A.
6
12

24
Câu 90. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1
A. V = 3S h.
B. V = S h.
C. V = S h.
D. V = S h.
2
3
Câu 91. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. V = 4π.
B. 8π.
C. 32π.
D. 16π.
Câu 92. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (0; +∞).
B. (−∞; 2).
C. (0; 2).
D. (−∞; 0) và (2; +∞).
9x
Câu 93. [2-c] Cho hàm số f (x) = x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9 +3
1
A. −1.
B. .
C. 1.
D. 2.

2
Câu 94. Cho hàm số y = x3 − 2x2 + x + 1. !Mệnh đề nào dưới đây đúng?
1
A. Hàm số nghịch biến trên khoảng ; 1 .
B. Hàm số nghịch biến trên khoảng (1; +∞).
3
!
!
1
1
C. Hàm số nghịch biến trên khoảng −∞; .
D. Hàm số đồng biến trên khoảng ; 1 .
3
3
Câu 95. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 10 cạnh, 6 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
Câu 96. Giá trị của lim(2x2 − 3x + 1) là
x→1

A. 2.

B. 1.

Câu 97. Dãy số nào sau đây có giới hạn là 0?
n2 + n + 1
n2 − 2
A. un =

.
B.
u
=
.
n
(n + 1)2
5n − 3n2

D. +∞.

C. 0.
C. un =

1 − 2n
.
5n + n2

D. un =

n2 − 3n
.
n2
Trang 7/10 Mã đề 1


Z
Câu 98. Cho
1
A. .

4

1

xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b

0

B. 1.

1 − 2n
bằng?
3n + 1
2
A. 1.
B. .
3
5
Câu 100. Tính lim
n+3
A. 1.
B. 3.

C.

1
.
2

D. 0.


Câu 99. [1] Tính lim

2
C. − .
3

D.

1
.
3

C. 0.

D. 2.

Câu 101. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. 2n3 lần.
B. n3 lần.
C. 2n2 lần.
D. n3 lần.
Câu 102. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó
Q0 là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số
lượng vi khuẩn đạt 100.000 con?
A. 24.
B. 3, 55.
C. 20.
D. 15, 36.

Câu 103. Khối đa diện đều loại {5; 3} có số đỉnh
A. 8.
B. 20.

C. 30.

Câu 104. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −3.
B. −5.
C. Không tồn tại.
Câu 105. Hàm số y = x +
A. −1.

1
có giá trị cực đại là
x
B. 2.

D. 12.
D. −7.

C. −2.

D. 1.
x+2
đồng biến trên khoảng
Câu 106. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
x + 5m
(−∞; −10)?
A. 2.

B. 3.
C. 1.
D. Vơ số.
mx − 4
Câu 107. Tìm m để hàm số y =
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
A. 67.
B. 45.
C. 34.
D. 26.
x+2
Câu 108. Tính lim
bằng?
x→2
x
A. 2.
B. 1.
C. 3.
D. 0.
Câu 109. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 6 lần.
B. Tăng gấp đôi.
C. Tăng gấp 8 lần.
D. Tăng gấp 4 lần.
Câu 110. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 + 2e
1 − 2e
1 + 2e

A. m =
.
B. m =
.
C. m =
.
4e + 2
4 − 2e
4 − 2e

D. m =

Câu 111.
!n Dãy số nào sau đây có giới
!n hạn là 0?
5
5
A.
.
B. − .
3
3

!n
4
C.
.
e

!n

1
D.
.
3

C. 0.

D. 1.

Câu 112. Tính lim
A. +∞.

2n − 3
bằng
+ 3n + 1
B. −∞.

2n2

1 − 2e
.
4e + 2

Trang 8/10 Mã đề 1


Câu 113. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 20 mặt.
B. 12 đỉnh, 30 cạnh, 12 mặt.
C. 20 đỉnh, 30 cạnh, 12 mặt.

D. 12 đỉnh, 30 cạnh, 20 mặt.
Câu 114. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d nằm trên P hoặc d ⊥ P.
B. d ⊥ P.
C. d song song với (P).
D. d nằm trên P.
Câu 115. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
B. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
C. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
D. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
Câu 116. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = 0.
B. m = −1.
C. m = −2.

