Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (695)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (152.52 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

 π π
Câu 1. Cho hàm số y = 3 sin x − 4 sin x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. 1.
B. 3.
C. 7.
D. −1.
3

Câu 2. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞

x→+∞

A. lim [ f (x)g(x)] = ab.
x→+∞

B. lim [ f (x) − g(x)] = a − b.
x→+∞

C. lim [ f (x) + g(x)] = a + b.
x→+∞



D. lim

x→+∞

f (x) a
= .
g(x) b


Câu 3. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 63.
B. 62.
C. 64.
D. Vô số.
Câu 4. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng d :
z
x+1 y−5
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng d
2
2
−1
đồng thời cách A một khoảng bé nhất.
A. ~u = (2; 2; −1).
B. ~u = (2; 1; 6).
C. ~u = (3; 4; −4).
D. ~u = (1; 0; 2).

Câu 5. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu không rút
tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng
tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban đầu, giả
định trong thời gian này lãi suất khơng đổi và người đó khơng rút tiền ra?
A. 12 năm.
B. 11 năm.
C. 10 năm.
D. 13 năm.
x
9
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
Câu 6. [2-c] Cho hàm số f (x) = x
9 +3
1
B. −1.
C. 1.
D. 2.
A. .
2
Câu 7. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
A. a3 .
B.
.
C.
.

D.
.
24
12
6
Câu 8.√ Biểu thức nào sau đây khơng có nghĩa
−3
A.
−1.
B. (−1)−1 .

C. 0−1 .


D. (− 2)0 .

C. 7.

D. 9.

Câu 9. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1

A. 5.

B. 0.

log 2x

x2

1 − 2 log 2x
1 − 2 ln 2x
1 − 4 ln 2x
0
0
A. y0 =
.
B.
y
=
.
C.
y
=
.
x3
x3 ln 10
2x3 ln 10


Câu 11. Tìm giá trị lớn nhất của√hàm số y = x + 3 + 6√− x
A. 3.
B. 3 2.
C. 2 3.

Câu 10. [1229d] Đạo hàm của hàm số y =

Câu 12. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (2; 2).
B. (0; −2).

C. (−1; −7).

D. y0 =

1
.
2x3 ln 10

D. 2 +


3.

D. (1; −3).
Trang 1/10 Mã đề 1


1
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
0
y
A. xy = −e + 1.
B. xy = −e − 1.
C. xy0 = ey + 1.
D. xy0 = ey − 1.

2

Câu 14. Xác định phần ảo của số
√ phức z = ( 2 + 3i)

A. 7.
B. 6 2.
C. −7.
D. −6 2.

Câu 13. [3-12217d] Cho hàm số y = ln

Câu 15. Khối đa diện đều loại {3; 3} có số đỉnh
A. 4.
B. 5.

C. 3.

D. 2.

Câu 16. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể√tích của khối chóp S .ABC√ theo a

a3 15
a3
a3 15
a3 5
.
B.
.
C.
.

D.
.
A.
25
5
3
25
Câu 17. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 6.
B. 3.
C. 8.
D. 4.
mx − 4
Câu 18. Tìm m để hàm số y =
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
A. 67.
B. 45.
C. 34.
D. 26.
Câu 19. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
mơđun √
z.



5 13
A.
.

B. 2 13.
C. 2.
D. 26.
13
Câu 20. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = 10.
B. P = 21.
C. P = −21.
D. P = −10.
Câu 21. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
B. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
Câu 22. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
2

A. 4.

B. −1.

C. 6.

3

Z

6
3x + 1


. Tính

1

f (x)dx.
0

D. 2.

Câu 23. [2]√Tìm m để giá trị nhỏ nhất của hàm số y = 2x + (m√ + 1)2 trên [0; 1] bằng 2
A. m = ± 2.
B. m = ±1.
C. m = ± 3.
D. m = ±3.
d = 30◦ , biết S BC là tam giác đều
Câu 24. [3] Cho hình chóp S .ABC có đáy là tam giác vng tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
A.
.
B.
.
C.
.

