Tải bản đầy đủ (.pdf) (13 trang)

Đề ôn toán thpt (695)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (156.09 KB, 13 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 11 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

2n − 3
bằng
Câu 1. Tính lim 2
2n + 3n + 1
A. +∞.
B. 0.

C. −∞.

D. 1.

Câu 2. [1] Đạo hàm của làm số y = log x là
1
1
ln 10
1
A.
.
B. y0 =
.
C. y0 =
.


D. y0 = .
10 ln x
x ln 10
x
x
3
2
Câu 3. Tìm giá trị của tham số m để hàm số y = −x + 3mx + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [−1; 3].
B. [−3; 1].
C. [1; +∞).
D. (−∞; −3].
Câu 4. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối 20 mặt đều.
B. Khối tứ diện đều.

C. Khối 12 mặt đều.

D. Khối bát diện đều.

Câu 5. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
9
3
A. 1.
B. 3.
C. .
D. .
2

2
Câu 6. Trong các mệnh đề dưới đây, mệnh đề nào sai?
!
un
A. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.
vn
!
un
B. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn
C. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
D. Nếu lim un = a > 0 và lim vn = 0 thì lim
= +∞.
vn
Câu 7. Khối đa diện đều loại {3; 4} có số cạnh
A. 12.
B. 10.
Câu 8. [2] Tổng các nghiệm của phương trình 2
A. −6.
B. 6.

x2 +2x

C. 8.

D. 6.


= 8 là
C. 5.

D. −5.

2−x

π
Câu 9. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3

trị của biểu √
thức T = a + b 3.

A. T = 2 3.
B. T = 3 3 + 1.
C. T = 4.
D. T = 2.
Câu 10. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ
C đến đường thẳng BB0 bằng 2, khoảng

cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2 3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng
3



2 3
A.
.
B. 2.
C. 3.
D. 1.
3
x−1
Câu 11. [3-1214d] Cho hàm số y =
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác
√ đều ABI có hai đỉnh A, B thuộc (C), đoạn thẳng AB
√ có độ dài bằng

B. 2.
C. 2 2.
D. 2 3.
A. 6.
Z 2
ln(x + 1)
Câu 12. Cho
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
x2
1
A. 0.
B. 3.
C. −3.
D. 1.
Trang 1/11 Mã đề 1



Câu 13. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối bát diện đều.

C. Khối 12 mặt đều.

D. Khối lập phương.

Câu 14. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 6.
B. 8.
C. 4.
D. 3.
Câu 15. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Chỉ có (II) đúng.
B. Cả hai đều đúng.

C. Chỉ có (I) đúng.

D. Cả hai đều sai.

t

9

, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
+ m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. 0.
B. Vô số.
C. 1.
D. 2.
log 2x

Câu 17. [3-1229d] Đạo hàm của hàm số y =
x2
1 − 2 log 2x
1 − 4 ln 2x
1
1 − 2 ln 2x
A. y0 =
.
C. y0 =
.
D. y0 = 3
.
.
B. y0 = 3
3
3
x
x ln 10
2x ln 10
2x ln 10
n−1

Câu 18. Tính lim 2
n +2
A. 3.
B. 0.
C. 1.
D. 2.
!
x+1
Câu 19. [3] Cho hàm số f (x) = ln 2017 − ln
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
2016
4035
2017
A. 2017.
B.
.
C.
.
D.
.
2017
2018
2018
Câu 20. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính qng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 8 m.
B. 24 m.
C. 12 m.
D. 16 m.

Câu 16. [4] Xét hàm số f (t) =

9t

Câu 21. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp
√ đã cho
√ là 1728. Khi đó, các kích thước của hình hộp là
A. 2 3, 4 3, 38.
B. 2, 4, 8.
C. 6, 12, 24.
D. 8, 16, 32.
Câu 22. Cho hình chóp S .ABCD có đáy ABCD là hình vuông cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với đáy một góc 60◦ . Thể tích√khối chóp S .ABCD là


3
3
3

a
3
2a
3
a
3
B.
.
C.
.

