Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn tập toán thptqg 6 (5)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (147.26 KB, 12 trang )

Free LATEX

BÀI TẬP TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút
Mã đề thi 1

Câu 1. Khối chóp ngũ giác có số cạnh là
A. 12 cạnh.
B. 11 cạnh.

C. 9 cạnh.

D. 10 cạnh.

Câu 2. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. 1.
B. −2 + 2 ln 2.
C. 4 − 2 ln 2.

D. e.
x+2
đồng biến trên khoảng
Câu 3. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
x + 5m
(−∞; −10)?
A. 2.
B. 3.
C. 1.


D. Vô số.
[ = 60◦ , S O
Câu 4. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc với mặt đáy và S O = a.
√ Khoảng cách từ A đến (S√BC) bằng


a 57
2a 57
a 57
A. a 57.
B.
.
C.
.
D.
.
17
19
19
Câu 5. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 20 mặt.
B. 20 đỉnh, 30 cạnh, 20 mặt.
C. 20 đỉnh, 30 cạnh, 12 mặt.
D. 12 đỉnh, 30 cạnh, 12 mặt.
Câu 6. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 7 mặt.
B. 9 mặt.
C. 8 mặt.


Câu 7. [1] Biết log6 a = 2 thì log6 a bằng
A. 108.
B. 6.
C. 36.

B. M = e, m = 0.

D. 4.
2

x
trên đoạn [−1; 1]. Khi đó
ex
1
C. M = , m = 0.
D. M = e, m = 1.
e

Câu 8. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y =
1
A. M = e, m = .
e

D. 6 mặt.

Câu 9. Cho hình chóp S .ABCD có
√ đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm của
AD, biết S H ⊥ (ABCD), S A = a 5. Thể tích khối chóp S .ABCD




3
3
3
2a
4a
2a 3
4a3 3
A.
.
B.
.
C.
.
D.
.
3
3
3
3
Câu 10. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
1
ab
1
ab
A. √
.
B. 2
.

C. √
.
D. √
.
2
a +b
2 a2 + b2
a2 + b2
a2 + b2
Câu 11. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M, N, P bằng




14 3
20 3
A. 8 3.
.
C.
.
D. 6 3.
B.
3
3
Câu 12. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. −2 ≤ m ≤ 2.
B. m ≥ 3.
C. m ≤ 3.

D. −3 ≤ m ≤ 3.
Câu 13. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = 10.
B. P = −10.
C. P = 21.
D. P = −21.
Trang 1/10 Mã đề 1


d = 30◦ , biết S BC là tam giác đều
Câu 14. [3] Cho hình chóp S .ABC có đáy là tam giác vuông tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
.
B.
.
C.
.
D.
.
A.
9
16
26

13
Câu 15. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với đáy
một góc 60◦ . Thể tích khối chóp S .ABCD là √



a3 3
2a3 3
a3 3
3
.
B. a 3.
.
D.
.
A.
C.
3
3
6
Câu 16. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối 20 mặt đều.
C. Khối tứ diện đều.
D. Khối bát diện đều.
2−n
Câu 17. Giá trị của giới hạn lim
bằng
n+1

A. 1.
B. 0.
C. 2.
D. −1.
Câu 18. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = ln x − 1.
B. y0 = 1 − ln x.

C. y0 = 1 + ln x.

D. y0 = x + ln x.

1
Câu 19. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 2 < m ≤ 3.
B. 0 < m ≤ 1.
C. 0 ≤ m ≤ 1.
D. 2 ≤ m ≤ 3.
Câu 20. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R.
B. D = R \ {0}.

C. D = R \ {1}.

D. D = (0; +∞).

Câu 21. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối
√ chóp S .ABCD là


3
3

a 6
a 5
a3 15
A.
.
B.
.
C.
.
D. a3 6.
3
3
3
Câu 22. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ơng muốn hồn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng không đổi trong thời gian ông A hoàn nợ.
(1, 01)3
100.1, 03
triệu.
B. m =
triệu.
A. m =
3
(1, 01)3 − 1

100.(1, 01)3
120.(1, 12)3
C. m =
triệu.
D. m =
triệu.
3
(1, 12)3 − 1
Câu 23. Khối đa diện đều loại {5; 3} có số cạnh
A. 20.
B. 12.