D.
.
13
9
26
16
Câu 25. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α

A. aαβ = (aα )β .
B. aα+β = aα .aβ .
C. aα bα = (ab)α .
D. β = a β .
a
Câu 26. Cho số phức z thỏa mãn |z + 3| = 5 và |z − 2i| = |z − 2√− 2i|. Tính |z|.

D. |z| = 10.
A. |z| = 17.
B. |z| = 10.
C. |z| = 17.
3

2

Câu 27. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = −2.
B. x = 0.
C. x = −8.

x


D. x = −5.

Câu 28. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. 3.
B. −3.
C. 0.
D. −6.
Trang 2/10 Mã đề 1


Câu 29. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = ln x − 1.
B. y0 = x + ln x.

C. y0 = 1 − ln x.

D. y0 = 1 + ln x.

Câu 30. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d song song với (P).
B. d nằm trên P.
C. d nằm trên P hoặc d ⊥ P.
D. d ⊥ P.
log(mx)
Câu 31. [3-1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0 ∨ m > 4.
B. m < 0 ∨ m = 4.

C. m < 0.
D. m ≤ 0.
0 0 0
d = 60◦ . Đường chéo
Câu 32. Cho lăng trụ đứng ABC.A B C có đáy là tam giác vuông tại A, AC = a, ACB
BC 0 của mặt bên (BCC 0 B0 ) tạo với mặt phẳng (AA0C 0C) một góc 30◦ . Thể tích của khối lăng trụ ABC.A0 B0C 0




3
3

a
2a
4a3 6
6
6
.
B. a3 6.
C.
.
D.
.
A.
3
3
3
Câu 33. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 x ) = 2 − x bằng
A. 1.

B. 7.
C. 3.
D. 2.
Câu 34. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp đôi.
B. Tăng gấp 6 lần.
C. Tăng gấp 8 lần.
D. Tăng gấp 4 lần.
Câu 35. [3] Cho khối chóp S .ABC có đáy là tam giác vng tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
2a
a
8a
5a
.
B.
.
C. .
D.
.
A.
9
9
9
9
Câu 36. Dãy! số nào có giới hạn bằng 0?
!n
n

6
n3 − 3n
−2
2
A. un =
.
B. un =
.
C. un = n − 4n.
D. un =
.
5
n+1
3
Câu 37. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
5
7
A. .
B. 9.
C. .
D. 6.
2
2
Câu 38. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
0
đến đường




√ thẳng BD bằng
abc b2 + c2
a b2 + c2
c a2 + b2
b a2 + c2
.
B. √
.
C. √
.
D. √
.
A. √
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
Câu 39. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. n3 lần.
B. 2n3 lần.
C. n3 lần.
D. 2n2 lần.
Câu 40. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng BD và S C bằng



a 6
a 6

a 6
A.
.
B. a 6.
C.
.
D.
.
6
3
2
q
2
Câu 41. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 = 0
√ i
h
có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 4].
B. m ∈ [0; 2].
C. m ∈ [0; 1].
D. m ∈ [−1; 0].
Câu 42. Khối đa diện đều loại {3; 3} có số mặt
A. 4.
B. 5.

C. 2.

D. 3.
Trang 3/10 Mã đề 1



Câu 43. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 20, 128 triệu đồng. B. 3, 5 triệu đồng.
C. 50, 7 triệu đồng.
D. 70, 128 triệu đồng.
Câu 44. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. −e2 .
B. 2e4 .
C. 2e2 .
D. −2e2 .
Câu 45.
Z Trong cácα+1khẳng định sau, khẳng định nào sai? Z
x
+ C, C là hằng số.
B.
dx = x + C, C là hằng số.
A.
xα dx =
α+1
Z
Z
1
C.
dx = ln |x| + C, C là hằng số.
D.
0dx = C, C là hằng số.
x
Câu 46. [2] Tìm m để giá trị lớn nhất của hàm số y = 2x3 + (m2√+ 1)2 x trên [0; 1] bằng 8 √

A. m = ±1.
B. m = ±3.
C. m = ± 2.
D. m = ± 3.
Câu 47. Khối đa diện đều loại {3; 5} có số mặt
A. 30.
B. 20.

C. 12.
D. 8.
1
a
, với a, b ∈ Z. Giá trị của a + b là
Câu 48. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
4 b ln 3
A. 2.
B. 1.
C. 7.
D. 4.
!
3n + 2
2
Câu 49. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 2.
B. 5.
C. 3.
D. 4.