D.
.
A. a3 3.
3
3
6
Câu 23. Khối đa diện đều loại {3; 3} có số mặt
A. 4.
B. 2.
C. 5.
D. 3.
2

Câu 24. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 6.
B. 8.
C. 5.

D. 7.

Câu 25. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. 2n3 lần.
B. n3 lần.
C. 2n2 lần.
D. n3 lần.
7n2 − 2n3 + 1
Câu 26. Tính lim 3
3n + 2n2 + 1
7

2
A. .
B. 0.
C. 1.
D. - .
3
3
Trang 2/11 Mã đề 1


Câu 27. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Ba cạnh.
B. Năm cạnh.
C. Bốn cạnh.

D. Hai cạnh.

Câu 28. Khối đa diện đều loại {4; 3} có số đỉnh
A. 4.
B. 6.

D. 10.

Câu 29. Dãy số nào sau đây có giới hạn khác 0?
sin n
n+1
.
B.
.
A.

n
n

C. 8.
C.

1
.
n

Câu 30. [1] Cho a > 0, a , 1. Giá trị của biểu thức log 1a a2 bằng
1
1
A. − .
B. .
C. 2.
2
2
cos n + sin n
Câu 31. Tính lim
n2 + 1
A. 0.
B. +∞.
C. 1.

1
D. √ .
n

D. −2.


D. −∞.

Câu 32. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai đường thẳng BD và S C bằng




a 6
a 6
a 6
B.
.
C.
.
D.
.
A. a 6.
2
3
6
5
Câu 33. Tính lim
n+3
A. 3.
B. 2.
C. 0.
D. 1.
Câu 34. Giá trị cực đại của hàm số y = x3 − 3x + 4 là

A. 2.
B. 1.
C. −1.

D. 6.

Câu 35. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 20.
B. 24.
C. 15, 36.
D. 3, 55.
Câu 36. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (0; 2).
B. (2; +∞).
C. (−∞; 1).

D. R.

Câu 37. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R \ {0}.
B. D = R.

D. D = R \ {1}.

C. D = (0; +∞).

Câu 38. [1] !Tập xác định của hàm số y != log3 (2x + 1) là
!

1
1
1
A. −∞; .
B. −∞; − .
C. − ; +∞ .
2
2
2

!
1
D.
; +∞ .
2

Câu 39. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).

Hai mặt bên
√ (S BC) và (S AD) cùng
√ hợp với đáy một góc 303 .√Thể tích khối chóp S .ABCD
√ là
3
3
3
8a 3
a 3
4a 3
8a 3
A.

.
B.
.
C.
.
D.
.
3
9
9
9
Câu 40. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (0; +∞).
B. (−∞; 0) và (2; +∞). C. (0; 2).
D. (−∞; 2).
x+1
Câu 41. Tính lim
bằng
x→+∞ 4x + 3
1
1
A. .
B. .
C. 1.
D. 3.
4
3
Câu 42. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Hai đường phân giác y = x và y = −x của các góc tọa độ.
B. Đường phân giác góc phần tư thứ nhất.

Trang 3/11 Mã đề 1


C. Trục thực.
D. Trục ảo.
Câu 43. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối √
chóp S .ABMN là



3
4a3 3
2a3 3
a3 3
5a 3
.
B.
.
C.
.
D.
.
A.
3
3
3
2
[ = 60◦ , S O

Câu 44. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ BC) bằng
√ với mặt đáy và S O = a.√Khoảng cách từ O đến (S

2a 57
a 57
a 57
.
B.
.
C.
.
D. a 57.
A.
19
19
17
Câu 45. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
1
A. − .
B. − .
C. − 2 .
e
2e
e
x−3
Câu 46. [1] Tính lim

bằng?
x→3 x + 3
A. 1.
B. +∞.
C. −∞.