C. 8.

D. 30.

Câu 24. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Một hình chóp tứ giác và một hình chóp ngũ giác.
B. Một hình chóp tam giác và một hình chóp tứ giác.
C. Hai hình chóp tứ giác.
D. Hai hình chóp tam giác.
Câu 25. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. 1 + 2 sin 2x.
B. −1 + 2 sin 2x.
C. −1 + sin x cos x.
log7 16
Câu 26. [1-c] Giá trị của biểu thức
bằng
log7 15 − log7 15

30
A. −4.
B. 2.
C. −2.

D. 1 − sin 2x.

D. 4.
Trang 2/10 Mã đề 1


Câu 27.
đề nào sau đây
Z [1233d-2] Mệnh Z
Z sai?
[ f (x) − g(x)]dx =

A.
Z
B.

[ f (x) + g(x)]dx =

g(x)dx, với mọi f (x), g(x) liên tục trên R.

f (x)dx −
Z

f (x)dx +


Z
g(x)dx, với mọi f (x), g(x) liên tục trên R.

Z

f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
D.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
C.

Câu 28. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −3.
B. −5.
C. Không tồn tại.

D. −7.

Câu 29. Tứ diện đều thuộc loại
A. {3; 3}.
B. {4; 3}.

C. {3; 4}.

D. {5; 3}.

C. 1.


D. 2.

Câu 30. Giá trị của lim (3x2 − 2x + 1)
x→1

A. 3.

B. +∞.

Câu 31. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m , 0.
B. m < 0.
C. m = 0.
D. m > 0.

Câu 32. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. Vô số.
B. 64.
C. 63.
D. 62.
Câu 33. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất
√M + m

√ của hàm số. Khi đó tổng
B. 8 2.
C. 7 3.
D. 16.
A. 8 3.

Câu 34.
bằng 1 là:
√ Thể tích của khối lăng√trụ tam giác đều có cạnh √
3
3
3
.
B.
.
C.
.
A.
2
12
4
Câu 35. Dãy số nào sau đây có giới hạn là 0?
n2 − 3n
n2 + n + 1
n2 − 2
A. un =
.
B.
u
=
.
C.
u
=
.
n

n
n2
(n + 1)2
5n − 3n2
Câu 36. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối lập phương.
B. Khối bát diện đều.

C. Khối 12 mặt đều.

D.

3
.
4

D. un =

1 − 2n
.
5n + n2

D. Khối tứ diện đều.

Câu 37. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m > −1.
B. m ≥ 0.
C. m > 0.
x+2
Câu 38. Tính lim

bằng?
x→2
x
A. 3.
B. 0.
C. 1.

D. 2.

Câu 39. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = (−2; 1).
B. D = R.
C. D = R \ {1; 2}.

D. D = [2; 1].

D. m > 1.

2

Câu 40. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
A. log2 a = loga 2.
B. log2 a =
.
C. log2 a = − loga 2.
D. log2 a =
.
loga 2

log2 a
√3
4
Câu 41. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 : a2 bằng
5
2
7
5
A. a 8 .
B. a 3 .
C. a 3 .
D. a 3 .
Câu 42. Xét hai câu sau
Trang 3/10 Mã đề 1


Z
(I)

( f (x) + g(x))dx =

Z

f (x)dx +

Z

g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên

hàm tương ứng của hàm số f (x), g(x).

(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Chỉ có (II) đúng.

B. Cả hai câu trên đúng. C. Chỉ có (I) đúng.
D. Cả hai câu trên sai.
log(mx)
Câu 43. [1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m ≤ 0.
B. m < 0.
C. m < 0 ∨ m > 4.
D. m < 0 ∨ m = 4.
Câu 44. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
A. T = e + .
B. T = e + 1.
C. T = 4 + .
D. T = e + 3.
e
e
Câu 45. Cho hàm số y = x3 − 2x2 + x + 1.
! Mệnh đề nào dưới đây đúng?
!
1
1
B. Hàm số nghịch biến trên khoảng ; 1 .