Câu 50. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp
√ là 1728. Khi đó, các kích thước của hình hộp là
√ đã cho
B. 8, 16, 32.
C. 6, 12, 24.
D. 2, 4, 8.
A. 2 3, 4 3, 38.
2

Câu 51. [2] Tổng các nghiệm của phương trình 3 x −4x+5 = 9 là
A. 5.
B. 3.
C. 4.

D. 2.

Câu 52. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 27 m.
B. 1587 m.
C. 387 m.
D. 25 m.
Câu 53. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 4 mặt.
C. 8 mặt.

D. 10 mặt.
1
Câu 54. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
0
y
A. xy = e + 1.
B. xy = −e − 1.
C. xy0 = −ey + 1.
D. xy0 = ey − 1.
Câu 55. Trong không gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0) lần
lượt là hình chiếu
của B, C lên các cạnh! AC, AB. Tọa độ hình chiếu
!
! của A lên BC là
8
5
7
A.
; 0; 0 .
B.
; 0; 0 .
C.
; 0; 0 .
D. (2; 0; 0).
3
3

3
Câu 56. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số đỉnh của khối chóp bằng 2n + 1.
B. Số cạnh của khối chóp bằng 2n.
C. Số mặt của khối chóp bằng số cạnh của khối chóp.
D. Số mặt của khối chóp bằng 2n+1.
Trang 4/10 Mã đề 1


Câu 57. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 4.

B. 2.

C. 1.

B. 2 ≤ m ≤ 3.

12 + 22 + · · · + n2
n3
2
A. 0.
B. .
3
cos n + sin n
Câu 60. Tính lim
n2 + 1
A. +∞.
B. −∞.

4x + 1
bằng?
Câu 61. [1] Tính lim
x→−∞ x + 1
A. 2.
B. −1.

= 3m − 2 có nghiệm duy

D. 3.
1

= m − 2 có nghiệm
3|x−2|
C. 0 ≤ m ≤ 1.
D. 0 < m ≤ 1.

Câu 58. [3-12214d] Với giá trị nào của m thì phương trình
A. 2 < m ≤ 3.

1
3|x−1|

Câu 59. [3-1133d] Tính lim

C.

1
.
3


D. +∞.

C. 0.

D. 1.

C. −4.

D. 4.

Câu 62. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 16π.
B. V = 4π.
C. 8π.
D. 32π.
Câu 63. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng

a
a 3
a
B. .
C.
.
D. a.
A. .
3
2

2
Câu 64. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m ≤ .
B. m > .
C. m ≥ .
D. m < .
4
4
4
4
Câu 65.√Thể tích của tứ diện đều √
cạnh bằng a
3
3
a 2
a 2
A.
.
B.
.
2
12


a3 2
C.

.
4


a3 2
D.
.
6

C. 0.

D. 1.

Câu 66. Giá trị của lim(2x2 − 3x + 1) là
x→1

A. +∞.

B. 2.

Câu 67. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. 22016 .
B. 0.
C. 1.
D. e2016 .
x−1
Câu 68. [3-1214d] Cho hàm số y =
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2

tam giác
AB có độ dài bằng
√ đều ABI có hai đỉnh A, B thuộc (C), đoạn thẳng √

A. 2 2.
B. 2.
C. 6.
D. 2 3.
Z 1
Câu 69. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
1
A. .
4

0

B. 0.

C.