D. −e.

D. 0.

d = 120◦ .
Câu 47. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
A. 2a.
B. 4a.
C.
.
D. 3a.
2
Câu 48. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −12.
B. −5.
C. −9.
D. −15.
x+3
nghịch biến trên khoảng
Câu 49. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
x−m

(0; +∞)?
A. 3.
B. 1.
C. Vô số.
D. 2.
1 + 2 + ··· + n
Câu 50. [3-1132d] Cho dãy số (un ) với un =
. Mệnh đề nào sau đây đúng?
n2 + 1
A. Dãy số un khơng có giới hạn khi n → +∞.
B. lim un = 0.
1
C. lim un = .
D. lim un = 1.
2
1 − xy
Câu 51. [12210d] Xét các số thực dương x, y thỏa mãn log3
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
x + 2y
Pmin của P = x√+ y.



9 11 + 19
9 11 − 19
18 11 − 29
2 11 − 3
A. Pmin =
. B. Pmin =
. C. Pmin =

. D. Pmin =
.
9
9
21
3
log(mx)
Câu 52. [3-1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m ≤ 0.
B. m < 0.
C. m < 0 ∨ m = 4.
D. m < 0 ∨ m > 4.
Câu 53. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1
A. V = S h.
B. V = S h.
C. V = S h.
2
3
2n2 − 1
Câu 54. Tính lim 6
3n + n4
A. 1.
B. 0.
C. 2.

D. V = 3S h.


D.

2
.
3
Trang 4/11 Mã đề 1


Câu 55. Khối đa diện đều loại {5; 3} có số cạnh
A. 8.
B. 20.

C. 12.

Câu 56. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Tứ diện đều.
B. Thập nhị diện đều. C. Nhị thập diện đều.
12 + 22 + · · · + n2
Câu 57. [3-1133d] Tính lim
n3
1
A. .
B. 0.
3

C.

2
.

3

D. 30.
D. Bát diện đều.

D. +∞.


Câu 58. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã



√ cho là
πa3 3
πa3 3
πa3 6
πa3 3
.
B. V =
.
C. V =
.
D. V =
.
A. V =
2
3
6
6

Câu 59. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối
√ chóp S .ABCD là


a3 2
a3 6
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
16
48
24
48
Câu 60. Bát diện đều thuộc loại
A. {5; 3}.
B. {4; 3}.

C. {3; 3}.

D. {3; 4}.

Câu 61. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ

0 0
ABC.A0 B

√ C là
3
a3 3
a3
a 3
3
.
B. a .
C.
.
D.
.
A.
2
6
3
Câu 62. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {4; 3}.
B. {3; 4}.
C. {3; 5}.

D. {5; 3}.

Câu 63.
Z Trong các khẳng định sau, khẳng định nào sai? Z
dx = x + C, C là hằng số.


A.
Z
C.

0dx = C, C là hằng số.

1
dx = ln |x| + C, C là hằng số.
Z x
xα+1
D.
xα dx =
+ C, C là hằng số.
α+1
B.

Câu 64. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M,
√ N, P bằng



14 3
20 3
A.
.
B. 6 3.
C.
.

D. 8 3.
3
3
Câu 65. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 1587 m.
B. 387 m.
C. 25 m.
D. 27 m.
x
9
Câu 66. [2-c] Cho hàm số f (x) = x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9 +3
1
A. 2.
B. −1.
C. 1.
D. .
2
Câu 67. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 2.
B. y(−2) = 6.
C. y(−2) = −18.
D. y(−2) = 22.
Trang 5/11 Mã đề 1



Câu 68. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
B. Cả ba câu trên đều sai.
C. F(x) = G(x) trên khoảng (a; b).
D. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
Câu 69. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Một mặt.
B. Ba mặt.
C. Hai mặt.
D. Bốn mặt.
!
5 − 12x
Câu 70. [2] Phương trình log x 4 log2
= 2 có bao nhiêu nghiệm thực?
12x − 8
A. 2.
B. 1.
C. Vô nghiệm.
D. 3.
Câu 71. Dãy số nào sau đây có giới hạn là 0?
1 − 2n
n2 + n + 1
A. un =
.
B.
u
=

.
n
5n + n2
(n + 1)2
!
1
1
1
Câu 72. Tính lim
+
+ ··· +
1.2 2.3
n(n + 1)

C. un =

n2 − 3n
.
n2

D. un =

n2 − 2
.
5n − 3n2

3
.
D. 1.
2

Câu 73. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 9 lần.
B. Tăng gấp 27 lần.
C. Tăng gấp 3 lần.
D. Tăng gấp 18 lần.
A. 0.