A. Hàm số đồng biến trên khoảng ; 1 .
3
3
!
1
C. Hàm số nghịch biến trên khoảng (1; +∞).
D. Hàm số nghịch biến trên khoảng −∞; .
3
Câu 46. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. f (x) có giới hạn hữu hạn khi x → a.
B. lim+ f (x) = lim− f (x) = +∞.
x→a
x→a
C. lim+ f (x) = lim− f (x) = a.
D. lim f (x) = f (a).
x→a
x→a
x→a
Z 1
Câu 47. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
0

1
.
C. 1.
D. 0.
2
x2 − 3x + 3
đạt cực đại tại

Câu 48. Hàm số y =
x−2
A. x = 0.
B. x = 3.
C. x = 2.
D. x = 1.
2
1−n
Câu 49. [1] Tính lim 2
bằng?
2n + 1
1
1
1
A. .
B. − .
C. 0.
D. .
2
2
3
3
2
Câu 50. Cho hàm số y = −x + 3x − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số đồng biến trên khoảng (0; 2).
B. Hàm số nghịch biến trên khoảng (−∞; 2).
C. Hàm số nghịch biến trên khoảng (0; 2).
D. Hàm số đồng biến trên khoảng (0; +∞).
1
A. .

4

B.

Câu 51. Khối đa diện đều loại {5; 3} có số đỉnh
A. 12.
B. 20.

C. 8.

D. 30.

Câu 52. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
B. Hàm số nghịch biến trên khoảng (−2; 1).
C. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
D. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
Câu 53. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trang 4/10 Mã đề 1


Trong hai khẳng định trên
A. Chỉ có (I) đúng.
B. Cả hai đều đúng.

C. Chỉ có (II) đúng.

D. Cả hai đều sai.


Câu 54. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Ba mặt.
B. Bốn mặt.
C. Hai mặt.

D. Một mặt.

Câu 55. Dãy số nào sau đây có giới hạn khác 0?
1
n+1
.
B. .
A.
n
n

1
D. √ .
n

C.

sin n
.
n

3
2
Câu 56. Giá√trị cực đại của hàm số y =

√ x − 3x − 3x + 2

A. −3 + 4 2.
B. −3 − 4 2.
C. 3 + 4 2.
1
Câu 57. Hàm số y = x + có giá trị cực đại là
x
A. −2.
B. 2.
C. −1.

Câu 58. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối 20 mặt đều.

C. Khối 12 mặt đều.


D. 3 − 4 2.

D. 1.
D. Khối bát diện đều.

Câu 59. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là 3, phần ảo là −4.
B. Phần thực là 3, phần ảo là 4.
C. Phần thực là −3, phần ảo là 4.
D. Phần thực là −3, phần ảo là −4.
Câu 60. Giá trị giới hạn lim (x2 − x + 7) bằng?

x→−1
A. 0.
B. 9.

C. 5.

D. 7.

Câu 61. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −9.
B. −15.
C. −5.
D. −12.
Câu 62. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất không thay đổi?
A. 102.016.000.
B. 102.016.000.
C. 102.424.000.
D. 102.423.000.
Câu 63. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 3).
B. (2; 4; 6).
C. (1; 3; 2).
D. (2; 4; 4).
Câu 64. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.

B. 3 mặt.
C. 6 mặt.
D. 4 mặt.
Câu 65. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 84cm3 .
B. 91cm3 .
C. 64cm3 .
D. 48cm3 .


Câu 66.

√ Tìm giá trị lớn nhất của hàm
√ số y = x + 3 + 6 − x
A. 2 3.
B. 2 + 3.
C. 3.
D. 3 2.
Câu 67. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
Câu 68. Hàm số f có nguyên hàm trên K nếu
A. f (x) có giá trị nhỏ nhất trên K.
C. f (x) có giá trị lớn nhất trên K.