1
.
2

D. 1.

x+2
Câu 70. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng

x + 5m
(−∞; −10)?
A. 3.
B. 1.
C. Vô số.
D. 2.
Trang 5/10 Mã đề 1


Câu 71. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ông muốn hoàn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ơng A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng không đổi trong thời gian ơng A hồn nợ.
(1, 01)3
120.(1, 12)3
triệu.
B. m =
triệu.
A. m =
(1, 12)3 − 1
(1, 01)3 − 1
100.1, 03
100.(1, 01)3
C. m =
triệu.
D. m =
triệu.
3
3

Câu 72. Khối đa diện đều loại {3; 3} có số cạnh
A. 4.
B. 8.

C. 5.

Câu 73. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
B. −e.
C. − 2 .
A. − .
2e
e

D. 6.
1
D. − .
e

2

Câu 74. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 1 − log2 3.
B. 2 − log2 3.
C. 3 − log2 3.

D. 1 − log3 2.

Câu 75. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2

A. m = 0.
B. m = −2.
C. m = −3.

D. m = −1.

Câu 76. Khối đa diện đều loại {3; 5} có số cạnh
A. 20.
B. 12.

D. 30.

C. 8.

Câu 77. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 4 mặt.
C. 3 mặt.
D. 9 mặt.
!
!
!
4x
1
2
2016
Câu 78. [3] Cho hàm số f (x) = x
. Tính tổng T = f
+f
+ ··· + f

4 +2
2017
2017
2017
2016
.
B. T = 2017.
C. T = 2016.
D. T = 1008.
A. T =
2017
Câu 79. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất khơng thay đổi và người đó khơng rút tiền ra?
A. 11 năm.
B. 14 năm.
C. 10 năm.
D. 12 năm.
1
Câu 80. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 2 ≤ m ≤ 3.
B. 0 ≤ m ≤ 1.
C. 0 < m ≤ 1.
D. 2 < m ≤ 3.
Câu 81. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≤ 3.
B. m < 3.

C. m > 3.
D. m ≥ 3.



x=t




Câu 82. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : 
y = −1 và hai mặt phẳng (P), (Q)




z = −t
lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I
thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).
9
9
A. (x − 3)2 + (y + 1)2 + (z + 3)2 = .
B. (x + 3)2 + (y + 1)2 + (z − 3)2 = .
4
4
9
9
2
2
2

2
2
2
C. (x + 3) + (y + 1) + (z + 3) = .
D. (x − 3) + (y − 1) + (z − 3) = .
4
4
Trang 6/10 Mã đề 1


Câu 83. Giá trị của lim (3x2 − 2x + 1)
x→1
A. 3.
B. 1.

C. +∞.
D. 2.
2
ln x
m
Câu 84. [3] Biết rằng giá trị lớn nhất của hàm số y =
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
x
e
số tự nhiên. Tính S = m2 + 2n3
A. S = 24.
B. S = 22.
C. S = 135.
D. S = 32.
Câu 85. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng

1
.
B. f 0 (0) = ln 10.
C. f 0 (0) = 10.
D.
A. f 0 (0) =
ln 10
x
Câu 86. Tính diện tích hình phẳng
√ giới hạn bởi các đường y = xe , y = 0, x = 1.
3
3
A. .
B.
.
C. 1.
D.
2
2
Câu 87. Khối đa diện đều loại {3; 5} có số đỉnh
A. 8.
B. 12.
C. 20.
D.
x+2
Câu 88. Tính lim
bằng?
x→2
x
A. 1.

B. 0.
C. 3.
D.
Câu 89. Khối đa diện đều loại {4; 3} có số đỉnh
A. 10.
B. 4.
log7 16
Câu 90. [1-c] Giá trị của biểu thức
log7 15 − log7
A. −4.
B. 2.

C. 8.
15
30

f 0 (0) = 1.
1
.
2
30.

2.

D. 6.

bằng
C. −2.