B. 2.

C.

Câu 74. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 160 cm2 .
B. 160 cm2 .
C. 120 cm2 .
D. 1200 cm2 .
1
Câu 75. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 2.
B. 3.
C. 1.
D. 4.
Câu 76. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
B. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
C. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).

D. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
Câu 77. [2] Tìm m để giá trị lớn nhất của hàm số y = 2x3 + (m2√+ 1)2 x trên [0; 1] bằng 8 √
A. m = ±1.
B. m = ±3.
C. m = ± 2.
D. m = ± 3.
Câu 78. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 1.

B. 3.
x2 − 5x + 6
x→2
x−2
B. 0.

C. 2.

D. 0.

Câu 79. Tính giới hạn lim
A. 5.

C. −1.

D. 1.
Trang 6/11 Mã đề 1



Câu 80. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim+ f (x) = lim− f (x) = a.
B. lim+ f (x) = lim− f (x) = +∞.
x→a

x→a

x→a

C. lim f (x) = f (a).

x→a

D. f (x) có giới hạn hữu hạn khi x → a.

x→a

Câu 81. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, √biết S H ⊥ (ABCD). Thể √
tích khối chóp S .ABCD là
2a3 3
a3
a3
4a3 3
.
B.
.
C.
.

D.
.
A.
3
3
6
3
Câu 82. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = −8.
B. x = −5.
C. x = 0.

D. x = −2.

Câu 83. Khối đa diện đều loại {4; 3} có số mặt
A. 12.
B. 10.

D. 6.

C. 8.

Câu 84.
bằng 1 là:
√ Thể tích của khối lăng trụ tam giác đều có cạnh √
3
3
3
A.
.

B. .
C.
.
12
4
4


3
D.
.
2

Câu 85. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (1; −3).
B. (0; −2).
C. (2; 2).

D. (−1; −7).

Câu 86. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.
√ tích khối chóp S .ABC3 √


3
a 6
a 2
a3 6

a3 6
A.
.
B.
.
C.
.
D.
.
6
6
36
18
Câu 87. Khối đa diện đều loại {3; 3} có số cạnh
A. 5.
B. 6.

C. 4.

D. 8.

Câu 88. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. 2e4 .
B. −e2 .
C. 2e2 .
D. −2e2 .
Câu 89. Khối đa diện đều loại {3; 5} có số cạnh
A. 12.
B. 30.


C. 20.

D. 8.
x+2
Câu 90. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. 1.
B. 2.
C. 3.
D. Vô số.

Câu 91. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; −3; 3).
B. A0 (−3; −3; −3).
C. A0 (−3; 3; 3).
D. A0 (−3; 3; 1).
Câu 92. [1] Tính lim
1
A. − .
2

1 − n2
bằng?
2n2 + 1
1
B. .
2


C. 0.

D.

1
.
3

Câu 93. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α

A. aα bα = (ab)α .
B. β = a β .
C. aα+β = aα .aβ .
D. aαβ = (aα )β .
a
Câu 94. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số đồng biến trên khoảng (0; 2).
B. Hàm số đồng biến trên khoảng (0; +∞).
C. Hàm số nghịch biến trên khoảng (0; 2).
D. Hàm số nghịch biến trên khoảng (−∞; 2).
Trang 7/11 Mã đề 1


Câu 95. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞

A. lim [ f (x) + g(x)] = a + b.


x→+∞

x→+∞

C. lim [ f (x) − g(x)] = a − b.
x→+∞

B. lim [ f (x)g(x)] = ab.
x→+∞
f (x) a
= .
D. lim
x→+∞ g(x)
b

Câu 96. Khối đa diện đều loại {4; 3} có số cạnh
A. 10.
B. 20.

C. 30.

D. 12.

Câu 97.√Thể tích của tứ diện đều √
cạnh bằng a
a3 2
a3 2
A.
.
B.