D. m = −3.

Câu 117. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 48cm3 .
B. 84cm3 .
C. 91cm3 .
D. 64cm3 .
Câu 118. [2] Tìm m để giá trị lớn nhất của hàm số y = 2x3 + (m√2 + 1)2 x trên [0; 1] bằng 8√
A. m = ±3.
B. m = ±1.
C. m = ± 3.
D. m = ± 2.
x−3

bằng?
Câu 119. [1] Tính lim
x→3 x + 3
A. +∞.
B. 0.
C. 1.
D. −∞.
Câu 120. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích
hình phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 3.
B. 0, 2.
C. 0, 4.
D. 0, 5.
Câu 121. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α

A. aαβ = (aα )β .
B. aα+β = aα .aβ .
C. β = a β .
D. aα bα = (ab)α .
a
Câu 122. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB)
√ bằng



a 6
A.
.

B. a 6.
C. 2a 6.
D. a 3.
2
x2 − 3x + 3
Câu 123. Hàm số y =
đạt cực đại tại
x−2
A. x = 2.
B. x = 0.
C. x = 1.
D. x = 3.
Câu 124. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh của khối chóp bằng số mặt của khối chóp.
B. Số đỉnh của khối chóp bằng số mặt của khối chóp.
C. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
D. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
Câu 125. Khối đa diện đều loại {3; 5} có số cạnh
A. 30.
B. 12.
C. 20.
D. 8.
x−2 x−1
x
x+1
Câu 126. [4-1212d] Cho hai hàm số y =
+
+
+
và y = |x + 1| − x − m (m là tham

x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; −3).
B. (−∞; −3].
C. (−3; +∞).
D. [−3; +∞).
Trang 9/10 Mã đề 1


Câu 127. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi
G la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
A. k = .
B. k = .
C. k = .
D. k = .
15
6
18
9
1
Câu 128. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3

nhất?
A. 1.
B. 4.
C. 3.
D. 2.
Câu 129. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
1
ab
ab
1
.
B. √
.
C. √
.
D. 2
.
A. √
a + b2
2 a2 + b2
a2 + b2
a2 + b2
Câu 130. Dãy số nào có giới hạn bằng 0?
n3 − 3n
A. un = n2 − 4n.
B. un =
.
n+1


!n
6
C. un =
.
5

!n
−2
D. un =
.
3

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A

2. A
C

3.
5.

D


7.
9.

6. A
8.

C
B

13.

14.

D

17.

18.

C

22.

25. A
C

29.
31.

D


B
C
B
D

26.

B

28.

B
C

30.

B

33.

D

24.

C

27.

B


20.

21. A
23.

D

16.

C

19.

C

12.
D

15.

B

10.
C

11.

C


4.

32.

B

34.

C

C

36.

35. A

D

37.

B

38. A

39.

B

40.


D

41. A

42.

D

43. A

44.

45.
47.

46.

C
B

49.

48.
D

53. A
55.
57.

52.


D

54.

D

D

58.

59.

C

60.

61.

C

62.

65.

B

56. A

B


63.

D

50. A

C

51.

B

D

64.
66.

B

67. A

68. A
1

C
B
C
B
D



69.

70. A

B

71. A

72. A

73.

D

74. A

75. A

76. A

77.

B

78.

79.


B

80. A

81. A

B

82. A
D

83.
85.

86.

C

87.

D
C

89.
92.

C

84.


D

94. A

B

88.

C

90.

C

93.

C

95.

C

96.

C

97.

C


98.

C

99.

C

100.

C

101.

102.

D

104.

103.

D
B

105.

C

106. A


107.

C

108. A

109.

C

C

110.

D
C

112.
114. A
116.

C
D

118.

111.

D


113.

D

115.

D

117.

D

119.

120. A

121.

C
C

122.

B

123.

124.


B

125. A

126.

B

128. A

129.

130.

C

2

B

D



×