D. 4.

 π
Câu 91. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là
2


3 π6
2 π4
1 π3
B.
e .
C. 1.
D.
e .
A. e .
2
2
2
Câu 92. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 21.
B. 22.
C. 23.
D. 24.

Câu 93. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 2ac
3b + 2ac
3b + 3ac
.

B.
.
C.
.
A.
c+2
c+3
c+2
Câu 94. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m > 0.
B. m > 1.
C. m ≥ 0.

D.

3b + 3ac
.
c+1

D. m > −1.

Câu 95. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 2.
B. 1.
C. 3.
D. Vô nghiệm.
1
Câu 96. [1] Giá trị của biểu thức log √3
bằng
10

1
1
A. − .
B. −3.
C. 3.
D. .
3
3
Câu 97. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng
√ góc với đáy, S C = a3 3. Thể tích khối chóp S .ABCD là

3
3
a 3
a
a
3
A.
.
B.
.
C. a3 .
D.
.
3
3
9
Câu 98. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là

A. 1.
B. −2 + 2 ln 2.
C. e.
D. 4 − 2 ln 2.
Trang 7/10 Mã đề 1


Câu 99. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (−∞; 1).
B. (−∞; −1).
C. (−1; 1).

D. (1; +∞).

7n2 − 2n3 + 1
Câu 100. Tính lim 3
3n + 2n2 + 1
2
7
A. - .
B. .
C. 0.
D. 1.
3
3
Câu 101. ZCho hai hàm Zy = f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
0

B. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f (x)dx =
g0 (x)dx.
Z
Z
C. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
D. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
A. Nếu

f 0 (x)dx =

x−1 y z+1
= =

2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. 2x + y − z = 0.
B. 2x − y + 2z − 1 = 0.
C. 10x − 7y + 13z + 3 = 0.
D. −x + 6y + 4z + 5 = 0.


Câu 102. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình

Câu 103. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 0.

B. 3.

C. 2.

D. 1.

3a
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng

2a
a
a 2
a
A.
.
B. .
C.
.
D. .

3
3
3
4
Câu 105. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (−∞; 6, 5).
B. (4; 6, 5].
C. [6, 5; +∞).
D. (4; +∞).

Câu 104. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =

Câu 106. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
B. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
C. Hàm số nghịch biến trên khoảng (−2; 1).
D. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
Câu 107. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 1134 m.
B. 1202 m.
C. 6510 m.
D. 2400 m.
Câu 108. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối lăng trụ tam giác.
B. Khối lập phương.
C. Khối bát diện đều.
D. Khối tứ diện.
Trang 8/10 Mã đề 1



Câu 109. Tính lim

2n2 − 1
3n6 + n4
B. 1.

2
.
3
Câu 110. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 220 triệu.
B. 216 triệu.
C. 212 triệu.
D. 210 triệu.
A. 0.

C. 2.

D.

Câu 111. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
23
5
13

9
.
B. −
.
C. − .
D.
.
A.
25
100
16
100
Câu 112. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Hai đường phân giác y = x và y = −x của các góc tọa độ.
B. Trục ảo.
C. Đường phân giác góc phần tư thứ nhất.
D. Trục thực.
Câu 113.
√ Thể tích của khối lăng trụ tam giác đều có cạnh√bằng 1 là:
3
3
3
.
B. .
C.
.
A.
12
4
4

Câu 114. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối lập phương.
B. Khối bát diện đều. C. Khối tứ diện đều.


3
D.
.
2
D. Khối 12 mặt đều.

Câu 115. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là −3, phần ảo là 4.
B. Phần thực là −3, phần ảo là −4.
C. Phần thực là 3, phần ảo là 4.
D. Phần thực là 3, phần ảo là −4.
2x + 1
Câu 116. Tính giới hạn lim
x→+∞ x + 1
1
A. 2.
B. .
C. 1.
D. −1.
2
2−n
Câu 117. Giá trị của giới hạn lim
bằng
n+1
A. 0.