.
4
6


a3 2
C.
.
12


a3 2
D.
.
2

Câu 98. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ơng muốn hồn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng không đổi trong thời gian ông A hoàn nợ.
100.1, 03
100.(1, 01)3
triệu.
B. m =
triệu.
A. m =
3
3
(1, 01)3

120.(1, 12)3
C. m =
triệu.
D.
m
=
triệu.
(1, 01)3 − 1
(1, 12)3 − 1
Câu 99.
Z Các khẳng định nào sau
Z đây là sai?
A.
Z
C.

f (x)dx = F(x) +C ⇒
!0
f (x)dx = f (x).

f (u)dx = F(u) +C. B.

Z
Z

D.

Z

f (x)dx = F(x) + C ⇒

f (t)dt = F(t) + C.
Z
k f (x)dx = k
f (x)dx, k là hằng số.

Câu 100. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
BC là
. Khi đó thể tích khối lăng trụ là
4




a3 3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
12

24
6
36
Câu 101. [4-1246d] Trong tất cả các số phức z thỏa mãn√|z − i| = 1. Tìm giá trị lớn√nhất của |z|
A. 2.
B. 1.
C. 3.
D. 5.
Z 3
a
a
x
Câu 102. Cho I =
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá

d
d
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = −2.
B. P = 28.
C. P = 16.
D. P = 4.
Câu 103. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d ⊥ P.
B. d nằm trên P hoặc d ⊥ P.
C. d song song với (P).
D. d nằm trên P.



x
+
3
+
6−x
Câu 104. √Tìm giá trị lớn nhất của
hàm
số
y
=


A. 2 + 3.
B. 3 2.
C. 3.
D. 2 3.
Câu 105. Trong các khẳng định sau, khẳng định nào sai?
A. Cả ba đáp án trên.

B. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
C. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
D. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
Trang 8/11 Mã đề 1


Câu 106. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất không đổi và người đó khơng rút tiền ra?
A. 12 năm.

B. 11 năm.
C. 13 năm.
D. 10 năm.
Câu 107. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 x ) = 2 − x bằng
A. 7.
B. 2.
C. 1.
D. 3.
Câu 108.
√ min |z − 1 − i|.
√ [4-1245d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = 3. Tìm
B. 2.
C. 1.
D. 2.
A. 10.
6
. Tính
Câu 109. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x2 f (x3 ) − √
3x + 1
Z 1
f (x)dx.
0

A. 4.

B. −1.

C. 2.

D. 6.


Câu 110. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √

3
3
a 6
a 3
a3 6
a3 6
A.
.
B.
.
C.
.
D.
.
24
24
48
8
Câu 111. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. 3 nghiệm.
B. 1 nghiệm.
C. 2 nghiệm.
D. Vơ nghiệm.
Câu 112. [3] Cho khối chóp S .ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết

S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
5a
8a
2a
a
B.
.
C.
.
D.
.
A. .
9
9
9
9
Câu 113. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).

√ Thể tích khối chóp S 3.ABC
√ là

3
a 3
a 3
a3 2
a3 3
A.
.

B.
.
C.
.
D.
.
12
4
12
6
Câu 114. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 4.
B. V = 6.
C. V = 3.
D. V = 5.
Câu 115. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có một.
B. Có hai.
C. Có vơ số.
D. Khơng có.
Câu 116. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
.
C. log2 a =
.
D. log2 a = − loga 2.
A. log2 a = loga 2.

B. log2 a =
loga 2
log2 a
Câu 117. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối lập phương.
B. Khối bát diện đều.
x2 − 12x + 35
Câu 118. Tính lim
x→5
25 − 5x
2
2
A. .
B. − .
5
5
Câu 119. Phát biểu nào sau đây là sai?
A. lim un = c (Với un = c là hằng số).

C. Khối tứ diện đều.

D. Khối 12 mặt đều.

C. −∞.

D. +∞.

1
B. lim √ = 0.
n

Trang 9/11 Mã đề 1


1
= 0 với k > 1.
nk
Câu 120. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C) và (A0C 0 D) bằng




a 3
a 3
2a 3
A. a 3.
B.
.
C.
.
D.
.
3
2
2
Câu 121. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. Không tồn tại.
B. −3.
C. −5.
D. −7.