B. f (x) xác định trên K.
D. f (x) liên tục trên K.

Trang 5/10 Mã đề 1


1 − 2n
Câu 69. [1] Tính lim
bằng?
3n + 1
1
2
2
A. .
B. .
C. − .
3
3
3
Câu 70. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 0.
B. Không tồn tại.
C. 9.

D. 1.
D. 13.

Câu 71. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 6.
B. V = 5.
C. V = 3.
D. V = 4.

Z 3
x
a
a
Câu 72. Cho I =
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá

d
d
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = 28.
B. P = −2.
C. P = 4.
D. P = 16.
Câu 73. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 9 mặt.
C. 6 mặt.
x−3
Câu 74. [1] Tính lim
bằng?
x→3 x + 3
A. 0.
B. +∞.
C. −∞.

D. 3 mặt.

D. 1.


Câu 75. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
0 0
ABC.A0 B
√ C là

3
3
a 3
a
3
a3
A.
.
B. a3 .
C.
.
D.
.
6
2
3
Câu 76. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (1; −3).
B. (−1; −7).
C. (2; 2).
D. (0; −2).
7n2 − 2n3 + 1
Câu 77. Tính lim 3
3n + 2n2 + 1

2
B. 0.
A. - .
3

C.

7
.
3

D. 1.

9x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9x + 3
1
A. −1.
B. 2.
C. 1.
D. .
2
1
Câu 79. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 2.
B. 1.
C. 3.
D. 4.

Câu 78. [2-c] Cho hàm số f (x) =

d = 300 .
Câu 80. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vuông tại A. BC = 2a, ABC
0
Độ dài cạnh bên CC = 3a. Thể tích V của

√ khối lăng trụ đã cho.
3

a3 3
3a 3
3
3
A. V = 6a .
B. V =
.
C. V = 3a 3.
D. V =
.
2
2
Câu 81. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 2.
B. −1.
C. 1.
D. 6.
Câu 82. Khối đa diện đều loại {3; 3} có số đỉnh
A. 3.
B. 5.


C. 2.

D. 4.

Câu 83. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số đỉnh của khối chóp bằng số mặt của khối chóp.
B. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
Trang 6/10 Mã đề 1


C. Số cạnh của khối chóp bằng số mặt của khối chóp.
D. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
Câu 84. Khối đa diện đều loại {4; 3} có số mặt
A. 10.
B. 8.

C. 6.

D. 12.

Câu 85. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 3.
B. 2.
C. 1.
D. Vô số.
2
ln x
m

Câu 86. [3] Biết rằng giá trị lớn nhất của hàm số y =
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
x
e
số tự nhiên. Tính S = m2 + 2n3
A. S = 24.
B. S = 135.
C. S = 22.
D. S = 32.
log2 240 log2 15

+ log2 1 bằng
Câu 87. [1-c] Giá trị biểu thức
log3,75 2 log60 2
A. −8.
B. 1.
C. 3.
D. 4.
Câu 88. [1] Giá trị của biểu thức 9log3 12 bằng
A. 4.
B. 24.

C. 2.

D. 144.

Câu 89. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.

D. 4 đỉnh, 12 cạnh, 4 mặt.
Câu 90. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 18 lần.
B. Tăng gấp 3 lần.
C. Tăng gấp 9 lần.
D. Tăng gấp 27 lần.
x2 − 5x + 6
Câu 91. Tính giới hạn lim
x→2
x−2
A. 1.
B. 0.

C. −1.

D. 5.

Câu 92. Nếu không sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Năm hình chóp tam giác đều, khơng có tứ diện đều.
B. Một tứ diện đều và bốn hình chóp tam giác đều.
C. Bốn tứ diện đều và một hình chóp tam giác đều.
D. Năm tứ diện đều.
Câu 93. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1
B. V = S h.
C. V = 3S h.
A. V = S h.