B. −1.
C. 1.
D. 2.
!
1
1
1
Câu 118. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
3
5
A. .
B. 2.
C. +∞.
D. .
2
2
Câu 119. [1] Hàm số nào đồng biến trên khoảng (0; +∞)?

A. y = log √2 x.
B. y = loga x trong đó a = 3 − 2.
C. y = log π4 x.
D. y = log 14 x.
Câu 120. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C)√và (A0C 0 D) bằng




a 3
2a 3
a 3
A.
.
B.
.
C. a 3.
D.
.
2
2
3
!4x
!2−x
2
3
Câu 121. Tập các số x thỏa mãn


3
2
Trang 9/10 Mã đề 1


#
2
A. −∞; .
5


"

!
2
B. − ; +∞ .
3

"

!
2
C.
; +∞ .
5

#
2
D. −∞; .
3

Câu 122. Khối đa diện đều loại {3; 4} có số cạnh
A. 10.
B. 8.
C. 12.
D. 6.
x
x−3 x−2 x−1
+
+
+

và y = |x + 2| − x − m (m là tham
Câu 123. [4-1213d] Cho hai hàm số y =
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; 2].
B. (−∞; 2).
C. (2; +∞).
D. [2; +∞).
Câu 124. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim+ f (x) = lim− f (x) = a.
B. lim f (x) = f (a).
x→a
x→a
x→a
C. lim+ f (x) = lim− f (x) = +∞.
D. f (x) có giới hạn hữu hạn khi x → a.
x→a

x→a

2
4
3
Câu 125. Cho z là nghiệm của phương trình

√ x + x + 1 = 0. Tính P = z + 2z − z
−1 + i 3

−1 − i 3
.
C. P = 2.
D. P =
.
A. P = 2i.
B. P =
2
2
Câu 126. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 160 cm2 .
B. 1200 cm2 .
C. 120 cm2 .
D. 160 cm2 .

Câu 127. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. F(x) = G(x) trên khoảng (a; b).
B. Cả ba câu trên đều sai.
C. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
D. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
Câu 128. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
0 0
ABC.A0 B

√ C là
3
a3 3
a3

a 3
3
.
B. a .
C.
.
D.
.
A.
6
2
3
Câu 129. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với
đáy một góc 45◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD là

10a3 3
3
3
3
A. 40a .
B. 20a .
C. 10a .
D.
.
3
Câu 130. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√

a3 5
a3 3

a3 5
a3 5
A.
.
B.
.
C.
.
D.
.
6
12
12
4
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A
3.

B

5. A
C


7.
9.
11.

D
B
D

13.
B

19. A
D

21.
23.

4.

D

6.

C

8.

C

10.


B

12.

B

14.

B

18.

C

20.

C

24. A
D

27.

D

22. A

B


25.

26.
28.

C

29.
31.

D

16.

15. A
17.

2.

D

B

30.

B

32.

33.


D

34.

35.

D

36.

37.

C

38.

39.

C

40. A
D

41.

D
C
B
C

D
C

42. A

43. A

44. A

45. A

46.

C

48.

C

50.

C

47.

B

49.
51.


D

52. A

C

53. A

54.

55. A

56.

57.

C

58. A

59.

C

60.

61.

D


68.

B
C

63.

64. A
66.

D

C
D

65.

B

67.

B

69.
1

D

C



70.

D

71.

72.

D

73. A

74.

B

75.

76.

D

79. A

D

80.

D


D

82. A

83.

D

84.

85.

B

86.

87.

B

88.
C

91.

92.

100. A


101.

C

102.

103.

C

104. A

B

107.

106.

B

C
B
D
C

112. A
C

114.


115. A

B

116. A
B

118.

B
D

120.

119. A
B

122.

123.

D

125.

124.

C
B
D


126.

C

127.
129.

C

110.

113.

121.

D

108.

C

109. A

117.

B

98.


B
C

111.

D

96. A

99.

105.

C

94.

C

95. A
97.

D

90. A
D

93.

B


78.

81.

89.

B

D
B

2

128.

C

130.

C



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×