C. lim qn = 1 với |q| > 1.

D. lim

Câu 122. ZCho hai hàmZy = f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
f (x)dx =

A. Nếu
Z
B. Nếu
Z
C. Nếu

g(x)dx thì f (x) = g(x), ∀x ∈ R.

f 0 (x)dx =

Z

f (x)dx =

Z

g0 (x)dx thì f (x) = g(x), ∀x ∈ R.

g(x)dx thì f (x) , g(x), ∀x ∈ R.
Z
Z
0
D. Nếu f (x) = g(x) + 1, ∀x ∈ R thì

f (x)dx =
g0 (x)dx.
Câu 123. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (0; 1).
B. (−1; 0).
C. (−∞; 0) và (1; +∞). D. (−∞; −1) và (0; +∞).
mx − 4
Câu 124. Tìm m để hàm số y =
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
A. 34.
B. 67.
C. 45.
D. 26.
Câu 125. Cho hình chóp S .ABC có đáy ABC là tam giác vng cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
3
.
B.
.
C. a .
D.
.
A.
24
6

12
Câu 126.
Z 0 Trong các khẳng định sau, khẳng định nào sai?
u (x)
A.
dx = log |u(x)| + C.
u(x)
B. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
C. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
D. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
2mx + 1
1
trên đoạn [2; 3] là − khi m nhận giá trị bằng
Câu 127. Giá trị lớn nhất của hàm số y =
m−x
3
A. 0.
B. −2.
C. −5.
D. 1.



x = 1 + 3t




Câu 128. [1232h] Trong không gian Oxyz, cho đường thẳng d : 

y = 1 + 4t . Gọi ∆ là đường thẳng đi




z = 1
qua điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương
 trình là











x
=
1
+
3t
x
=
−1
+
2t

x
=
−1
+
2t
x = 1 + 7t
















A. 
B. 
.
y = 1 + 4t .
y = −10 + 11t . C. 
y = −10 + 11t . D. 
y=1+t

















z = 1 − 5t
z = 6 − 5t
z = −6 − 5t
z = 1 + 5t
Câu 129. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 27.
B. 12.
C. 10.

D. 3.
Trang 10/11 Mã đề 1


Câu 130. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 + 1; m = 1.

B. M = e−2 − 2; m = 1.
C. M = e2 − 2; m = e−2 + 2.
D. M = e−2 + 2; m = 1.
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 11/11 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

B

2.

3.

B

4.

5.

D

7. A
C


9.
11.
13.

B

D

19.

D
B
C

14.

D

16.

D
B
D

20.

C

22.


23. A
25.

8.

18.

B

21.

D

12.

15. A
17.

C

6.
10.

D

B

B

B


24.

D

26.

D

27. A

28.

29. A

30.

D

31. A

32.

D
D

33.

C


34.

35.

C

36. A

37.

B

38.

39.

D

40.

41. A

47.

D

46.

B


D
C

55.

D

57. A
59.

D

48. A

C

51.

D

50.

C

52.

C

54.


B

56.

B

58.

B

60.

61. A

D

62.

63.

D

64.

65.

D

66.


67.

B

44. A

49. A
53.

C

42. A

43.
45.

C

68. A

C
1

C
B
C


69.


D

70.
72.

71. A
73.

B

B

74.

D
B
D

75.

C

76.

77.

C

78.


C

79.

C

80.

C

81. A

82. A

83.

D

84.

C
D

85.

B

86.

87.


B

88.

B

89.

B

90.

B

C

91.
93.

92. A
94. A

B
D

95.
97.

C


98.

99. A

102.

103.

B

104.

105.

B

106. A

107.

B

108.

109. A

C
C


114. A
116.

B

117.

C

118. A

119.

C

120.

121. A

B
B

122. A
B

124. A
D

126. A


127. A
129.

B

112.

C

113. A

125.

D

110. A

111.

123.

C

100. A

101. A

115.

D


96.

D

2

128.

B

130.

B



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×