3
2
Câu 94. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. (1; 2).
B. [1; 2].
C. (−∞; +∞).

D. V = S h.
D. [−1; 2).

2

Câu 95. Tính lim
A. 2.

2n − 1
3n6 + n4
B.

2
.
3

C. 0.

D. 1.

!4x
!2−x
3

2
Câu 96. Tập các số x thỏa mãn


3 # 2
"
!
2
2
A. − ; +∞ .
B. −∞; .
3
5

#
2
C. −∞; .
3

!
2
D.
; +∞ .
5

Câu 97. Khối đa diện đều loại {3; 4} có số đỉnh
A. 6.
B. 4.

C. 10.


D. 8.

"

Trang 7/10 Mã đề 1


Câu 98. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).
√ Thể tích khối chóp S 3.ABC
√ là


3
a 3
a3 3
a3 3
a 2
.
B.
.
C.
.
D.
.
A.
12
6
12

4
Câu 99. Khối đa diện đều loại {3; 5} có số mặt
A. 12.
B. 30.

C. 20.

D. 8.

Câu 100. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
BC là
. Khi đó thể tích khối lăng trụ là
4




a3 3
a3 3
a3 3
a3 3
A.
.
B.
.
C.

.
D.
.
6
12
24
36
Câu 101. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (III) sai.

B. Câu (I) sai.

Câu 102. Phát biểu nào sau đây là sai?
1
A. lim √ = 0.
n
C. lim qn = 1 với |q| > 1.

C. Câu (II) sai.

D. Khơng có câu nào
sai.

B. lim un = c (Với un = c là hằng số).
D. lim


1
= 0 với k > 1.
nk

d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥
Câu 103. Cho hình chóp S .ABC có BAC
(ABC). Thể tích khối chóp S .ABC√là


3
3
3

a
2
a
3
a
3
A. 2a2 2.
B.
.
C.
.
D.
.
24
24
12



Câu 104. Phần thực

phần
ảo
của
số
phức
z
=
2

1

3i lần lượt l √



A. Phần thực là √2 − 1, phần ảo là −√ 3.
B. Phần thực là 1√− 2, phần ảo là −√ 3.
C. Phần thực là 2 − 1, phần ảo là 3.
D. Phần thực là 2, phần ảo là 1 − 3.
Câu 105. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
67
A. −2.
B.
.
C. −4.
D. −7.

27
Câu 106. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
ab
1
ab
1
A. √
.
B. 2
.
C.
.
D.
.


a + b2
2 a2 + b2
a2 + b2
a2 + b2
3
2
x
Câu 107. [2]
√ Tìm m để giá trị lớn nhất của hàm số y = 2x + (m + 1)2 trên [0; 1] bằng 8√
A. m = ± 3.
B. m = ±1.
C. m = ±3.
D. m = ± 2.

0 0 0 0
Câu 108.
a. Khoảng cách từ C đến √
AC 0 bằng
√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh √
a 6
a 6
a 3
a 6
A.
.
B.
.
C.
.
D.
.
7
2
2
3

Trang 8/10 Mã đề 1


Câu 109. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
Thể tích khối chóp S .ABC √là
vng góc


√ với đáy và S C = a 3.3 √
a3 3
a 3
2a3 6
a3 6
A.
.
B.
.
C.
.
D.
.
2
4
9
12
2mx + 1
1
Câu 110. Giá trị lớn nhất của hàm số y =
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
A. 1.
B. 0.
C. −5.
D. −2.
Câu 111. [1] Đạo hàm của làm số y = log x là
ln 10

1
.
B. y0 =
.
A.
10 ln x
x

1
C. y0 = .
x

D. y0 =

1
.
x ln 10

Câu 112. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (2; +∞).
B. R.
C. (0; 2).

D. (−∞; 1).

Câu 113. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình tam giác.
B. Hình chóp.
C. Hình lập phương.


D. Hình lăng trụ.

Câu 114. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
7
5
D. .
A. 9.
B. 6.
C. .
2
2
Câu 115. Khẳng định nào sau đây đúng?
A. Hình lăng trụ đứng là hình lăng trụ đều.
B. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
C. Hình lăng trụ tứ giác đều là hình lập phương.
D. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
Câu 116. Tính lim
x→5

A. −∞.

x2 − 12x + 35
25 − 5x
B. +∞.

2
C. − .
5


Câu 117. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. −2.
B. 2.
C. −4.

D.

2
.
5

D. 4.

Câu 118. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 10 năm.
B. 9 năm.
C. 7 năm.
D. 8 năm.
Câu 119. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng
cách giữa


√ hai đường thẳng BD và S C bằng

a 6
a 6
a 6
A.

.
B. a 6.
C.
.
D.
.
6
2
3
Câu 120. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 0.
B. 1.
C. 2.

x2 + 3x + 5
Câu 121. Tính giới hạn lim
x→−∞
4x − 1
1
A. − .
B. 0.
C. 1.
4
Câu 122. Khối đa diện đều loại {3; 5} có số đỉnh
A. 12.
B. 30.

C. 8.

D. 3.


D.

1
.
4

D. 20.
Trang 9/10 Mã đề 1


tan x + m
Câu 123. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1
 π
0; .
4
A. (−∞; 0] ∪ (1; +∞). B. (−∞; −1) ∪ (1; +∞). C. (1; +∞).
D. [0; +∞).
a
1
Câu 124. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
A. 1.
B. 7.
C. 4.
D. 2.
Câu 125. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực

x≥1
A. m ≤ 3.
B. m ≥ 3.
C. m > 3.
D. m < 3.
Câu 126. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−∞; 0) và (1; +∞). B. (0; 1).
C. (−∞; −1) và (0; +∞). D. (−1; 0).
x
Câu 127. Tính diện tích hình phẳng giới hạn bởi các đường
√ y = xe , y = 0, x = 1.
3
1
3
A. .
B. 1.
C.
.
D. .
2
2
2
!
1
1
1
+
+ ··· +
Câu 128. Tính lim
1.2 2.3

n(n + 1)
3
A. .
B. 2.
C. 0.
D. 1.
2
Câu 129. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (1; +∞).
B. Hàm số nghịch biến trên khoảng (0; 1).
C. Hàm số nghịch biến trên khoảng (−∞; 0).
D. Hàm số đồng biến trên khoảng (1; 2).

Câu 130. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 2.
B. y(−2) = −18.
C. y(−2) = 22.
D. y(−2) = 6.
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
D

1.


D

2.

3. A

4.

5. A

6.

B

8.

B

7.
9.

D
B

C

10.

D


11.

D

12.

D

13.

D

14.

D

C

15.
17.

16.
D

18.

19. A

20. A


21. A

22.

23.
25.

B

D

C
B

24.

D

26. A

B

27.

D

28.

C


29. A

30.

D

31. A

32.

D

33.

D

34.

35.

D

36. A

C

38.

37. A


D

39.

B

40.

B

41.

B

42.

B

43.

D

44.

D

45.

B


46.

D

47.

B

48.

D

49.

B

50. A

51.

B

52.

53.

54.

C


55. A

56. A

57. A

58.

59.

C

61.
63.
65.

60.
D

D
B
C
B

62.

B

64.

C

67. A
1

C
B

66.

D

68.

D


69.

70. A

C
D

71.
74. A
76.

D


78.
80.

C

75.

C

77. A
79.

C

82.

D

85.

C
D

87. A

88.

D

89. A


90.

D

91.

C

99.

C

103.

104. A

D
B

105. A

106.

C
D

108.
B
C


112.

107.

D

109.

D

111.

D

113. A

114.

D

115.

116.

D

117. A

B


119. A

B

120. A

121. A

122. A

123.

124.

C

101.

B

102.

118.

C

97. A

98.


110.

C

95.

C

96. A
100.

B

93. A

B

94.

D

83. A

86.

92.

B


81.

B

84.

72.

B

C

125.

B

126.

D

127.

B

128.

D

129.


B

130.

B

2



×